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ABSTRACT 
Web search is challenging partly due to the fact that search que-

ries and Web documents use different language styles and vo-

cabularies.  This paper provides a quantitative analysis of the lan-

guage discrepancy issue, and explores the use of clickthrough data 

to bridge documents and queries.  We assume that a query is par-

allel to the titles of documents clicked on for that query.  Two 

translation models are trained and integrated into retrieval models: 

A word-based translation model that learns the translation proba-

bility between single words, and a phrase-based translation model 

that learns the translation probability between multi-term phrases. 

Experiments are carried out on a real world data set. The results 

show that the retrieval systems that use the translation models 

outperform significantly the systems that do not. The paper also 

demonstrates that standard statistical machine translation tech-

niques such as word alignment, bilingual phrase extraction, and 

phrase-based decoding, can be adapted for building a better Web 

document retrieval system. 

Categories and Subject Descriptors 

H.3.3 [Information Storage and Retrieval]: Information Search 

and Retrieval;  I.2.6 [Artificial Intelligence]: Learning 

General Terms 

Algorithms, Experimentation 

Keywords 

Clickthrough Data, Translation Model, Language Model, PLSA,   

Linear Ranking Model, Web Search 

1. INTRODUCTION 

This paper is intended to address two fundamental issues in in-

formation retrieval (IR) by exploiting clickthrough data: synony-

my and polysemy. Synonyms are different terms with identical or 

similar meanings, while polysemy means a term with multiple 

meanings.  

These issues are particularly crucial for Web search.  Syno-

nyms lead to the so-called lexical gap problem in document re-

trieval: A query often contains terms that are different from, but 

related to, the terms in the relevant documents.  The lexical gap is 

substantially bigger in Web search largely due to the fact that 

search queries and Web documents are composed by a large varie-

ty of people and in very different language styles [e.g., 18]. Poly-

semy, on the other hand, increases the ambiguity of a query, and 

often causes a search engine to retrieve many documents that do 

not match the user’s intent.  This problem is also amplified by the 

high diversity of Web documents and Web users. For example, 

depending on different users, the query term “titanic” may refer to 

the rock band from Norway, the 1997 Oscar-winning film, or the 

ocean liner infamous for sinking on her maiden voyage in 1912. 

Unfortunately, most popular IR methods developed in the re-

search community, in spite of their state-of-the-art performance 

on benchmark datasets (e.g., the TREC collections), are based on 

bag-of-words and exact term matching schemes, and cannot deal 

with these issues effectively [10, 22, 37].  Therefore, the devel-

opment of a retrieval system that goes beyond exact term match-

ing and bag-of-words has been a long standing research topic, as 

we will review later. 

The problem of synonyms has been addressed previously by 

creating relationships between terms in queries and in documents. 

Clickthrough data have been exploited for this purpose [3, 34]. 

However, relationships are created only between single words 

without taking into account the context, giving rise to an increas-

ing problem of noisy proliferation, i.e., connecting a word to a 

large number of unrelated or weakly related words. In addition, ad 

hoc similarity measures are often used.  

In this paper we propose a more principled method by extend-

ing the statistical translation based approach to IR, proposed by 

Berger and Lafferty [7]. We estimate the relevance of a document 

given a query according to how likely the query is translated from 

the title text of the document1. We explore the use of two transla-

tion models for IR. Both models are trained on a query-title 

aligned corpus, derived from one-year clickthrough data collected 

by a commercial Web search engine. The first model, called 

word-based translation model, learns the translation probability of 

a query term given a word in the title of a document. This model, 

however, does not address the problem of noisy proliferation. 
The second model, called phrase translation model, learns the 

translation probability of a multi-term phrase in a query given a 

phrase in the title of a document.  This model explicitly addresses 

the problem of noisy proliferation of translation relationships 

between single words. In theory, the phrase model, subsuming the 

word model as a special case, is more powerful because words in 

                                                                 
1 Notice that we use document titles rather than entire documents because 

titles are more similar to queries than body texts. We will give the em-

pirical justification in Sections 3 and 4. For the same reason, in most of 
the retrieval experiments in this study, we use only the title texts of web 

documents for retrieval. 
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the relationships are considered with some context words. More 

precise translations can be determined for phrases than for words.  

