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ABSTRACT 
Event processing will play an increasingly important role in 
constructing enterprise applications that can immediately react to 
business critical events.  Various technologies have been proposed 
in recent years, such as event processing, data streams and 
asynchronous messaging (e.g. pub/sub).  We believe these 
technologies share a common processing model and differ only in 
target workload, including query language features and consistency 
requirements.  We argue that integrating these technologies is the 
next step in a natural progression. In this paper, we present an 
overview and discuss the foundations of CEDR, an event 
streaming system that embraces a temporal stream model to unify 
and further enrich query language features, handle imperfections in 
event delivery, define correctness guarantees, and define operator 
semantics. We describe specific contributions made so far and 
outline next steps in developing the CEDR system. 

Categories and Subject Descriptors 
H.1.1 [Systems and Information Theory]: General Systems Theory  

General Terms 
Design, Languages, Theory 

Keywords 
Stream, Events, Temporal, Consistency, Retraction, Semantics 

1. Motivation and Introduction 
Most businesses today actively monitor data streams and 

application messages, in order to detect business events or 
situations and take time-critical actions [1]. It is not an 
exaggeration to say that business events are the real drivers 
of the enterprise today because they represent changes in the 
state of the business. Unfortunately, as in the case of data 
management in pre-database days, every usage area of 
business events today tends to build its own special purpose 
infrastructure to filter, process, and propagate events. 

Designing efficient, scalable infrastructure for monitoring 
and processing events has been a major research interest in 

recent years. Various technologies have been proposed, 
including data stream management, complex event 
processing, and asynchronous messaging such as pub/sub.  
We observe that these systems share a common processing 
model, but differ in query language features. Furthermore, 
applications may have different requirements for 
consistency, which specifies the desired tradeoff between 
insensitivity to event arrival order and system performance. 
Clearly, some applications require a strict notion of 
correctness that is robust relative to event arrival order, 
while others are more concerned with high throughput.  If 
exposed to the user and handled within the system, users can 
specify consistency requirements on a per query basis and 
the system can adjust consistency at runtime to uphold the 
guarantee and manage system resources. 

To illustrate, consider a financial services organization 
that actively monitors financial markets, individual trader 
activity and customer accounts.  An application running on a 
trader’s desktop may track a moving average of the value of 
an investment portfolio.  This moving average needs to be 
updated continuously as stock updates arrive and trades are 
confirmed, but does not require perfect accuracy.  A second 
application running on the trading floor extracts events from 
live news feeds and correlates these events with market 
indicators to infer market sentiment, impacting automated 
stock trading programs.  This query looks for patterns of 
events, correlated across time and data values, where each 
event has a short “shelf life”.  In order to be actionable, the 
query must identify a trading opportunity as soon as possible 
with the information available at that time; late events may 
result in a retraction. While a third application running in the 
compliance office monitors trader activity and customer 
accounts, to watch for churn and ensure conformity with 
SEC rules and institution guidelines.  These queries may run 
until the end of a trading session, perhaps longer, and must 
process all events in proper order to make an accurate 
assessment. These applications carry out similar 
computations but differ significantly in their workload and 
requirements for consistency guarantees and response time. 

This example illustrates that most real-world enterprise 
applications are complex in functionality, and incorporate 
different technologies that must work together with strict 
requirements in terms of accuracy and consistency. We 
believe these technologies complement each other and will 
naturally converge in future systems, but several research 
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and engineering challenges must first be addressed. We 
present our analysis on existing technologies as follows. 

Data stream systems, which support sliding window 
operations and use sampling or approximation to cope with 
unbounded streams, could be used to compute a moving 
average of portfolio values.  However, there are important 
features that cannot be naturally supported in existing 
stream systems. First, instance selection and consumption 
can be used to customize output and increase system 
efficiency, where selection specifies which event instances 
will be involved in producing output, and consumption 
specifies which instances will never be involved in 
producing future output, and therefore can be effectively 
“consumed”. Without this feature, an operator such as 
sequence [13] is likely to be too expensive to implement in a 
stream setting – no past input can be forgotten due to its 
potential relevance to future output, and the size of output 
stream can be multiplicative w.r.t. the size of the input.  
Expressing negation or the non-occurrence of events, such 
as a customer not answering an email within a specified 
time, in a query is useful for many applications, but can not 
be naturally expressed in many existing stream systems. 
Messaging systems such as pub/sub, could handily route 
news feeds and market data but pub/sub queries are usually 
stateless and lack the ability to carry out computation other 
than filtering.  Complex event processing systems can detect 
patterns in event streams, including both the occurrence and 
non-occurrence of events, and queries can specify intricate 
temporal constraints.  However, most event systems 
available today provide only limited support for value 
constraints or correlation (predicates on event attribute 
values), as well as query directed instance selection and 
consumption policies. Finally, none of the above 
technologies provide support for consistency guarantees. 

We contend that data streams, complex event processing 
and pub/sub are complementary technologies and propose a 
paradigm that integrates and extends these models, and 
upholds precise notions of consistency.  We are developing 
a system called CEDR (Complex Event Detection and 
Response) to explore the benefits of an event streaming 
system that integrates the above technologies, and supports a 
spectrum of consistency guarantees.  This paper presents a 
current snapshot of the CEDR project.  We are not 
presenting a complete system at this time as several research 
and engineering challenges remain.  However, there are a 
number of concrete contributions to report on at this point: 

! A stream data model that embraces a temporal data 
perspective, and introduces a clear separation of different 
notions of time in streaming applications (Section 2). 

! A declarative query language capable of expressing a 
wide range of event patterns with temporal and value 
correlation, negation, along with query directed instance 
selection and consumption.  All aspects of the language 
are fully composable (Section 3). 

! Along with the language, we define a set of logical 
operators that implement the query language, and serve as 
the basis for logical plan exploration during query 
optimization. 

! We formally define a spectrum of consistency levels to 
deal with stream imperfections, such as latency or out-of-
order delivery, and to meet application requirements for 
quality of the result.  We also discuss the consequences of 
upholding the consistency guarantees in a streaming 
system (Sections 4 and 5). 

