
Consistent Streaming Through Time: A Vision for Event Stream Processing

Roger S. Barga, Jonathan Goldstein, Mohamed Ali and Mingsheng Hong.

Microsoft Research
Redmond, WA

{barga, jongold,t-mohali,t-minhon} @microsoft.com

ABSTRACT
Event processing will play an increasingly important role in
constructing enterprise applications that can immediately react to
business critical events. Various technologies have been proposed
in recent years, such as event processing, data streams and
asynchronous messaging (e.g. pub/sub). We believe these
technologies share a common processing model and differ only in
target workload, including query language features and consistency
requirements. We argue that integrating these technologies is the
next step in a natural progression. In this paper, we present an
overview and discuss the foundations of CEDR, an event
streaming system that embraces a temporal stream model to unify
and further enrich query language features, handle imperfections in
event delivery, define correctness guarantees, and define operator
semantics. We describe specific contributions made so far and
outline next steps in developing the CEDR system.

Categories and Subject Descriptors
H.1.1 [Systems and Information Theory]: General Systems Theory

General Terms
Design, Languages, Theory

Keywords
Stream, Events, Temporal, Consistency, Retraction, Semantics

1. Motivation and Introduction
Most businesses today actively monitor data streams and

application messages, in order to detect business events or
situations and take time-critical actions [1]. It is not an
exaggeration to say that business events are the real drivers
of the enterprise today because they represent changes in the
state of the business. Unfortunately, as in the case of data
management in pre-database days, every usage area of
business events today tends to build its own special purpose
infrastructure to filter, process, and propagate events.

Designing efficient, scalable infrastructure for monitoring
and processing events has been a major research interest in

recent years. Various technologies have been proposed,
including data stream management, complex event
processing, and asynchronous messaging such as pub/sub.
We observe that these systems share a common processing
model, but differ in query language features. Furthermore,
applications may have different requirements for
consistency, which specifies the desired tradeoff between
insensitivity to event arrival order and system performance.
Clearly, some applications require a strict notion of
correctness that is robust relative to event arrival order,
while others are more concerned with high throughput. If
exposed to the user and handled within the system, users can
specify consistency requirements on a per query basis and
the system can adjust consistency at runtime to uphold the
guarantee and manage system resources.

To illustrate, consider a financial services organization
that actively monitors financial markets, individual trader
activity and customer accounts. An application running on a
trader’s desktop may track a moving average of the value of
an investment portfolio. This moving average needs to be
updated continuously as stock updates arrive and trades are
confirmed, but does not require perfect accuracy. A second
application running on the trading floor extracts events from
live news feeds and correlates these events with market
indicators to infer market sentiment, impacting automated
stock trading programs. This query looks for patterns of
events, correlated across time and data values, where each
event has a short “shelf life”. In order to be actionable, the
query must identify a trading opportunity as soon as possible
with the information available at that time; late events may
result in a retraction. While a third application running in the
compliance office monitors trader activity and customer
accounts, to watch for churn and ensure conformity with
SEC rules and institution guidelines. These queries may run
until the end of a trading session, perhaps longer, and must
process all events in proper order to make an accurate
assessment. These applications carry out similar
computations but differ significantly in their workload and
requirements for consistency guarantees and response time.

This example illustrates that most real-world enterprise
applications are complex in functionality, and incorporate
different technologies that must work together with strict
requirements in terms of accuracy and consistency. We
believe these technologies complement each other and will
naturally converge in future systems, but several research

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/2.5/).
You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the work
to the author and CIDR 2007.
3rd Biennial Conference on Innovative Data Systems Research (CIDR)
January 7-10, 2007, Asilomar, California, USA.

363

and engineering challenges must first be addressed. We
present our analysis on existing technologies as follows.

Data stream systems, which support sliding window
operations and use sampling or approximation to cope with
unbounded streams, could be used to compute a moving
average of portfolio values. However, there are important
features that cannot be naturally supported in existing
stream systems. First, instance selection and consumption
can be used to customize output and increase system
efficiency, where selection specifies which event instances
will be involved in producing output, and consumption
specifies which instances will never be involved in
producing future output, and therefore can be effectively
“consumed”. Without this feature, an operator such as
sequence [13] is likely to be too expensive to implement in a
stream setting – no past input can be forgotten due to its
potential relevance to future output, and the size of output
stream can be multiplicative w.r.t. the size of the input.
Expressing negation or the non-occurrence of events, such
as a customer not answering an email within a specified
time, in a query is useful for many applications, but can not
be naturally expressed in many existing stream systems.
Messaging systems such as pub/sub, could handily route
news feeds and market data but pub/sub queries are usually
stateless and lack the ability to carry out computation other
than filtering. Complex event processing systems can detect
patterns in event streams, including both the occurrence and
non-occurrence of events, and queries can specify intricate
temporal constraints. However, most event systems
available today provide only limited support for value
constraints or correlation (predicates on event attribute
values), as well as query directed instance selection and
consumption policies. Finally, none of the above
technologies provide support for consistency guarantees.

We contend that data streams, complex event processing
and pub/sub are complementary technologies and propose a
paradigm that integrates and extends these models, and
upholds precise notions of consistency. We are developing
a system called CEDR (Complex Event Detection and
Response) to explore the benefits of an event streaming
system that integrates the above technologies, and supports a
spectrum of consistency guarantees. This paper presents a
current snapshot of the CEDR project. We are not
presenting a complete system at this time as several research
and engineering challenges remain. However, there are a
number of concrete contributions to report on at this point:

! A stream data model that embraces a temporal data
perspective, and introduces a clear separation of different
notions of time in streaming applications (Section 2).

! A declarative query language capable of expressing a
wide range of event patterns with temporal and value
correlation, negation, along with query directed instance
selection and consumption. All aspects of the language
are fully composable (Section 3).

! Along with the language, we define a set of logical
operators that implement the query language, and serve as
the basis for logical plan exploration during query
optimization.

! We formally define a spectrum of consistency levels to
deal with stream imperfections, such as latency or out-of-
order delivery, and to meet application requirements for
quality of the result. We also discuss the consequences of
upholding the consistency guarantees in a streaming
system (Sections 4 and 5).