This model is more capable of dealing with both the synonymy 

and the polysemy issues in a unified manner.  It is thus reasonable 

to expect that using such phrase translation probabilities as rank-

ing features is likely to improve the retrieval results, as we will 

show in our experiments.  

Although several approaches have been proposed to determine 

relationships between the terms in queries and the terms in docu-

ments, most of them rely on a static measure of term similarity 

(e.g. cosine similarity) according to their co-occurrences across 

queries and documents. In statistical machine translation (SMT), it 

has been found that an EM process used to construct the transla-

tion model iteratively can significantly improve the quality of the 

model [9, 27]: A translation model obtained at a later iteration is 

usually better than the one at an earlier iteration, including the 

initial translation model corresponding to a static measure. An 

important reason for this is that some frequent words in one lan-

guage can happen to co-occur often with many words in another 

language; yet the former are not necessarily good translation can-

didates for the latter. The iterative training process helps strength-

en the true translation relations and weaken spurious ones. The 

situation we have is very similar: on the one hand, we have que-

ries written by the users in some sub-language, and on the other 

hand, we have documents (or titles) written by the authors in an-

other sub-language. Our goal is to detect possible relations be-

tween terms in the two sub-languages. This problem can be cast as 

a translation problem. The fact that the quality of translation mod-

els can be improved using the iterative training process strongly 

suggests that we could also obtain higher-quality term relation-

ships between the two sub-languages with the same process. This 

is the very motivation to use principled translation models rather 

than static, ad hoc, similarity measures. 

Our evaluation on a real world dataset shows that the retrieval 

systems that use the translation models outperform significantly 

the systems that do not use them.  It is interesting to notice that 

our best retrieval system, which uses a linear ranking model to 

incorporate both the word-based and phrase-based translation 

models, shares a lot of similarities to the state-of-the-art SMT 

systems described in [23, 27, 28]. Thus, our work also demon-

strates that standard SMT techniques such as word alignment, 

bilingual phrase extraction, and phrase-based decoding, can be 

adapted for building a better Web document retrieval system. 

To the best of our knowledge, this is the first extensive and 

empirical study of learning word-based and phrase-based transla-

tion models using clickthrough data for Web search. Although 

clickthough data has been proved very effective for Web search 

[e.g., 2, 16, 33], click information is not available for many URLs, 

especially new and less popular URLs. Thus, another research 

goal of this study is to investigate how to learn title-query transla-

tion models from a small set of popular URLs that have rich click 

information, and apply the models to improve the retrieval of 

those URLs without click information. 

In the reminder of the paper, Section 2 reviews previous re-

search on dealing with the issues of synonymy and polysemy.  

Section 3 presents a large scale analysis of language differences 

between search queries and Web documents, which will motivate 

our research.  Section 4 describes the data sets and evaluation 

methodology used in this study.  Sections 5 and 6 describe in de-

tail the word-based and phrase-based translation models, respec-

tively.  The experimental results are also presented wherever ap-

propriate.  Section 7 presents the conclusions. 

2. RELATED WORK 

Many strategies have been proposed to bridge the lexical gap 

between queries and documents at the lexical level or at the se-

mantic level. One of the simplest and most effective strategies is 

automatic query expansion, where a query is refined by adding 

terms selected from (pseudo) relevant documents.  A variety of 

heuristic and statistical techniques are used to select and (re-

)weight the expansion terms [30, 35, 11, 5]. However, directly 

applying query expansion to a commercial Web search engine is 

challenging because the relevant documents of a query are not 

always available and generating pseudo relevant documents re-

quires multi-stage retrieval, which is prohibitively expensive.  

The latent variable models, such as LSA [12], PLSA [17], and 

LDA [8], take a different strategy. Different terms that occur in a 

similar context are grouped into the same latent semantic cluster.  

Thus, a query and a document, represented as vectors in the latent 

semantic space, can still have a high similarity even if they do not 

share any term. In this paper we will apply PLSA to word transla-

tion, and compare it with the other proposed translation models in 

the retrieval experiments. 