! We base our implementation on a set of run-time 
operators, most of which are based on view update 
semantics. We provide the denotational semantics of these 
operators, and formally define notions of good behavior 
and view update compliance. We also introduce a novel 
operator, called AlterLifetime, which can be used to 
implement a variety of window types (Section 6). 

Due to space limitations, we do not include a section 
dedicated to related work, but refer the reader to our 
technical report [2] which includes a discussion of related 
work.  We do make comparisons to systems throughout this 
paper, particularly STREAM [5], Aurora [4], Niagra [9] Nile 
[10], Cayuga [7] and HiFi [3].  However even these 
comparisons are narrowly focused and again we refer the 
reader to [2]. 

2. CEDR Temporal Stream Model 
In this section, we introduce our tritemporal stream 

model, the theoretical foundation for CEDR which allows us 
to support both query language semantics and consistency 
guarantees simultaneously.  Existing stream systems already 
separate the notion of application time and system time [11], 
where the former is the clock that event providers use to 
timestamp tuples they generate, and the latter is the clock of 
the stream processing server.  In CEDR, we further refine 
application time into two temporal dimensions, valid time 
and occurrence time, and refer to system time as CEDR 
time. This gives us three temporal dimensions in our stream 
model. We now describe each notion of time in detail. 

In CEDR, a data stream is modeled as a time varying 
relation. Each tuple in the relation is an event, and has an 
ID. Each tuple has a validity interval, which indicates the 
range of time when the tuple is valid from the event 
provider’s perspective. Given the interval representation of 
each event, it is possible to issue the following continuous 
query: “at each time instance t, return all tuples that are still 
valid at t.” Note that existing systems [4, 5] model stream 
tuples as points, and therefore do not capture the notion of 
validity interval. Consequently, they cannot naturally 
express such a query. An interval can be encoded with a pair 
of points, but the resulting query formulation will be 
unintuitive. 
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After an event initially appears in the stream, we allow 
its validity interval (e.g. the time during which a coupon 
could be used) to be changed by the event provider, a 
feature not naturally supported in existing stream systems. 
Such changes are represented by tuples with the same ID but 
different content.  A second temporal dimension, occurrence 
time, models when such changes occur from the event 
provider’s perspective. An insert event of a certain ID is the 
tuple with minimum occurrence start time value (Os) among 
all events with that ID.  Other events of the same ID are 
referred to as modification events. Both valid time and 
occurrence time are assigned by the same logical clock of 
the event provider, and are thus comparable1. We use tv to 
denote valid time, and use to to denote occurrence time.  

We use the following schema as the conceptual 
representation of a stream produced by an event provider: 
(ID, Vs, Ve, Os, Oe, Payload).  Here Vs and Ve respectively 
denote valid start and end time; Os and Oe respectively 
denote occurrence start and end time; Payload is the sub-
schema consisting of normal value attributes, and is 
application dependent. For example, Figure 1 represents the 
following scenario: at time 1, event e0 is inserted into the 
stream with validity interval [1, !); at time 2, e0’s validity 
interval is modified to [1, 10); at time 3, e0’s validity 
interval is modified to [1, 5), and e1 is inserted with validity 
interval [4, 9). We ignore the content payload in examples 
throughout this paper, and focus only on temporal attributes. 

Figure 1. Example – Conceptual stream representation 
 

ID Vs Ve Os Oe  (Payload) 

e0 1 ! 1 2 … 
e0 1 10 2 3 … 
e0 1 5 3 ! … 
e1 4 9 3 ! … 

 
 

   We stress that the bitemporal schema above is only a 
conceptual representation of a stream. In an actual 
implementation, stream schemas can be customized to fit 
application scenarios. This is similar to the notion of 
temporal specialization in the literature [12].  When events 
produced by the event provider are delivered into CEDR, 
they can become out of order, due to unreliable network 
protocols, system crash recovery, and other anomalies in the 
physical world. We model out-of-order event delivery with a 
third temporal dimension, producing a tritemporal stream 
model. This is further discussed in Section 4. 

3. CEDR Query Language 
CEDR query semantics are defined only on the 

information obtained from event providers, and this implies 
the query language will reason about valid and occurrence 
time, but not CEDR time.  When we specify the semantics 

of a CEDR query, its input and output are both bitemporal 
streams (consisting of valid time and occurrence time). 

The CEDR language for registering event queries is based 
on the following three aspects: 1) event pattern expression, 
composed by a set of high level operators that specify how 
individual events are filtered, and how multiple events are 
correlated (joined) via time-based and value-based 
constraints to form composite event instances, or instances 
for short.  2) Instance selection and consumption, expressed 
by a policy referred to as an SC mode; 3) finally, instance 
transformation, which takes the events participating in a 
detected pattern as input, and transforms them to produce 
complex output events via mechanisms such as aggregation, 
attribute projection, and computation of a new function.  In 
designing the CEDR language, we took efforts to make sure 
that all features are fully composable with each other. 

3.1 Overview of the CEDR Language 

Due to space constraints, here we give an overview of the 
language syntax and semantics through a query example. 

   EVENT  CIDR07_Example 
   WHEN UNLESS(SEQUENCE(INSTALL x,  

                   SHUTDOWN AS y, 12 hours),  
                   RESTART AS z, 5 minutes)  
   WHERE {x.Machine_Id = y.Machine_Id} AND  
  {x.Machine_Id = z.Machine_Id} 
    

The SEQUENCE construct specifies a sequence of events 
that must occur in a particular order. The parameters of the 
SEQUENCE operator (or any operator that produces 
composite events in general) are the occurrences of events 
of interest, referred to as contributors. There is a scope 
associated with the sequence operator, which puts an upper 
bound on the temporal distance between the occurrence of 
the last contributor in the sequence and that of the first 
contributor. In this query, the SEQUENCE construct 
specifies a sequence that consists of the occurrence of an 
INSTALL event followed by a SHUTDOWN event, within 12 
hours of the occurrence of the former. The output of the 
SEQUENCE construct should then be followed by the non-
occurrence of a RESTART event within 5 minutes. Non-
occurrences of events, also referred to as negation in this 
work, can be expressed either directly using the NOT 
operator, or indirectly using the UNLESS operator, which is 
used in this query formulation. Intuitively, UNLESS(A, B, 
w) produces an output when the occurrence of an A event is 
followed by non-occurrence of any B event in the following 
w time units. w is therefore the negation scope. In this 
query, UNLESS is used to express that the sequence of 
INSTALL, SHUTDOWN events should not be followed by 
no RESTART event in the next 5 minutes. We can also bind 
a sub-expression to a variable via AS construct, such that we 
can refer to the corresponding contributor in WHERE clause 
when we specify value constraints.  
 