! We base our implementation on a set of run-time
operators, most of which are based on view update
semantics. We provide the denotational semantics of these
operators, and formally define notions of good behavior
and view update compliance. We also introduce a novel
operator, called AlterLifetime, which can be used to
implement a variety of window types (Section 6).

Due to space limitations, we do not include a section
dedicated to related work, but refer the reader to our
technical report [2] which includes a discussion of related
work. We do make comparisons to systems throughout this
paper, particularly STREAM [5], Aurora [4], Niagra [9] Nile
[10], Cayuga [7] and HiFi [3]. However even these
comparisons are narrowly focused and again we refer the
reader to [2].

2. CEDR Temporal Stream Model
In this section, we introduce our tritemporal stream

model, the theoretical foundation for CEDR which allows us
to support both query language semantics and consistency
guarantees simultaneously. Existing stream systems already
separate the notion of application time and system time [11],
where the former is the clock that event providers use to
timestamp tuples they generate, and the latter is the clock of
the stream processing server. In CEDR, we further refine
application time into two temporal dimensions, valid time
and occurrence time, and refer to system time as CEDR
time. This gives us three temporal dimensions in our stream
model. We now describe each notion of time in detail.

In CEDR, a data stream is modeled as a time varying
relation. Each tuple in the relation is an event, and has an
ID. Each tuple has a validity interval, which indicates the
range of time when the tuple is valid from the event
provider’s perspective. Given the interval representation of
each event, it is possible to issue the following continuous
query: “at each time instance t, return all tuples that are still
valid at t.” Note that existing systems [4, 5] model stream
tuples as points, and therefore do not capture the notion of
validity interval. Consequently, they cannot naturally
express such a query. An interval can be encoded with a pair
of points, but the resulting query formulation will be
unintuitive.

364

After an event initially appears in the stream, we allow
its validity interval (e.g. the time during which a coupon
could be used) to be changed by the event provider, a
feature not naturally supported in existing stream systems.
Such changes are represented by tuples with the same ID but
different content. A second temporal dimension, occurrence
time, models when such changes occur from the event
provider’s perspective. An insert event of a certain ID is the
tuple with minimum occurrence start time value (Os) among
all events with that ID. Other events of the same ID are
referred to as modification events. Both valid time and
occurrence time are assigned by the same logical clock of
the event provider, and are thus comparable1. We use tv to
denote valid time, and use to to denote occurrence time.

We use the following schema as the conceptual
representation of a stream produced by an event provider:
(ID, Vs, Ve, Os, Oe, Payload). Here Vs and Ve respectively
denote valid start and end time; Os and Oe respectively
denote occurrence start and end time; Payload is the sub-
schema consisting of normal value attributes, and is
application dependent. For example, Figure 1 represents the
following scenario: at time 1, event e0 is inserted into the
stream with validity interval [1, !); at time 2, e0’s validity
interval is modified to [1, 10); at time 3, e0’s validity
interval is modified to [1, 5), and e1 is inserted with validity
interval [4, 9). We ignore the content payload in examples
throughout this paper, and focus only on temporal attributes.

Figure 1. Example – Conceptual stream representation

ID Vs Ve Os Oe (Payload)

e0 1 ! 1 2 …
e0 1 10 2 3 …
e0 1 5 3 ! …
e1 4 9 3 ! …

 We stress that the bitemporal schema above is only a
conceptual representation of a stream. In an actual
implementation, stream schemas can be customized to fit
application scenarios. This is similar to the notion of
temporal specialization in the literature [12]. When events
produced by the event provider are delivered into CEDR,
they can become out of order, due to unreliable network
protocols, system crash recovery, and other anomalies in the
physical world. We model out-of-order event delivery with a
third temporal dimension, producing a tritemporal stream
model. This is further discussed in Section 4.

3. CEDR Query Language
CEDR query semantics are defined only on the

information obtained from event providers, and this implies
the query language will reason about valid and occurrence
time, but not CEDR time. When we specify the semantics

of a CEDR query, its input and output are both bitemporal
streams (consisting of valid time and occurrence time).

The CEDR language for registering event queries is based
on the following three aspects: 1) event pattern expression,
composed by a set of high level operators that specify how
individual events are filtered, and how multiple events are
correlated (joined) via time-based and value-based
constraints to form composite event instances, or instances
for short. 2) Instance selection and consumption, expressed
by a policy referred to as an SC mode; 3) finally, instance
transformation, which takes the events participating in a
detected pattern as input, and transforms them to produce
complex output events via mechanisms such as aggregation,
attribute projection, and computation of a new function. In
designing the CEDR language, we took efforts to make sure
that all features are fully composable with each other.

3.1 Overview of the CEDR Language

Due to space constraints, here we give an overview of the
language syntax and semantics through a query example.

 EVENT CIDR07_Example
 WHEN UNLESS(SEQUENCE(INSTALL x,

 SHUTDOWN AS y, 12 hours),
 RESTART AS z, 5 minutes)
 WHERE {x.Machine_Id = y.Machine_Id} AND
 {x.Machine_Id = z.Machine_Id}

The SEQUENCE construct specifies a sequence of events
that must occur in a particular order. The parameters of the
SEQUENCE operator (or any operator that produces
composite events in general) are the occurrences of events
of interest, referred to as contributors. There is a scope
associated with the sequence operator, which puts an upper
bound on the temporal distance between the occurrence of
the last contributor in the sequence and that of the first
contributor. In this query, the SEQUENCE construct
specifies a sequence that consists of the occurrence of an
INSTALL event followed by a SHUTDOWN event, within 12
hours of the occurrence of the former. The output of the
SEQUENCE construct should then be followed by the non-
occurrence of a RESTART event within 5 minutes. Non-
occurrences of events, also referred to as negation in this
work, can be expressed either directly using the NOT
operator, or indirectly using the UNLESS operator, which is
used in this query formulation. Intuitively, UNLESS(A, B,
w) produces an output when the occurrence of an A event is
followed by non-occurrence of any B event in the following
w time units. w is therefore the negation scope. In this
query, UNLESS is used to express that the sequence of
INSTALL, SHUTDOWN events should not be followed by
no RESTART event in the next 5 minutes. We can also bind
a sub-expression to a variable via AS construct, such that we
can refer to the corresponding contributor in WHERE clause
when we specify value constraints.