Unlike latent variable models, the statistical translation based 

approach [7] does not map different terms into latent semantic 

clusters but learns translation relationships directly between a 

term in a document and a term in a query. A major challenge is 

the estimation of the translation models. The ideal training data 

would be a large amount of query-document pairs, in each of 

which the document is (judged as) relevant to the query.  Due to 

the lack of such training data, [7] resorts to some synthetic query-

document pairs, and [21] simply uses the title-document pairs as 

substitution for training. In this study we mine implicit relevance 

judgments from one-year clickthrough data, and generate a large 

amount of real query-title pairs for translation model training.  

Clickthrough data have been used to determine relationships 

between terms in queries and in documents [3, 34]. However, 

relationships are only created between single words by using an 

ad hoc similarity measure. Translation models offer a way to ex-

ploit such relationships in a more principled manner, as we ex-

plained earlier. 

Context information is crucial for detecting a particular sense 

of a polysemous query term.  But most traditional retrieval models 

assume the occurrences of terms to be completely independent.  

Thus, research in this area has been focusing on capturing term 

dependencies.  Early work tries to relax the independence assump-

tion by including phrases, in addition to single terms, as indexing 

units [10, 32]. Phrases are defined by collocations (adjacency or 

proximity) and selected on the statistical ground, possibly with 

some syntactic knowledge.  Unfortunately, the experiments did 

not provide a clear indication whether the retrieval effectiveness 

can be improved in this way.  

Recently, within the framework of language models for IR, 

various approaches that go beyond unigrams have been proposed 

to capture some term dependencies, notably the bigram and tri-

gram models [31], the dependence model [14], and the Markov 

Random Field model [25]. These models have shown benefit of 

capturing dependencies. However, they focus on the utilization of 

phrases as indexing units, rather than the relationships between 

phrases. [4] tried to determine such relationships using more com-

plex term co-occurrences within documents. Our study tries to 

extract such relationships according to clickthrough data. Such 

relationships are expected to be more effective in bridging the gap 



between the query and document sub-languages. To our 

knowledge, this is the first such attempt using clickthrough data. 

In Section 6, we propose a new phrase-based query translation 

model that determines a probability distribution over “translations” 

of multi-word phrases from title to query. Our phrases are differ-

ent from those defined in the previous work. Assuming that que-

ries and documents are composed using two different “languages”, 

our phrases can be viewed as bilingual phrases (or bi-phrases in 

short), which are consecutive multi-term sequences that can be 

translated from one language to another as units. As we will show 

later, the use of the bi-phrases not only bridges the lexical gap 

between queries and documents, but also reduces significantly the 

ambiguities in Web document retrieval.  

3. COLLECTIONS OF SEARCH QUERIES 

AND WEB DOCUMENTS 

Language differences between search queries and Web documents 

have often been assumed in previous studies without a quantita-

tive evaluation [e.g., 2, 16, 33]. Following and extending the study 

in [18], we performed a large scale analysis of Web and query 

collections for the sake of quantifying the language discrepancy 

between search queries and Web documents. 

Table 1 summarizes the Web n-gram model collection used in 

the analysis. The collection is built from the English Web docu-

ments, in the scale of trillions of tokens, served by a popular 

commercial Web search engine. The collection consists of several 

n-gram data sets built from different Web sources, including the 

different text fields from the Web documents such as body text, 

anchor texts, and titles, as well as search queries sampled from 

one-year worth of search query logs.  

We then developed a set of language models, each on one n-

gram dataset from a different data source. They are the standard 

word-based backoff n-gram models, where the n-gram probabili-

ties are estimated using maximum likelihood estimation (MLE) 

with smoothing [26]. 
One way to quantify the language difference is to estimate 

how certain a language model trained on one data in one language 

(e.g., titles) predicts the data in another language (e.g., queries). 

We use perplexity to measure the certainty of the prediction. 

Lower perplexities mean higher certainties, and consequently, a 

higher similarity between the two languages. 

Table 2 summarizes the perplexity results of language models 

trained on different data sources tested on a random sample of 

733,147 queries from the search engine’s May 2009 query log. 