                                                           
1 Valid and occurrence time can be assigned by different physical 

clocks, in which case we require them to be synchronized. 
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Now we continue to describe the WHERE clause for this 
query. There we use the variables defined previously to 
form predicates that compare attributes of different events. 
To distinguish from simple predicates that compare to a 
constant like those in the first example, we refer to such 
predicates as parameterized predicates as the attribute of the 
later event addressed in the predicate is compared to a value 
that an earlier event provides. The parameterized predicates 
in this query compare the id attributes of all three events in 
the WHEN clause for equality.  Equality comparisons on a 
common attribute across multiple contributors are typical in 
monitoring applications. For ease of exposition, we refer to 
the common attribute used for this purpose as a correlation 
key, and the set of equality comparisons on this attribute as 
an equivalence test. Our language offers a shorthand 
notation: an equivalence test on an attribute (e.g., 
Machine_Id) can be expressed by enclosing the attribute 
name as an argument to the function CorrelationKey with a 
keywords, such as EQUAL, UNIQUE (e.g., 
CorrelationKey(Machine_ID, Equal), as shown in the 
comment on the WHERE clause in this example). 
Moreover, if an equivalence test requires all events to have a 
specific value (e.g., ‘BARGA_XP03’) for the attribute id, 
we can express it as [Machine_Id Equal ‘BARGA_XP03’].  
 

Instance selection and consumption should be specified in 
WHEN clause as well. For simplicity of the query 
illustration, we did not show their corresponding syntax 
constructs in the above query, and will defer the description 
of SC modes supported in CEDR till a later point.  Finally, 
instance transformation is specified in an optional OUTPUT 
clause to produce output events. If OUTPUT clause is not 
specified in a query, all instances that pass the instance 
selection process will be output directly to the user. 

 
3.2   Features of CEDR Language 

Due to space constraints, in this section we only highlight 
features that distinguish CEDR from other event processing 
and data stream languages. 

Event Sequencing – The ability to synthesize events 
based upon the ordering of previous events is a basic and 
powerful event language construct. For efficient 
implementation in a stream setting, all operators that 
produce outputs involving more than one input event should 
have a time based scope, denoted as w. For example, 
SEQUENCE(E1, E2, w) outputs a sequence event at the 
occurrence of an E2 event, if there has been an E1 event 
occurrence in the last w time units.  Most event processing 
systems, such as SNOOP [6], do not support scope. In 
Cayuga [7] and SASE [13], scope is expressed respectively 
by a duration predicate and a window clause. In CEDR, 
scope is "tightly coupled" with operator definition, and thus 
helps users in writing properly scoped queries, and  permits 
the optimizer to generate efficient plans.  

Negation – Negation has to have a scope within which 
the non-occurrence of events is monitored. The scope can be 
time based or sequence based.  The CEDR language has 
three negation operators. We informally describe their 
semantics below.  First, for time scope, UNLESS(E1, E2, w) 
produces an output event when the occurrence of an E1 
event is followed by no E2 event in the next w time units. 
The start time of negation scope is therefore bound always 
to the occurrence of the E1 event.  For sequence scope, we 
use the operator NOT (E, SEQUENCE (E1,…,Ek, w)), 
where the second parameter of NOT, a sequence operator, is 
the scope for the non-occurrence of E. It produces an output 
at the occurrence of the sequence event specified by the 
sequence operator, if there is no occurrence of E between 
the occurrence of E1 and Ek that contribute to the sequence 
event.  Finally, CANCEL-WHEN (E1, E2) stops the 
(partial) detection for E1 when an E2 event occurs.  Cancel-
when is a powerful language feature not found in existing 
event or stream systems.  Unlike existing systems [13], 
negation in CEDR is fully composable with other operators. 

Temporal Slicing – We have two temporal slicing 
operators @ and # respectively on occurrence time and valid 
time. Users can put them in the query formulation to 
customize the bitemporal query output. For example, for Q 
@ [to1, to2) #[tv1, tv2), among the tuples in the bitemporal 
output of query Q, it only outputs tuples valid between tv1 
and tv2, and occur at time between to1 and to2. 

Value Correlation in the WHERE clause – Some 
existing event languages [13] support WHERE clause. 
However, when the language supports negation, for a query 
in which negation is composed with other operators in a 
complex way, it could become quite hard to reason about the 
semantics of value correlation. In CEDR, we carefully 
define the semantics of such value correlation based on what 
operators are present in the WHEN clause, by placing the 
predicates from the WHERE clause into the denotation of 
the query, a process we refer to as predicate injection. SASE 
[13] takes a simpler approach, since the language operators 
in SASE are not composable.  Overall, predicate injection 
for negation is non-trivial, and is simply not handled by 
many existing systems. 

Instance Selection and Consumption – Many systems 
do not support this feature [13], while others tailor the 
semantics of instance selection and consumption in favor of 
theoretical properties, and are thus "arbitrary" from a user's 
perspective; i.e., not controlled by user on a per query basis. 
In some cases, the semantics of selection and consumption 
are "hard coded" into operator definitions, and thus 
inflexible [7, 8]. In CEDR the specification of SC mode is 
decoupled from operator semantics, and for language 
composability, SC mode is associated with the input 
parameters of operators, instead of only base stream events. 
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3.3 Formal Language Semantics 

In order for a query language to be compositional, the 
type of the query output should be the same as that of the 
query inputs.  Hence, in the case of bitemporal databases 
and CEDR streams, the output type of a query should be a 
bitemporal relation.  We now formally define the semantics 
of the CEDR language constructs with the denotation in 
relational calculus style.  First, we focus on operators used 
in the WHEN clause. In many event processing systems, 
low level event algebra operators are the only way to specify 
a complex event pattern for detection.  The functionality or 
meaning of these operators is not always intuitive, leading to 
confusion and documented peculiarities and irregularities.  
Our approach is to provide high level operators with 
intuitive and well-defined semantics.  Operators can be 
composed to form an event expression in the WHEN clause. 
To make the operators composable, each input parameter of 
an operator is itself an event expression.  The simplest event 
expression is an event type, which outputs all events of this 
event type. Below, we describe the set of operators that 
CEDR supports and formally present their semantics.  