1 Valid and occurrence time can be assigned by different physical

clocks, in which case we require them to be synchronized.

365

Now we continue to describe the WHERE clause for this
query. There we use the variables defined previously to
form predicates that compare attributes of different events.
To distinguish from simple predicates that compare to a
constant like those in the first example, we refer to such
predicates as parameterized predicates as the attribute of the
later event addressed in the predicate is compared to a value
that an earlier event provides. The parameterized predicates
in this query compare the id attributes of all three events in
the WHEN clause for equality. Equality comparisons on a
common attribute across multiple contributors are typical in
monitoring applications. For ease of exposition, we refer to
the common attribute used for this purpose as a correlation
key, and the set of equality comparisons on this attribute as
an equivalence test. Our language offers a shorthand
notation: an equivalence test on an attribute (e.g.,
Machine_Id) can be expressed by enclosing the attribute
name as an argument to the function CorrelationKey with a
keywords, such as EQUAL, UNIQUE (e.g.,
CorrelationKey(Machine_ID, Equal), as shown in the
comment on the WHERE clause in this example).
Moreover, if an equivalence test requires all events to have a
specific value (e.g., ‘BARGA_XP03’) for the attribute id,
we can express it as [Machine_Id Equal ‘BARGA_XP03’].

Instance selection and consumption should be specified in
WHEN clause as well. For simplicity of the query
illustration, we did not show their corresponding syntax
constructs in the above query, and will defer the description
of SC modes supported in CEDR till a later point. Finally,
instance transformation is specified in an optional OUTPUT
clause to produce output events. If OUTPUT clause is not
specified in a query, all instances that pass the instance
selection process will be output directly to the user.

3.2 Features of CEDR Language

Due to space constraints, in this section we only highlight
features that distinguish CEDR from other event processing
and data stream languages.

Event Sequencing – The ability to synthesize events
based upon the ordering of previous events is a basic and
powerful event language construct. For efficient
implementation in a stream setting, all operators that
produce outputs involving more than one input event should
have a time based scope, denoted as w. For example,
SEQUENCE(E1, E2, w) outputs a sequence event at the
occurrence of an E2 event, if there has been an E1 event
occurrence in the last w time units. Most event processing
systems, such as SNOOP [6], do not support scope. In
Cayuga [7] and SASE [13], scope is expressed respectively
by a duration predicate and a window clause. In CEDR,
scope is "tightly coupled" with operator definition, and thus
helps users in writing properly scoped queries, and permits
the optimizer to generate efficient plans.

Negation – Negation has to have a scope within which
the non-occurrence of events is monitored. The scope can be
time based or sequence based. The CEDR language has
three negation operators. We informally describe their
semantics below. First, for time scope, UNLESS(E1, E2, w)
produces an output event when the occurrence of an E1
event is followed by no E2 event in the next w time units.
The start time of negation scope is therefore bound always
to the occurrence of the E1 event. For sequence scope, we
use the operator NOT (E, SEQUENCE (E1,…,Ek, w)),
where the second parameter of NOT, a sequence operator, is
the scope for the non-occurrence of E. It produces an output
at the occurrence of the sequence event specified by the
sequence operator, if there is no occurrence of E between
the occurrence of E1 and Ek that contribute to the sequence
event. Finally, CANCEL-WHEN (E1, E2) stops the
(partial) detection for E1 when an E2 event occurs. Cancel-
when is a powerful language feature not found in existing
event or stream systems. Unlike existing systems [13],
negation in CEDR is fully composable with other operators.

Temporal Slicing – We have two temporal slicing
operators @ and # respectively on occurrence time and valid
time. Users can put them in the query formulation to
customize the bitemporal query output. For example, for Q
@ [to1, to2) #[tv1, tv2), among the tuples in the bitemporal
output of query Q, it only outputs tuples valid between tv1
and tv2, and occur at time between to1 and to2.

Value Correlation in the WHERE clause – Some
existing event languages [13] support WHERE clause.
However, when the language supports negation, for a query
in which negation is composed with other operators in a
complex way, it could become quite hard to reason about the
semantics of value correlation. In CEDR, we carefully
define the semantics of such value correlation based on what
operators are present in the WHEN clause, by placing the
predicates from the WHERE clause into the denotation of
the query, a process we refer to as predicate injection. SASE
[13] takes a simpler approach, since the language operators
in SASE are not composable. Overall, predicate injection
for negation is non-trivial, and is simply not handled by
many existing systems.

Instance Selection and Consumption – Many systems
do not support this feature [13], while others tailor the
semantics of instance selection and consumption in favor of
theoretical properties, and are thus "arbitrary" from a user's
perspective; i.e., not controlled by user on a per query basis.
In some cases, the semantics of selection and consumption
are "hard coded" into operator definitions, and thus
inflexible [7, 8]. In CEDR the specification of SC mode is
decoupled from operator semantics, and for language
composability, SC mode is associated with the input
parameters of operators, instead of only base stream events.

366

3.3 Formal Language Semantics

In order for a query language to be compositional, the
type of the query output should be the same as that of the
query inputs. Hence, in the case of bitemporal databases
and CEDR streams, the output type of a query should be a
bitemporal relation. We now formally define the semantics
of the CEDR language constructs with the denotation in
relational calculus style. First, we focus on operators used
in the WHEN clause. In many event processing systems,
low level event algebra operators are the only way to specify
a complex event pattern for detection. The functionality or
meaning of these operators is not always intuitive, leading to
confusion and documented peculiarities and irregularities.
Our approach is to provide high level operators with
intuitive and well-defined semantics. Operators can be
composed to form an event expression in the WHEN clause.
To make the operators composable, each input parameter of
an operator is itself an event expression. The simplest event
expression is an event type, which outputs all events of this
event type. Below, we describe the set of operators that
CEDR supports and formally present their semantics.