The results suggest several conclusions. First, a higher order lan-

guage model in general reduces perplexity, especially when mov-

ing beyond unigram models. This verifies the importance of cap-

turing term dependencies. Second, as expected, the query n-gram 

Order Body Anchor Title Query 

Unigram 13242 4164 3633 1754 

Bigram 5567 966 1420 289 

Trigram 5381 740 1299 180 

4-gram 5785 731 1382 168 

Table 2: Perplexity results on test queries, using n-gram models 

with different orders, derived from different data sources. 

 

language models are most predictive for the test queries, though 

they are from independent query log snapshots. Third, it is inter-

esting to notice that although the body language models are 

trained on much larger amounts of data than the title and anchor 

models, the former lead to much higher perplexity values, indicat-

ing that both title and anchor texts are quantitatively much more 

similar to queries than body texts.  We also notice that in the case 

of lower order (1-2) models, the title models have lower perplexi-

ties than the anchor models, but a higher order anchor model re-

duces the perplexity more. This suggests that title’s vocabulary is 

more similar to that of queries than anchor texts whereas the or-

dering in the n-gram word structure captured by the anchor lan-

guage models is more similar to the test queries than that by the 

title language models. 

In what follows, we will show the degree to which the lan-

guage differences (measured in terms of perplexity) affect the 

performance of Web document retrieval. 

4. DATA SETS AND EVALUATION  

METHODOLOGY 

A Web document is composed of several fields of information.  

The field may be written either by the author of the Web page, 

such as body texts and titles, or by other authors, such as anchor 

texts and query clicks.  The former sources are called content 

fields and the latter sources popularity fields [33].  

The construction of content fields is straightforward. The con-

struction of popularity fields is trickier because they have to be 

aggregated over information about the page from other authors or 

users.  Popularity fields are highly repetitive for popular pages, 

and are empty or very short for new or less popular (or so-called 

tail) pages. In our study, the anchor text field is composed of the 

text of all incoming links to the page.  The query click field is 

built from query session data, similar to [16].  The query click 

data consists of query sessions extracted from one year query log 

files of a commercial search engine.  A query session consists of a 

user-issued query and a rank of documents, each of which may or 

may not be clicked by the user.  The query click field of a docu-

ment d is represented by a set of query-score pairs (q, Score(d, q)), 

where q is a unique query string and Score(d, q) is a score as-

signed to that query.  Score(d, q) could be the number of times the 

document was clicked on for that query, but it is important to also 

consider the number of times the page has been shown to the user 

and the position in the ranked list at which the page was shown.  

Figure 1 shows a fragment of the query click field for the docu-

ment http://webmessenger.msn.com, where Score(d, q) is comput-

ed using the heuristic scoring function in [16]. 

The multi-field description of a document allows us to gener-

ate query-document pairs for translation model training.  As 

shown in Figure 1, we can form a set of query-title pairs by align-

ing the title of the document (e.g., the title of the document 

http://webmessenger.msn.com is “msn web messenger”) to each 

unique query string in the query click field of the same document. 

In this study, we use titles, instead of anchor and body texts, to  

Dataset Body Anchor Title Query 

#unigram 1.2B 60.3M 150M 251.5M 

#bigram 11.7B 464.1M 1.1B 1.3B 

#trigram 60.0B 1.4B 3.1B 3.1B 

#4-gram 148.5B 2.3B 5.1B 4.6B 

Total 1.3T 11.0B 257.2B 28.1B 

Size on disk# 12.8T 183G 395G 393G 
# N-gram entries as well as other statistics and model parameters 

are stored. 

Table 1: Statistics of the Web n-gram language model collection 

(count cutoff = 0 for all models). These models will be released to 

the research community at [1]. 



form training data for two reasons. First, titles are more similar to 

queries both in length and in vocabulary (Table 2), thus making 

word alignment and translation model training more effective. 

Second, as will be shown later (Table 3), for the pages with an 

empty query click field, the title field gives a very good single-

field retrieval result on our test set, although it is much shorter 

than the anchor and body fields, and thus it can serve as a reason-

able baseline in our experiments. Nevertheless, our method is not 

limited to the use of titles. It can be applied to other content fields 

later. 