3.3.1 Conventions 

Each event is associated with a type, and has a header and 
a body component in its content. The header consists of 
temporal attributes, the ID column, and an attribute for 
tracking the lineage of complex events. The event body 
specifies its payload, which we describe with a relational 
schema. For example, a purchase event would frequently 
contain the information of a purchase order ID.  For our 
purposes payload is thought of merely as immediately 
available data, rather like a stack frame, and is opaque to the 
operator definitions.  In other words, operator definitions are 
only concerned with the header information of events. Dot 
notation is used to refer to fields in event header (as well as 
payload). For example, Purchase.Vs refers to the start valid 
time of the Purchase event.  For an event type E, we use the 
notation e to denote a particular event instance of that type.  

More specifically, we represent an event in the form (ID, 
Vs, Ve, Os, Oe, Rt, cbt[]; p), where the first seven attributes 
represent the header information, and separated with the 
event body by a semi-colon, which payload, denoted as p, is 
specified. The first six attributes in the header are the same 
as the bitemporal schema. cbt[] is used to track the lineage 
of contributor events that form the composite event. The 
attribute cbt[] is a sequence (ordered set) of event 
references2, and thus not in first order normal form.  A 
sequence is denoted within square brackets. For example, 
we use [e1, e2,…,en] to denote that the value of cbt[] is a 
sequence of references to events e1 to en. In contrast, a set is 
specified within curly brackets. For example, {e1, e2,…,en} 
denotes a set of events e1 to en, where order is immaterial. 
For primitive events, the value of cbt[] is NULL. 

3.3.2 Operators in WHEN Clause 

We have introduced the notion of a canonical form R* for 
a bitemporal relation R previously. We now define a 
shredded canonical form as follows: Take R* as input.  For 
each tuple e in R* with validity interval [Os, Oe), replace it 
with Oe-Os tuples, such that all tuples have the same content 
as e in all attributes other than Os and Oe; their CEDR 
intervals are of length 1 but are all different; the union of 
these CEDR intervals is [Os, Oe).  We say e is shredded into 
these Oe-Os tuples.  After shredding each tuple in R*, the 
resulting relation is a shredded canonical form.  In defining 
the semantics of operators, we assume each input stream, a 
bitemporal relation, is in shredded canonical form. In all 
operator definitions, we require that the CEDR interval of 
all inputs is the same. This is a common condition we  omit 
in the following definition of each operator. 

In order to generate ID for the output events of an 
operator, we need a pairing function idgen, which takes a 
variable number of input IDs, and produces an ID. It has the 
property that the different sets of input IDs will generate 
different output IDs. In the output events, the value id for 
attribute ID is computed by idgen(e1.ID,...,ek.ID), where 
e1.ID through ek.ID are the set of input IDs. Also the value 
rt for attribute Rt in the output is the minimum root time 
value among all inputs e1 through ek. Note that how to 
assign Ve value for outputs is in general orthogonal to the 
operator scope w. In the following operator definitions, we 
assume that Ve of the output is set to e1.Vs+w, where e1 is 
the first contributor to the operator. Note that it is probably 
reasonable to set Ve to infinity, or to the Ve value of the last 
contributor of this operator. 

Event Sequencing – The ability to synthesize events 
based upon the ordering of previous events is a basic and 
powerful event language construct. Almost all operators in 
the table below have a time based scope, denoted as w. A 
sequence based scope can be added if such functionality is 
required by any query CEDR wants to support. 

Operator Description 

ATLEAST(n,E1,.,Ek, w) 

ATLEAST (n, E1, …, Ek, w) " {(id, 
ein.Os, ein.Oe, ein.Vs, ei1.Vs+w, [ei1, 
ei2, …, ein] ; ei1.p, ei2.p, …, ein.p) | 
ei1.Vs<ei2.Vs<…<ein.Vs!ein.Vs – 
ei1.Vs <= w!{i1, i2, …, in} is a 
subset of {1, 2, …, k} !i1 != i2 != 
… != in}, where rt is the minimum 
root time value among ei1 through 
ein. 

ATMOST(n,E1,...,Ek, w) 

This operator is a syntactic sugar, 
which can be expressed with sliding 
window aggregate (count aggregate). 
In addition, it is possible to assign 
individual weights to contributors 
that can be used to adjust the 
counting.                                                            

2 Event reference could be the pointer to that event or some other identifier. 
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ALL (E1, . . . , Ek, w) ALL (E1, E2, . . . , Ek, w) " 
ATLEAST (k, E1,E2,...,Ek, w) 

ANY (E1,...,Ek) ANY (E1, E2,...,Ek) " ATLEAST (1, 
E1,E2,...,Ek, 1) 

SEQUENCE(E1,.,Ek, w) 

SEQUENCE(E1, E2, …, Ek, w) " {id, 
ek.Os, ek.Oe, ek.Vs, e1.Vs+w, rt, [e1, e2, 
…, ek] ; e1.p, e2.p, …, ek.p) | 
e1.Vs<e2.Vs<…<ek.Vs!ek.Vs – e1.Vs <= 
w} 

 

Note that the correlation conditions in the definition of 
sequencing operators do not take root time into account. It 
can be easily made to do so if required by queries.  

Negation – The event service can track the non-
occurrence of an expected event, such as a customer not 
answering an email within a specified time.  The negation 
feature has great utility in business processes.   