3.3.1 Conventions

Each event is associated with a type, and has a header and
a body component in its content. The header consists of
temporal attributes, the ID column, and an attribute for
tracking the lineage of complex events. The event body
specifies its payload, which we describe with a relational
schema. For example, a purchase event would frequently
contain the information of a purchase order ID. For our
purposes payload is thought of merely as immediately
available data, rather like a stack frame, and is opaque to the
operator definitions. In other words, operator definitions are
only concerned with the header information of events. Dot
notation is used to refer to fields in event header (as well as
payload). For example, Purchase.Vs refers to the start valid
time of the Purchase event. For an event type E, we use the
notation e to denote a particular event instance of that type.

More specifically, we represent an event in the form (ID,
Vs, Ve, Os, Oe, Rt, cbt[]; p), where the first seven attributes
represent the header information, and separated with the
event body by a semi-colon, which payload, denoted as p, is
specified. The first six attributes in the header are the same
as the bitemporal schema. cbt[] is used to track the lineage
of contributor events that form the composite event. The
attribute cbt[] is a sequence (ordered set) of event
references2, and thus not in first order normal form. A
sequence is denoted within square brackets. For example,
we use [e1, e2,…,en] to denote that the value of cbt[] is a
sequence of references to events e1 to en. In contrast, a set is
specified within curly brackets. For example, {e1, e2,…,en}
denotes a set of events e1 to en, where order is immaterial.
For primitive events, the value of cbt[] is NULL.

3.3.2 Operators in WHEN Clause

We have introduced the notion of a canonical form R* for
a bitemporal relation R previously. We now define a
shredded canonical form as follows: Take R* as input. For
each tuple e in R* with validity interval [Os, Oe), replace it
with Oe-Os tuples, such that all tuples have the same content
as e in all attributes other than Os and Oe; their CEDR
intervals are of length 1 but are all different; the union of
these CEDR intervals is [Os, Oe). We say e is shredded into
these Oe-Os tuples. After shredding each tuple in R*, the
resulting relation is a shredded canonical form. In defining
the semantics of operators, we assume each input stream, a
bitemporal relation, is in shredded canonical form. In all
operator definitions, we require that the CEDR interval of
all inputs is the same. This is a common condition we omit
in the following definition of each operator.

In order to generate ID for the output events of an
operator, we need a pairing function idgen, which takes a
variable number of input IDs, and produces an ID. It has the
property that the different sets of input IDs will generate
different output IDs. In the output events, the value id for
attribute ID is computed by idgen(e1.ID,...,ek.ID), where
e1.ID through ek.ID are the set of input IDs. Also the value
rt for attribute Rt in the output is the minimum root time
value among all inputs e1 through ek. Note that how to
assign Ve value for outputs is in general orthogonal to the
operator scope w. In the following operator definitions, we
assume that Ve of the output is set to e1.Vs+w, where e1 is
the first contributor to the operator. Note that it is probably
reasonable to set Ve to infinity, or to the Ve value of the last
contributor of this operator.

Event Sequencing – The ability to synthesize events
based upon the ordering of previous events is a basic and
powerful event language construct. Almost all operators in
the table below have a time based scope, denoted as w. A
sequence based scope can be added if such functionality is
required by any query CEDR wants to support.

Operator Description

ATLEAST(n,E1,.,Ek, w)

ATLEAST (n, E1, …, Ek, w) " {(id,
ein.Os, ein.Oe, ein.Vs, ei1.Vs+w, [ei1,
ei2, …, ein] ; ei1.p, ei2.p, …, ein.p) |
ei1.Vs<ei2.Vs<…<ein.Vs!ein.Vs –
ei1.Vs <= w!{i1, i2, …, in} is a
subset of {1, 2, …, k} !i1 != i2 !=
… != in}, where rt is the minimum
root time value among ei1 through
ein.

ATMOST(n,E1,...,Ek, w)

This operator is a syntactic sugar,
which can be expressed with sliding
window aggregate (count aggregate).
In addition, it is possible to assign
individual weights to contributors
that can be used to adjust the
counting.

2 Event reference could be the pointer to that event or some other identifier.

367

ALL (E1, . . . , Ek, w) ALL (E1, E2, . . . , Ek, w) "
ATLEAST (k, E1,E2,...,Ek, w)

ANY (E1,...,Ek) ANY (E1, E2,...,Ek) " ATLEAST (1,
E1,E2,...,Ek, 1)

SEQUENCE(E1,.,Ek, w)

SEQUENCE(E1, E2, …, Ek, w) " {id,
ek.Os, ek.Oe, ek.Vs, e1.Vs+w, rt, [e1, e2,
…, ek] ; e1.p, e2.p, …, ek.p) |
e1.Vs<e2.Vs<…<ek.Vs!ek.Vs – e1.Vs <=
w}

Note that the correlation conditions in the definition of
sequencing operators do not take root time into account. It
can be easily made to do so if required by queries.

Negation – The event service can track the non-
occurrence of an expected event, such as a customer not
answering an email within a specified time. The negation
feature has great utility in business processes.

Negation has to have a scope within which the non-
occurrence of events is monitored. The scope can be time
based or sequence based. For a time based scope, the start
time of such a scope should be specified as well. For an
efficient implementation, we first propose an operator
UNLESS to implicitly specify such a start time, instead of
allowing users to specify it. Informally, UNLESS(E1, E2,
w) produces an output event when the occurrence of an E1
event is followed by no E2 event in the next w time units.
The start time of the negation scope is therefore bound
always to the occurrence (start valid time) of the E1 event.
A variant UNLESS’ that provides more flexible options for
specifying the start time of the scope is then given. For
sequence scope, we use operator NOT(E, SEQUENCE(E1,
…, Ek, w)), where the second parameter of NOT, a
sequence construct, is the scope for the non-occurrence of E.
Since sequence scope is well specified within such a NOT
operator, it is perfectly composable with other operators. For
example, ALL(E1, NOT(E2, SEQUENCE(E3, E4, w’)), w)
produces an output when a sequence of E3, E4 events that
occur within w’ time units occurs within w time units of the
occurrence of an E1 event, and between the E3 and E4
events there is no E2 event.