Negation has to have a scope within which the non-
occurrence of events is monitored. The scope can be time 
based or sequence based. For a time based scope, the start 
time of such a scope should be specified as well. For an 
efficient implementation, we first propose an operator 
UNLESS to implicitly specify such a start time, instead of 
allowing users to specify it.  Informally, UNLESS(E1, E2, 
w) produces an output event when the occurrence of an E1 
event is followed by no E2 event in the next w time units. 
The start time of the negation scope is therefore bound 
always to the occurrence (start valid time) of the E1 event. 
A variant UNLESS’ that provides more flexible options for 
specifying the start time of the scope is then given. For 
sequence scope, we use operator NOT(E, SEQUENCE(E1, 
…, Ek, w)), where the second parameter of NOT, a 
sequence construct, is the scope for the non-occurrence of E. 
Since sequence scope is well specified within such a NOT 
operator, it is perfectly composable with other operators. For 
example, ALL(E1, NOT(E2, SEQUENCE(E3, E4, w’)), w) 
produces an output when a sequence of E3, E4 events that 
occur within w’ time units occurs within w time units of the 
occurrence of an E1 event, and between the E3 and E4 
events there is no E2 event.  

Finally, we propose the CANCEL-WHEN feature in 
CEDR, which is not found in existing systems. Event 
patterns normally do not “pend” indefinitely; conditions or 
constraints may be used to cancel the accumulation of state 
for a pattern (which would otherwise remain to aggregate 
with future events to generate a composite event). The 
CANCEL-WHEN construct is used to describe such 
constraints. CANCEL-WHEN (E1, E2) stops the detection 
for E1 when an E2 event occurs during the partial detection. 
Note the scope of E1 expressed by CANCEL-WHEN cannot 
in general be expressed by time or tuple based window in 
existing systems, since E2 could be a complex expression. 

 

Operator Description 

UNLESS(E1, E2, w) 

UNLESS (E1, E2, w) " {(e1.ID, 
e1.Os, e1.Oe, e1.Vs, e1.Vs+w, e1.rt, 
[e1]; e1.p) | there does not exist e2, 
such that e1.Vs < e2.Vs < e1.Vs + w} 

UNLESS(E1,E2,n,w) 

UNLESS’ (E1, E2, w) " {(e1.ID, 
e1.Os, e1.Oe, e1.Vs, e1.Vs+w, e1.rt, 
max(e1.cbt[n].Vs+w, e1.Vs), [e1]; 
e1.p) | there does not exist e2, such 
that e1.cbt[n].Vs < e2.Vs < 
e1.cbt[n].Vs + w} 

 

This operator allows users to specify 
that the start valid time of the 
negation scope for E2 is the n-th 
contributor to the E1 event. For this 
operator to be valid, at query compile 
time we need to check that the 
sequence specified by e1.cbt[] has 
length no less than n. Also, since the 
computation of E1 has its own scope, 
the Vs field of the output of this 
UNLESS’ operator should be set to 
the later one between the start valid 
time of E1 and the end of the 
negation scope for E2.  

 

Whether we need such a flexible 
UNLESS’ operator in CEDR is open 
to discussion. In the following 
discussion it is omitted. 

NOT(E,SEQUENCE(E1
,…,Ek,w)) 

NOT(E,SEQUENCE (E1,…, Ek, w)) 
" {es | es is in SEQUENCE (E1,…, 
Ek, w) and there does not exist e, 
such that es.cbt[1].Vs < e.Vs < 
es.cbt[k].Vs} 

CANCEL-WHEN (E1, 
E2) 

CANCEL-WHEN (E1, E2) " {e1 | 
there does not exist e2, such that e1.rt 
< e2.Vs < e1.Vs} 
 

Note that in this definition e2.rt is not 
involved. The definition can be 
changed to include this aspect. For 
example, e1.rt < e2.rt < e2.Vs < e1.Vs 
is a reasonable definition as well. 

4. Consistency Guarantees 
As stated earlier, due to unreliable (w.r.t. delivery order) 

network connections, stream events and their associated 
state changes may be delivered in non-deterministic order. 
In such situations, it can be highly undesirable to block until 
all the early data has provably arrived. Nevertheless, we can 
still produce output if we are willing to both retract incorrect 
output, and add the correct revised output. The ability to 
model and handle such retractions and insertions is a very 
important distinguishing feature of CEDR. This is modeled 
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by moving to a tritemporal model, which adds a third notion 
of time, called CEDR time, denoted T. Figure 2 shows an 
example of a tritemporal history table.  

 

Figure 2. Example – Tritemporal history table 
 

ID Vs Ve Os Oe Cs Ce … K 
e0 1 ! 1 5 1 4  E0 
e0 1 10 5 ! 2 6  E1 

e0 1 ! 1 3 4 !  E0 
e0 1 10 5 5 5 !  E1 
e0 1 10 3 ! 6 !  E2 

 

Note that in this table, we still see the familiar valid time 
and occurrence time fields. In addition, we see a new set of 
fields associated with CEDR time. These new fields use the 
clock associated with an actual CEDR stream. In particular, 
Cs corresponds to the CEDR server clock time upon event 
arrival. While critical for supporting retractions, CEDR time 
also reflects out of order delivery of data.  Finally, note there 
is a K column, in which each unique value corresponds to an 
initial insert and all associated retractions, each of which 
reduce the Ce compared to the previous matching entry in 
the table. 

Figure 2 models both a retraction and a modification 
(described in Section 2) simultaneously, and may be 
interpreted as follows. At CEDR time 1, an event arrives 
whose valid time is [1,!), and has occurrence time 1. At 
CEDR time 2, another event arrives which states that the 
first event’s valid time changes at occurrence time 5 to 
[1,10). Unfortunately, the point in time where the valid time 
changed was incorrect. Instead, it should have changed at 
occurrence time 3. This is corrected by the following three 
events on the stream. The event at CEDR time 4 changes the 
occurrence end time for the first event from 5 to 3. Since 
retractions can only decrease Oe, the original E1 event must 
be completely removed so that a new event with a new Os 
time may be inserted. We therefore completely remove the 
old event from the system by setting Oe to Os. We then 
insert a new event, E2, with occurrence time [3, !) and 
valid time [1,10). Note that the net effect of all this is that at 
CEDR time 3, the stream, in terms of valid time and 
occurrence time, contains two events, an insert and a 
modification that changes the valid time at occurrence time 
5. At CEDR time 7, the stream describes the same valid time 
change, except at occurrence time 3 instead of 5. Note, that 
retractions can be characterized and discussed using only 
occurrence time and CEDR time. Consequently, we will not 
discuss valid time or the ID fields further.  