Finally, we propose the CANCEL-WHEN feature in
CEDR, which is not found in existing systems. Event
patterns normally do not “pend” indefinitely; conditions or
constraints may be used to cancel the accumulation of state
for a pattern (which would otherwise remain to aggregate
with future events to generate a composite event). The
CANCEL-WHEN construct is used to describe such
constraints. CANCEL-WHEN (E1, E2) stops the detection
for E1 when an E2 event occurs during the partial detection.
Note the scope of E1 expressed by CANCEL-WHEN cannot
in general be expressed by time or tuple based window in
existing systems, since E2 could be a complex expression.

Operator Description

UNLESS(E1, E2, w)

UNLESS (E1, E2, w) " {(e1.ID,
e1.Os, e1.Oe, e1.Vs, e1.Vs+w, e1.rt,
[e1]; e1.p) | there does not exist e2,
such that e1.Vs < e2.Vs < e1.Vs + w}

UNLESS(E1,E2,n,w)

UNLESS’ (E1, E2, w) " {(e1.ID,
e1.Os, e1.Oe, e1.Vs, e1.Vs+w, e1.rt,
max(e1.cbt[n].Vs+w, e1.Vs), [e1];
e1.p) | there does not exist e2, such
that e1.cbt[n].Vs < e2.Vs <
e1.cbt[n].Vs + w}

This operator allows users to specify
that the start valid time of the
negation scope for E2 is the n-th
contributor to the E1 event. For this
operator to be valid, at query compile
time we need to check that the
sequence specified by e1.cbt[] has
length no less than n. Also, since the
computation of E1 has its own scope,
the Vs field of the output of this
UNLESS’ operator should be set to
the later one between the start valid
time of E1 and the end of the
negation scope for E2.

Whether we need such a flexible
UNLESS’ operator in CEDR is open
to discussion. In the following
discussion it is omitted.

NOT(E,SEQUENCE(E1
,…,Ek,w))

NOT(E,SEQUENCE (E1,…, Ek, w))
" {es | es is in SEQUENCE (E1,…,
Ek, w) and there does not exist e,
such that es.cbt[1].Vs < e.Vs <
es.cbt[k].Vs}

CANCEL-WHEN (E1,
E2)

CANCEL-WHEN (E1, E2) " {e1 |
there does not exist e2, such that e1.rt
< e2.Vs < e1.Vs}

Note that in this definition e2.rt is not
involved. The definition can be
changed to include this aspect. For
example, e1.rt < e2.rt < e2.Vs < e1.Vs
is a reasonable definition as well.

4. Consistency Guarantees
As stated earlier, due to unreliable (w.r.t. delivery order)

network connections, stream events and their associated
state changes may be delivered in non-deterministic order.
In such situations, it can be highly undesirable to block until
all the early data has provably arrived. Nevertheless, we can
still produce output if we are willing to both retract incorrect
output, and add the correct revised output. The ability to
model and handle such retractions and insertions is a very
important distinguishing feature of CEDR. This is modeled

368

by moving to a tritemporal model, which adds a third notion
of time, called CEDR time, denoted T. Figure 2 shows an
example of a tritemporal history table.

Figure 2. Example – Tritemporal history table

ID Vs Ve Os Oe Cs Ce … K
e0 1 ! 1 5 1 4 E0
e0 1 10 5 ! 2 6 E1

e0 1 ! 1 3 4 ! E0
e0 1 10 5 5 5 ! E1
e0 1 10 3 ! 6 ! E2

Note that in this table, we still see the familiar valid time
and occurrence time fields. In addition, we see a new set of
fields associated with CEDR time. These new fields use the
clock associated with an actual CEDR stream. In particular,
Cs corresponds to the CEDR server clock time upon event
arrival. While critical for supporting retractions, CEDR time
also reflects out of order delivery of data. Finally, note there
is a K column, in which each unique value corresponds to an
initial insert and all associated retractions, each of which
reduce the Ce compared to the previous matching entry in
the table.

Figure 2 models both a retraction and a modification
(described in Section 2) simultaneously, and may be
interpreted as follows. At CEDR time 1, an event arrives
whose valid time is [1,!), and has occurrence time 1. At
CEDR time 2, another event arrives which states that the
first event’s valid time changes at occurrence time 5 to
[1,10). Unfortunately, the point in time where the valid time
changed was incorrect. Instead, it should have changed at
occurrence time 3. This is corrected by the following three
events on the stream. The event at CEDR time 4 changes the
occurrence end time for the first event from 5 to 3. Since
retractions can only decrease Oe, the original E1 event must
be completely removed so that a new event with a new Os
time may be inserted. We therefore completely remove the
old event from the system by setting Oe to Os. We then
insert a new event, E2, with occurrence time [3, !) and
valid time [1,10). Note that the net effect of all this is that at
CEDR time 3, the stream, in terms of valid time and
occurrence time, contains two events, an insert and a
modification that changes the valid time at occurrence time
5. At CEDR time 7, the stream describes the same valid time
change, except at occurrence time 3 instead of 5. Note, that
retractions can be characterized and discussed using only
occurrence time and CEDR time. Consequently, we will not
discuss valid time or the ID fields further.

Before we proceed to defining our notions of consistency,
we need to define a few terms. First, we define the notion of
canonical history table to time to (occurrence time). This
canonical form will be used later to describe a notion of
stream equivalence. Two examples of non-canonical history
tables are shown in Figure 3.

Figure 3. Example – Two history tables

Putting a table into canonical form involves two steps. In
the first step, called reduction, for each K, only the entry
with earliest Oe time is retained. The resulting history tables
for the tables shown in Figure 3 are shown in Figure 4.

The next step, called truncation, changes any Oe value in
the table greater than to to to. If there are any rows whose Os
times are greater than to, they are removed. The canonical
history tables for the tables shown in Figure 4, which were
produced using truncation, are shown in Figure 5.

Figure 4. Example – Two reduced history tables

Figure 5. Example – Two canonical history tables

We define the notion of canonical history table at to (in
place of “to to”) as the canonical history table to to with the
rows whose occurrence time interval do not intersect to
removed. We are finally ready to define one of our most
important terms, called logical equivalence:

Definition 1: Two streams S1 and S2 are logically
equivalent to to (at to) iff, for their associated canonical
history tables to to (at to), CH1 and CH2, # X(CH1)= # X(CH2),
where X includes all attributes other than Cs and Ce.

Intuitively, this definition says that two streams are
logically equivalent to to (at to) if they describe the same
logical state of the underlying database to to (at to),
regardless of the order in which those state updates arrive.
For instance, the two streams associated with the two tables
in Figure 3 are logically equivalent to 3 and at 3.

In order to describe our consistency levels, we have one
more notion to define, a synchronization point. In order to
define this, we need to describe an annotated form of the
history table which introduces an extra column, called Sync.
A table with such a column added is shown in Figure 6. The
extra column (Sync) is computed as follows: For insertions
Sync = Os; for retractions Sync = Oe.

Figure 6. Example - Annotated history table

 K Sync Os Oe Cs Ce …
E0 1 1 10 0 7 …
E0 5 1 5 7 10 …

The intuition behind the Sync column is that it induces a
global notion of out of order event arrival in CEDR. For
instance: if and only if the global ordering of events

K Os Oe Cs Ce … K Os Oe Cs Ce …
E0 1 5 1 3 … E0 1 ! 1 2 …
E0 1 3 3 ! … E0 1 5 2 ! …

K Os Oe Cs Ce … K Os Oe Cs Ce …
E0 1 3 3 ! … E0 1 5 2 ! …

K Os Oe Cs Ce … K Os Oe Cs Ce …
E0 1 3 3 ! … E0 1 3 2 ! …

369

achieved by sorting events according to Cs is identical to the
global ordering of events achieved by sorting events
according to the compound key <Sync, Cs>, then there are
no out of order events in the stream. Finally, we introduce
the notion of a synchronization point, sync point for short:

Definition 2: A sync point w.r.t. an annotated history
table AH is a pair of occurrence time and CEDR time (to, T),
such that for each tuple e in AH, either e.Cs <= T and e.Sync
<= to, or e.Cs > T and e.Sync > to.

Intuitively, a sync point is a point in both CEDR time and
occurrence time which cleanly separates the past from the
future in both time domains simultaneously. At these points
in time, we have seen exactly the minimal set of state
changes which can affect the bitemporal historic state up to
occurrence time to. We now define our levels of consistency.

Definition 3: A standing query supports the strong
consistency level iff: 1) for any two logically equivalent
input streams S1 and S2, for sync points (to, TS1), (to, TS2) in
the two output streams, the query output streams at these
sync points are logically equivalent to to at CEDR times TS1
and TS2. 2) for each entry E in the annotated output history
table, there exists a sync point (E.Sync, E.Cs).

Intuitively, this definition says that a standing query
supports strong consistency iff any two logically equivalent
inputs produce exactly the same output state modifications,
although there may be different delivery latency. Note that
in order for a system to support this notion of consistency,
the system must have “hints” that bound the effect of future
state updates w.r.t. occurrence time. In addition, for n-ary
operators, any combination of input streams can be
substituted with logically equivalent streams in this
definition. This is also true for the other consistency
definitions and will not be discussed further.

Definition 4: A query supports the middle consistency
level iff for any two logically equivalent input streams S1
and S2, for sync points (to, TS1), (to, TS2) in the two output
streams, the query output streams at these sync points are
logically equivalent to to at CEDR times TS1 and TS2.

The definition of the middle level of consistency is almost
the same as the high level. The only difference is that not
every event is a sync point. Intuitively, this definition allows
for the retraction of optimistic state at times in between sync
points. Therefore, this notion of consistency allows us to
produce early output in an optimistic manner.

Definition 5: A query supports the weak consistency
level iff for any two logically equivalent input streams S1
and S2, for sync points (to, TS1), (to, TS2) in the two output
streams, the query output streams at these sync points are
logically equivalent at to at CEDR times TS1 and TS2.

5. Consistency tradeoffs
In order to understand what these levels of consistency

mean in a real system, we describe the role and functionality
of a CEDR (logical) operator in a high level fashion.

Figure 7. Anatomy of a CEDR operator

Similar to DSMSs, CEDR provides a set of composable
operators that can be combined to form a pipelined query
execution plan. Each CEDR operator, illustrated in Figure 7,
has two components: a consistency monitor and an
operational module. A consistency monitor decides whether
to block the input stream in an alignment buffer until output
may be produced which upholds the desired level of
consistency. The operational module computes the output
stream based on incoming tuples and current operator state.

Moreover, a CEDR operator accepts occurrence time
guarantees on subsequent inputs (e.g. provider declared sync
points on input streams). These guarantees are used to
uphold the highest level of consistency, and allow us to
reduce operator state in all levels of consistency. CEDR
operators also annotate the output with a corresponding set
of future output guarantees. These guarantees are fed to the
next operator and streamed to the user with the query result.

An important property of CEDR operators is that we use
formal descriptions of operator semantics to prove that at
common sync points, operators output the same bitemporal
state regardless of consistency level. As a result, one can
seamlessly switch from one consistency level to another at
these points, producing the same subsequent stream as if
CEDR had been running at that consistency level all along.

Figure 8. Consistency tradeoffs

Consistency Orderliness Blocking State
Size

Output
Size

Strong High Low Low Minimal
Low High High Minimal

Middle High None Low Low
Low None High High

Weak High None Low- Low-
Low None Low- Low-

Figure 8 illustrates the qualitative implications of running
CEDR at a specific consistency level. The table considers
two cases per consistency level: a highly-ordered stream and
a very out-of-order stream, where orderliness is measured in
terms of the frequency of application declared sync point.