Before we proceed to defining our notions of consistency, 
we need to define a few terms. First, we define the notion of 
canonical history table to time to (occurrence time). This 
canonical form will be used later to describe a notion of 
stream equivalence. Two examples of non-canonical history 
tables are shown in Figure 3. 

Figure 3. Example – Two history tables 

 

Putting a table into canonical form involves two steps. In 
the first step, called reduction, for each K, only the entry 
with earliest Oe time is retained. The resulting history tables 
for the tables shown in Figure 3 are shown in Figure 4. 

The next step, called truncation, changes any Oe value in 
the table greater than to to to. If there are any rows whose Os 
times are greater than to, they are removed. The canonical 
history tables for the tables shown in Figure 4, which were 
produced using truncation, are shown in Figure 5. 

Figure 4. Example – Two reduced history tables 

Figure 5. Example – Two canonical history tables  

 

We define the notion of canonical history table at to (in 
place of “to to”) as the canonical history table to to with the 
rows whose occurrence time interval do not intersect to 
removed.  We are finally ready to define one of our most 
important terms, called logical equivalence: 

Definition 1: Two streams S1 and S2 are logically 
equivalent to to (at to) iff, for their associated canonical 
history tables to to (at to), CH1 and CH2, # X(CH1)= # X(CH2), 
where X includes all attributes other than Cs and Ce. 

Intuitively, this definition says that two streams are 
logically equivalent to to (at to) if they describe the same 
logical state of the underlying database to to (at to), 
regardless of the order in which those state updates arrive. 
For instance, the two streams associated with the two tables 
in Figure 3 are logically equivalent to 3 and at 3. 

In order to describe our consistency levels, we have one 
more notion to define, a synchronization point. In order to 
define this, we need to describe an annotated form of the 
history table which introduces an extra column, called Sync. 
A table with such a column added is shown in Figure 6.  The 
extra column (Sync) is computed as follows: For insertions 
Sync = Os; for retractions Sync = Oe. 

Figure 6. Example - Annotated history table 

 K Sync Os Oe Cs Ce … 
E0 1 1 10 0 7 … 
E0 5 1 5 7 10 … 

 

The intuition behind the Sync column is that it induces a 
global notion of out of order event arrival in CEDR. For 
instance: if and only if the global ordering of events 

K Os Oe Cs Ce …  K Os Oe Cs Ce … 
E0 1 5 1 3 …  E0 1 ! 1 2 … 
E0 1 3 3 ! …  E0 1 5 2 ! … 

K Os Oe Cs Ce …  K Os Oe Cs Ce … 
E0 1 3 3 ! …  E0 1 5 2 ! … 

K Os Oe Cs Ce …  K Os Oe Cs Ce … 
E0 1 3 3 ! …  E0 1 3 2 ! … 
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achieved by sorting events according to Cs is identical to the 
global ordering of events achieved by sorting events 
according to the compound key <Sync, Cs>, then there are 
no out of order events in the stream. Finally, we introduce 
the notion of a synchronization point, sync point for short: 

Definition 2: A sync point w.r.t. an annotated history 
table AH is a pair of occurrence time and CEDR time (to, T), 
such that for each tuple e in AH, either e.Cs <= T and e.Sync 
<= to, or e.Cs > T and e.Sync > to.  

Intuitively, a sync point is a point in both CEDR time and 
occurrence time which cleanly separates the past from the 
future in both time domains simultaneously. At these points 
in time, we have seen exactly the minimal set of state 
changes which can affect the bitemporal historic state up to 
occurrence time to. We now define our levels of consistency. 

Definition 3: A standing query supports the strong 
consistency level iff: 1) for any two logically equivalent 
input streams S1 and S2, for sync points  (to, TS1), (to, TS2) in 
the two output streams, the query output streams at these 
sync points are logically equivalent to to at CEDR times TS1 
and TS2. 2) for each entry E in the annotated output history 
table, there exists a sync point (E.Sync, E.Cs). 

Intuitively, this definition says that a standing query 
supports strong consistency iff any two logically equivalent 
inputs produce exactly the same output state modifications, 
although there may be different delivery latency. Note that 
in order for a system to support this notion of consistency, 
the system must have “hints” that bound the effect of future 
state updates w.r.t. occurrence time. In addition, for n-ary 
operators, any combination of input streams can be 
substituted with logically equivalent streams in this 
definition. This is also true for the other consistency 
definitions and will not be discussed further. 

Definition 4: A query supports the middle consistency 
level iff for any two logically equivalent input streams S1 
and S2, for sync points (to, TS1), (to, TS2) in the two output 
streams, the query output streams at these sync points are 
logically equivalent to to at CEDR times TS1 and TS2. 

The definition of the middle level of consistency is almost 
the same as the high level. The only difference is that not 
every event is a sync point. Intuitively, this definition allows 
for the retraction of optimistic state at times in between sync 
points. Therefore, this notion of consistency allows us to 
produce early output in an optimistic manner. 

Definition 5: A query supports the weak consistency 
level iff for any two logically equivalent input streams S1 
and S2, for sync points (to, TS1), (to, TS2) in the two output 
streams, the query output streams at these sync points are 
logically equivalent at to at CEDR times TS1 and TS2. 

5. Consistency tradeoffs 
In order to understand what these levels of consistency 

mean in a real system, we describe the role and functionality 
of a CEDR (logical) operator in a high level fashion.  

 

Figure 7. Anatomy of a CEDR operator 

     
 

Similar to DSMSs, CEDR provides a set of composable 
operators that can be combined to form a pipelined query 
execution plan. Each CEDR operator, illustrated in Figure 7, 
has two components: a consistency monitor and an 
operational module.  A consistency monitor decides whether 
to block the input stream in an alignment buffer until output 
may be produced which upholds the desired level of 
consistency. The operational module computes the output 
stream based on incoming tuples and current operator state. 