Guarantees on
input time

Consistency
Guarantees

Operator state

Stream of input
state updates

CEDR Operator
Consistency

Monitor

Alignment buffer

Operational
Module

Stream of output
state updates

370

Figure 8 shows that the middle and strong consistency
levels have the same state size – the tradeoff here is between
blocking times (responsiveness) and the output size. This is
caused by the contrasting way that the two levels handle out
of order events. The strong level aligns tuples by blocking,
possibly resulting in significant blocking and large state, if
the input is significantly out of order. In contrast, the middle
level optimistically generates output, which can be repaired
later using retractions and insertions. Since these retractions
can affect output as far back in time as the last sync point,
the middle level must maintain the same state as the strong
level to generate the necessary retractions in all cases.

Both the middle and the weak consistency levels are non-
blocking – they are distinguished by their output correctness
up to (versus at) arbitrary points of time. More specifically,
in the weak consistency level, we are not always obligated
to fix earlier state, and may therefore “forget” some events
which arrived since the last sync point. As a result, when
events are highly out of order, both output size and state size
are much improved over the middle level. When events are
ordered, the strong level of consistency may be enforced
with marginal added cost over weak and middle consistency.

It is worth noting, the ability to both remember and block
do not have to be all or nothing properties of our operators.
Rather, one can limit blocking and memory to specific
lengths of either application or CEDR time. This leads to the
infinite spectrum of consistency levels described in Figure 9,
which shows the space of valid consistency levels where the
maximum memory time M is one dimension, and maximum
blocking time B is the other dimension.

Figure 9. Consistency tradeoffs

M

B

Strong consistency

Middle
consistency

Weak consistency
The interesting part of the spectrum is the lower right

triangle since increasing the maximum blocking time
beyond the maximum memory time has no effect on
operator behavior. Note that the lower left corner of the
triangle corresponds to the weakest possible consistency
level, which is both non-blocking and memoryless. As we
travel along the X-axis of the graph, we are willing to
remember progressively further and further into the past, but
remain non-blocking. At the extreme, we are willing to
remember everything, and are therefore at the middle level
of consistency at the lower right (at infinity) corner of the
triangle. From this corner, we proceed up to the top right
corner, where we are willing to both block arbitrarily long

and remember everything if need be. This obviously
corresponds to the highest possible level of consistency.

6. Run-time Operator Semantics
In CEDR, run-time operator semantics are “pure” in the

sense that the result of a CEDR standing query must be
ultimately unaffected by temporary stream states that are
caused by out of order event arrival as well as retractions.
More formally, a properly specified CEDR operator must be
well behaved according to the following definition:

Definition 6: A CEDR operator O is well behaved iff for
all (combinations of) inputs to O which are logically
equivalent to infinity, O’s outputs are also logically
equivalent to infinity.

Intuitively, the above definition says that a CEDR
operator is well behaved as long as the output produced by
the operator semantically converges to the output produced
by a perfect version of the input without retractions and out
of order delivery.

Also, since the above definition induces input stream
equivalence classes based on logical equivalence, we need
only to define operator semantics on the infinite canonical
history tables with the CEDR time fields projected out. We
will call these tables ideal history tables, By defining
operators using ideal history tables, we ensure that for each
equivalence class, we define operator semantics on the
equivalence class member which excludes retractions and
out of order delivery. It is up to the implementations of
individual operators, which is beyond the scope of this
paper, to uphold logically equivalent operator output
behavior for all logically equivalent inputs.

While a fully realized set of CEDR operators would
support both retractions and modifications, the discussion in
this section would be less relevant to existing systems if we
defined our operators in this manner. We will therefore, in
this section, assume that there are no modifications, and that
the occurrence and valid time fields are merged into one
valid time field, whose lifetime may be shortened using
retractions. All the reasoning and definitions in Section 4
are, in this context, in terms of valid time and CEDR time
instead of occurrence time and CEDR time. Furthermore, in
this context, the resulting ideal history tables have only one
temporal dimension (valid time) and are therefore called
unitemporal ideal history tables. We leave it as a
technical challenge to define precisely the semantics of our
operators in the presence of modifications.

Summing up, the semantics of our operators are defined
on the unitemporal ideal history tables of the inputs, such as
the one shown in Figure 10. In all definitions, we refer to the
input streams as S1,…,Sm, and the set of events in each
associated unitemporal ideal history table as E(Si). Each
individual event has the fields shown in Figure 10.

371

Figure 10. Example – Unitemporal ideal history table

ID Vs Ve Payl
oad

E0 1 5 P1
E1 4 9 P2

The output of the operator is described as the set of events

in the unitemporal ideal history table of the output. Each
element of the output is therefore described as the triple (Vs,
Ve, Payload). We begin with the definitions of operators
which will be very familiar to the readers of this paper:

SQL projection is a generalization of the relational

projection operator, in that we can specify an arbitrary
function f to transform the payload of each input tuple.
Consequently, the output payload schema may be different
from the input payload schema. Note that f cannot affect the
timestamp attributes. SQL projection is defined as follows:

Definition 7: SQL projection #f(S):
#f(S)={(e.Vs, e.Ve, f(e.Payload)) | e " E(S)}

Selection corresponds exactly to relational selection. It

takes a boolean function f which operates over the payload.
The definition follows:

Definition 8: Selection $f(S):
$f(S)={(e.Vs, e.Ve, e.Payload) | e " E(S) where
f(e.Payload)}

Similarly, the next operator is join, which takes a
boolean function f over two input payloads:

Definition 9: Join !f(P1,P2)(S1, S2):
!%(P1,P2)(S1, S2) = {(Vs, Ve, (e1.Payload concantenated
with e2.Payload)) | e1 " E(S1), e2 " E(S2), Vs=max{ e1.Vs,
e2.Vs}, Ve=min{ e1.Ve, e2.Ve}, where Vs < Ve, and
%(e1.Payload, e2.Payload)}

Intuitively, the definition of join semantically treats the
input streams as changing relations, where the valid time
intervals are the intervals during which the payloads are in
their respective relations. The output of the join describes
the changing state of a view which joins the two input
relations. In this sense, many of our operators follow view
update semantics such as those specified in [10].

We include in our algebra a number of other operators,
such as union, difference, groupby, and aggregates such as
max, min, and avg. These operators all follow view update
semantics, and since their relational counterparts are well
understood we do not give formal definitions here. Instead,
we discuss an attribute which all operators discussed so far
have in common, called view update compliance.