Moreover, a CEDR operator accepts occurrence time 
guarantees on subsequent inputs (e.g. provider declared sync 
points on input streams). These guarantees are used to 
uphold the highest level of consistency, and allow us to 
reduce operator state in all levels of consistency. CEDR 
operators also annotate the output with a corresponding set 
of future output guarantees. These guarantees are fed to the 
next operator and streamed to the user with the query result. 

An important property of CEDR operators is that we use 
formal descriptions of operator semantics to prove that at 
common sync points, operators output the same bitemporal 
state regardless of consistency level. As a result, one can 
seamlessly switch from one consistency level to another at 
these points, producing the same subsequent stream as if 
CEDR had been running at that consistency level all along. 

Figure 8. Consistency tradeoffs 

Consistency Orderliness Blocking State 
Size 

Output 
Size 

Strong High Low Low Minimal 
Low High High Minimal 

Middle High None Low Low 
Low None High High 

Weak High None Low- Low- 
Low None Low- Low- 

 

Figure 8 illustrates the qualitative implications of running 
CEDR at a specific consistency level. The table considers 
two cases per consistency level: a highly-ordered stream and 
a very out-of-order stream, where orderliness is measured in 
terms of the frequency of application declared sync point. 

Guarantees on
input time 

Consistency 
Guarantees  

Operator state 

Stream of input 
state updates 

CEDR Operator 
Consistency 

Monitor 

Alignment buffer 

Operational 
Module 

Stream of output 
state updates 
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Figure 8 shows that the middle and strong consistency 
levels have the same state size – the tradeoff here is between 
blocking times (responsiveness) and the output size.  This is 
caused by the contrasting way that the two levels handle out 
of order events. The strong level aligns tuples by blocking, 
possibly resulting in significant blocking and large state, if 
the input is significantly out of order. In contrast, the middle 
level optimistically generates output, which can be repaired 
later using retractions and insertions. Since these retractions 
can affect output as far back in time as the last sync point, 
the middle level must maintain the same state as the strong 
level to generate the necessary retractions in all cases.  

Both the middle and the weak consistency levels are non-
blocking – they are distinguished by their output correctness 
up to (versus at) arbitrary points of time. More specifically, 
in the weak consistency level, we are not always obligated 
to fix earlier state, and may therefore “forget” some events 
which arrived since the last sync point. As a result, when 
events are highly out of order, both output size and state size 
are much improved over the middle level. When events are 
ordered, the strong level of consistency may be enforced 
with marginal added cost over weak and middle consistency.  

It is worth noting, the ability to both remember and block 
do not have to be all or nothing properties of our operators. 
Rather, one can limit blocking and memory to specific 
lengths of either application or CEDR time. This leads to the 
infinite spectrum of consistency levels described in Figure 9, 
which shows the space of valid consistency levels where the 
maximum memory time M is one dimension, and maximum 
blocking time B is the other dimension.  

Figure 9. Consistency tradeoffs 

M

B

Strong consistency

Middle 
consistency

Weak consistency  
The interesting part of the spectrum is the lower right 

triangle since increasing the maximum blocking time 
beyond the maximum memory time has no effect on 
operator behavior. Note that the lower left corner of the 
triangle corresponds to the weakest possible consistency 
level, which is both non-blocking and memoryless. As we 
travel along the X-axis of the graph, we are willing to 
remember progressively further and further into the past, but 
remain non-blocking. At the extreme, we are willing to 
remember everything, and are therefore at the middle level 
of consistency at the lower right (at infinity) corner of the 
triangle. From this corner, we proceed up to the top right 
corner, where we are willing to both block arbitrarily long 

and remember everything if need be. This obviously 
corresponds to the highest possible level of consistency. 

6. Run-time Operator Semantics 
In CEDR, run-time operator semantics are “pure” in the 

sense that the result of a CEDR standing query must be 
ultimately unaffected by temporary stream states that are 
caused by out of order event arrival as well as retractions.  
More formally, a properly specified CEDR operator must be 
well behaved according to the following definition: 

Definition 6: A CEDR operator O is well behaved iff for 
all (combinations of) inputs to O which are logically 
equivalent to infinity, O’s outputs are also logically 
equivalent to infinity. 

Intuitively, the above definition says that a CEDR 
operator is well behaved as long as the output produced by 
the operator semantically converges to the output produced 
by a perfect version of the input without retractions and out 
of order delivery. 

Also, since the above definition induces input stream 
equivalence classes based on logical equivalence, we need 
only to define operator semantics on the infinite canonical 
history tables with the CEDR time fields projected out. We 
will call these tables ideal history tables, By defining 
operators using ideal history tables, we ensure that for each 
equivalence class, we define operator semantics on the 
equivalence class member which excludes retractions and 
out of order delivery. It is up to the implementations of 
individual operators, which is beyond the scope of this 
paper, to uphold logically equivalent operator output 
behavior for all logically equivalent inputs. 

While a fully realized set of CEDR operators would 
support both retractions and modifications, the discussion in 
this section would be less relevant to existing systems if we 
defined our operators in this manner. We will therefore, in 
this section, assume that there are no modifications, and that 
the occurrence and valid time fields are merged into one 
valid time field, whose lifetime may be shortened using 
retractions. All the reasoning and definitions in Section 4 
are, in this context, in terms of valid time and CEDR time 
instead of occurrence time and CEDR time.  Furthermore, in 
this context, the resulting ideal history tables have only one 
temporal dimension (valid time) and are therefore called 
unitemporal ideal history tables.  We leave it as a 
technical challenge to define precisely the semantics of our 
operators in the presence of modifications. 

Summing up, the semantics of our operators are defined 
on the unitemporal ideal history tables of the inputs, such as 
the one shown in Figure 10. In all definitions, we refer to the 
input streams as S1,…,Sm, and the set of events in each 
associated unitemporal ideal history table as E(Si). Each 
individual event has the fields shown in Figure 10. 
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Figure 10. Example – Unitemporal ideal history table 

ID Vs Ve Payl
oad 

E0 1 5 P1 
E1 4 9 P2 

 
The output of the operator is described as the set of events 

in the unitemporal ideal history table of the output. Each 
element of the output is therefore described as the triple (Vs, 
Ve, Payload). We begin with the definitions of operators 
which will be very familiar to the readers of this paper: 

 
SQL projection is a generalization of the relational 

projection operator, in that we can specify an arbitrary 
function f to transform the payload of each input tuple. 
Consequently, the output payload schema may be different 
from the input payload schema. Note that f cannot affect the 
timestamp attributes. SQL projection is defined as follows: 

Definition 7: SQL projection #f(S): 
#f(S)={(e.Vs, e.Ve, f(e.Payload)) | e " E(S)} 
 
Selection corresponds exactly to relational selection. It 

takes a boolean function f which operates over the payload. 
The definition follows: 
 

Definition 8: Selection $f(S): 
$f(S)={(e.Vs, e.Ve, e.Payload) | e " E(S) where 
f(e.Payload)} 

Similarly, the next operator is join, which takes a 
boolean function f over two input payloads: 

Definition 9: Join !f(P1,P2)(S1, S2): 
!%(P1,P2)(S1, S2) = {(Vs, Ve, (e1.Payload concantenated 
with e2.Payload)) | e1 " E(S1), e2 " E(S2), Vs=max{ e1.Vs, 
e2.Vs}, Ve=min{ e1.Ve, e2.Ve}, where Vs < Ve, and 
%(e1.Payload, e2.Payload)} 

Intuitively, the definition of join semantically treats the 
input streams as changing relations, where the valid time 
intervals are the intervals during which the payloads are in 
their respective relations. The output of the join describes 
the changing state of a view which joins the two input 
relations. In this sense, many of our operators follow view 
update semantics such as those specified in [10]. 

We include in our algebra a number of other operators, 
such as union, difference, groupby, and aggregates such as 
max, min, and avg.  These operators all follow view update 
semantics, and since their relational counterparts are well 
understood we do not give formal definitions here. Instead, 
we discuss an attribute which all operators discussed so far 
have in common, called view update compliance. 

Before we can define view update compliance, we need to 
first introduce some other terminology:  

 

Definition 10: meets (I1, I2), coalesce (E1, E2), *(S): 
Two intervals I1=[T1, T2), I2=[T1’, T2’) meet iff T2= T1’ 

Two events can be coalesced if their payloads are the 
same and their associated valid time intervals meet. Two 
coalesced events e1=(Vs, Ve, P), e2=(Vs’, Ve’, P) are replaced 
with a single event e=(Vs, Ve’, P). 

The * operator on a stream returns the unitemporal 
history table that results from the repeated application of 
coalescence to the unitemporal ideal history table until 
coalesce cannot be applied further: 

We are now ready to define relational view compliance: 

Definition 11: A unary CEDR operator O is view update 
compliant iff for all R, S s.t. *(R) and *(S) are identical, 
*(O(R)) and *(O(S)) are also identical 

Intuitively, the above definition states that semantically, 
an operator must be insensitive to the way that changes in 
state are packaged. This is why, for instance, the operator 
must treat a payload whose lifetime is chopped into several 
insert events the same way as a payload whose lifetime is 
described in one event with a larger, equivalent lifetime. 

The above definition may be generalized in the obvious 
way to n-ary operators. In addition, this definition assumes 
that the underlying streams model relations, and therefore 
don’t allow duplicate payloads with overlapping valid time 
intervals. A more general definition could be crafted to 
handle bag semantics for the underlying relations. 

Unsurprisingly, most streaming systems (e.g. [5], [10]) 
implement operators that are view update compliant. What 
is interesting is that the features which are considered 
unique to streams, like windows, and the separation of 
inserts and deletes, are not view update compliant, which 
raises the question: What non-view update compliant 
operators are necessary in a streaming system? What 
guarantees should they uphold? 

We will therefore introduce our one non-view update 
compliant operator, AdjustLifetime, using this simple, but 
powerful operator we can build many windowing constructs 
and separate inserts from deletes. It is worth noting that 
AdjustLifetime, while non-view update compliant, is well 
behaved. AlterLifetime takes two input functions fVs(e) and 
f&(e). Intruitively, Alterlifetime maps the events from one 
valid time domain to another. In the new domain, the new 
Vs times are computed from fVs, and the durations of the 
event lifetimes are computed from f&. One could therefore 
regard this operator as a constrained form of project on the 
temporal fields. The precise definition follows: 

Definition 12: AlterLifetime 'fvs, f&(S) 
'fvs, f&(S)={(|fVs(e)|, |fVs(e)| + |f& (e)|, e.Payload) | e"#$S}} 
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We now define a moving window operator, denoted W, as 
a special instance of '. This operator takes a window length 
parameter wl, and clips the validity interval of its input 
based on wl. More precisely: Wwl(S)='Vs, min(Ve-Vs, wl)(S) 

One can similarly define hopping windows using integer 
division. Finally, we can even use the AlterLifetime 
operator to easily get all inserts and deletes from a stream: 

Inserts(S)= 'Vs, !(S) 

Deletes(S)= 'Ve, !(S) 

7. Conclusions and Future work 
In this paper, we have presented a number of challenges 

for existing streaming systems.  These challenges include 
the ability to handle negation, event selection and 
consumption, application driven modifications, and out of 
order event delivery in a principled, flexible manner. In 
order to address these challenges we propose a powerful 
temporal stream model. We build on this model in a number 
of ways: 

1. We formally define the notion of retractions, which can 
be used to describe a spectrum of possible system 
behaviors and performance tradeoffs in response to out 
of order delivery of data. 

2. We provide denotational semantics for a set of 
streaming run-time operators, most are view update 
compliant, and all are well behaved. The only operator 
which is not view update compliant is a simple, but 
novel streaming operator which can be used to 
implement a plethora of window types and the 
separation of inserts and deletes. 

Ongoing work in the CEDR project is proceeding in a 
number of research directions. One effort is to complete the 
set of compilation rules from our language to our run-time 
operator algebra. In addition, we are working on algorithms 
which efficiently implement our algebra across the full 
spectrum of consistency levels.  Another interesting 
direction is optimization and query rewrite rules. For 
instance, we are considering consistency sensitive query 
optimizations that when permissible, can determine when to 
switch from one consistency level to another under periods 
of heavy load due to event bursts. 
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