Before we can define view update compliance, we need to
first introduce some other terminology:

Definition 10: meets (I1, I2), coalesce (E1, E2), *(S):
Two intervals I1=[T1, T2), I2=[T1’, T2’) meet iff T2= T1’

Two events can be coalesced if their payloads are the
same and their associated valid time intervals meet. Two
coalesced events e1=(Vs, Ve, P), e2=(Vs’, Ve’, P) are replaced
with a single event e=(Vs, Ve’, P).

The * operator on a stream returns the unitemporal
history table that results from the repeated application of
coalescence to the unitemporal ideal history table until
coalesce cannot be applied further:

We are now ready to define relational view compliance:

Definition 11: A unary CEDR operator O is view update
compliant iff for all R, S s.t. *(R) and *(S) are identical,
*(O(R)) and *(O(S)) are also identical

Intuitively, the above definition states that semantically,
an operator must be insensitive to the way that changes in
state are packaged. This is why, for instance, the operator
must treat a payload whose lifetime is chopped into several
insert events the same way as a payload whose lifetime is
described in one event with a larger, equivalent lifetime.

The above definition may be generalized in the obvious
way to n-ary operators. In addition, this definition assumes
that the underlying streams model relations, and therefore
don’t allow duplicate payloads with overlapping valid time
intervals. A more general definition could be crafted to
handle bag semantics for the underlying relations.

Unsurprisingly, most streaming systems (e.g. [5], [10])
implement operators that are view update compliant. What
is interesting is that the features which are considered
unique to streams, like windows, and the separation of
inserts and deletes, are not view update compliant, which
raises the question: What non-view update compliant
operators are necessary in a streaming system? What
guarantees should they uphold?

We will therefore introduce our one non-view update
compliant operator, AdjustLifetime, using this simple, but
powerful operator we can build many windowing constructs
and separate inserts from deletes. It is worth noting that
AdjustLifetime, while non-view update compliant, is well
behaved. AlterLifetime takes two input functions fVs(e) and
f&(e). Intruitively, Alterlifetime maps the events from one
valid time domain to another. In the new domain, the new
Vs times are computed from fVs, and the durations of the
event lifetimes are computed from f&. One could therefore
regard this operator as a constrained form of project on the
temporal fields. The precise definition follows:

Definition 12: AlterLifetime 'fvs, f&(S)
'fvs, f&(S)={(|fVs(e)|, |fVs(e)| + |f& (e)|, e.Payload) | e"#$S}}

372

We now define a moving window operator, denoted W, as
a special instance of '. This operator takes a window length
parameter wl, and clips the validity interval of its input
based on wl. More precisely: Wwl(S)='Vs, min(Ve-Vs, wl)(S)

One can similarly define hopping windows using integer
division. Finally, we can even use the AlterLifetime
operator to easily get all inserts and deletes from a stream:

Inserts(S)= 'Vs, !(S)

Deletes(S)= 'Ve, !(S)

7. Conclusions and Future work
In this paper, we have presented a number of challenges

for existing streaming systems. These challenges include
the ability to handle negation, event selection and
consumption, application driven modifications, and out of
order event delivery in a principled, flexible manner. In
order to address these challenges we propose a powerful
temporal stream model. We build on this model in a number
of ways:

1. We formally define the notion of retractions, which can
be used to describe a spectrum of possible system
behaviors and performance tradeoffs in response to out
of order delivery of data.

2. We provide denotational semantics for a set of
streaming run-time operators, most are view update
compliant, and all are well behaved. The only operator
which is not view update compliant is a simple, but
novel streaming operator which can be used to
implement a plethora of window types and the
separation of inserts and deletes.

Ongoing work in the CEDR project is proceeding in a
number of research directions. One effort is to complete the
set of compilation rules from our language to our run-time
operator algebra. In addition, we are working on algorithms
which efficiently implement our algebra across the full
spectrum of consistency levels. Another interesting
direction is optimization and query rewrite rules. For
instance, we are considering consistency sensitive query
optimizations that when permissible, can determine when to
switch from one consistency level to another under periods
of heavy load due to event bursts.

6. References
[1] David Luckham, “The Power of Events: An Introduction to

Complex Event Processing in Distributed Enterprise
Systems”, Addison Wesley Publishers, 2002.

[2] Roger S. Barga, Jonathan Goldstein, M. H. Ali and
Mingsheng Hong, Consistent Streaming Through Time,
Microsoft Research Technical Report, July 2006, available
from ftp://ftp.research.microsoft.com/users/barga/pub/TR.pdf

[3] M. J. Franklin, et al, Design considerations for high fan-in
systems: The HiFi approach. In the proceedings of CIDR’05.

[4] D. J. Abadi, D. Carney, U. Cetintemel, et al.. Aurora: A New
Model and Architecture for Data Stream Management. VLDB
Journal, 12(2):120–139, 2003.

[5] A. Arasu, S. Babu, and J. Widom. The CQL Continuous
Query Language: Semantic Foundations and Query
Execution. Technical report, Stanford University, 2003.

[6] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S. Kim,
Composite events for active databases: Semantics, contexts
and detection. In VLDB, 1994.

[7] A. Demers, J. Gehrke, M. Hong, et al. Towards expressive
publish/subscribe systems. In EDBT, 2006.

[8] J. Carlson and B. Lisper An Event Detection Algebra for
Reactive Systems. In EMSOFT, 2004.

[9] J. Naughton, D. DeWitt, D. Maier, et al. The Niagara Internet
Query System. http://www.cs.wisc.edu/niagara.

[10] M. A. Hammad, M. F. Mokbel, M. H. Ali, et al. “Nile: A
Query Processing Engine for Data Streams.” In ICDE, 2004.

[11] U. Srivastava and J. Widom, Flexible Time Management. In
PODS, 2004.

[12] C. Jensen and R. Snodgrass, Temporal Specialization. In
ICDE, 1992.

[13] E. Wu, Y. Diao and S. Rizvi, High-Performance Complex
Event Processing over Streams. In SIGMOD, 2006.

373

374