We evaluate the retrieval methods on a large scale real world 

data set, called the evaluation data set henceforth, containing 

12,071 English queries sampled from one-year query log files of a 

commercial search engine.  On average, each query is associated 

with 185 Web documents (URLs).  Each query-document pair has 

a relevance label.  The label is human generated and is on a 5-

level relevance scale, 0 to 4, with 4 meaning document d is the 

most relevant to query q and 0 meaning d is not relevant to q.  All 

the retrieval models used in this study (i.e., BM25, language mod-

els and linear ranking models) contain free parameters that must 

be estimated empirically by trial and error.  Therefore, we used 2-

fold cross validation: A set of results on one half of the data is 

obtained using the parameter settings optimized on the other half, 

and the global retrieval results are combined from those of the two 

sets. 

The performance of all the retrieval models is measured by 

mean Normalized Discounted Cumulative Gain (NDCG) [19].  

We report NDCG scores at truncation levels 1, 3, and 10.  We also 

perform a significance test, i.e., a t-test with a significance level of 

0.05.  A significant difference should be read as significant at the 

95% level. 

Table 3 reports the results of a set of BM25 models, each us-

ing a single content or popularity field.  This is aimed at evaluat-

ing the impact of each single field on the retrieval effectiveness.  

The retrieval results are more or less consistent with the perplexity 

results in Table 2.  The field that is more similar to search queries 

gives a better NDCG score.  Most notable is that the body field, 

though much longer than the title and anchor fields, gives the 

worst retrieval results due to the substantial language discrepancy 

from queries.  The anchor field is slightly better than the title field 

because the anchor field is on average much longer, though in 

Table 2 the anchor unigram model shows higher a perplexity val-

ue than the title unigram model. Therefore it would be interesting  

Field NDCG@1 NDCG@3 NDCG@10 

Body 0.2798 0.3121 0.3858 

Title 0.3181 0.3413 0.4045 

Anchor 0.3245 0.3506 0.4117 

Query click N/A N/A N/A 

Table 3: Ranking results of three BM25 models, each using a 

different single field to represent Web documents. The click field 

of a document in the evaluation data set is not valid. 

to learn translation models from click-anchor pairs in addition to 

click-title pairs. We leave it to future work. 

Some previous studies [e.g., 16, 33] show that the query click 

field, when it is valid, is the most effective for Web search. How-

ever, click information is unavailable for many URLs, especially 

new URLs and tail URLs, leaving their click fields invalid (i.e., 

the field is either empty or unreliable because of sparseness).  In 

this study, we assume that each document contained in the evalua-

tion data set is either a new URL or a tail URL, thus has no click 

information (i.e., its click field is invalid).  Our research goal is to 

investigate how to learn title-query translation models from the 

popular URLs that have rich click information, and apply the 

models to improve the retrieval of those tail or new URLs. Thus, 

in our experiments, we use BM25 with the title field as baseline. 

From one-year query session data, we were able to generate 

very large amounts of query-title pairs.  For training translation 

models in this study, we used a randomly sampled subset of 

82,834,648 pairs whose documents are popular and have rich 

click information. We then test the trained models in retrieving 

documents that have no click information. The empirical results 

will verify the effectiveness of our methods. 

5. THE WORD-BASED TRANSLATION 

MODEL 

Let Q = q1…qJ be a query and D= w1…wI be the title of a docu-

ment.  The word-based translation model [7] assumes that both Q 

and D are bag of words, and that the translation probability of Q 

given D is computed as 

 ( | )  ∏ ∑  ( | ) ( | )

      

  (1) 

Here  ( | )  is the unigram probability of word w in D, and  

 ( | ) is the probability of translating w into a query term q.   

It is easy to verify that if we only allow a word to be translated 

into itself, Equation (1) is reduced to the simple exact term match-

ing model.  In general, the model allows us to translate w to other 

semantically related query terms by giving those other terms a 

nonzero probability.  

5.1 Learning Translation Probabilities 

This section describes two methods of estimating the word trans-

lation probability  ( | ) in Equation (1) using the training data, 

i.e., the query-title pairs, denoted by *(     )      +, derived 

from the clickthrough data, as described in Section 4.  

The first method follows the standard procedure of training 

statistical word alignment models proposed in [9].  Formally, 

we optimize the model parameters  by maximizing the probabil-

ity of generating queries from titles over the training data: 

           ∏  (  |    )
 

   
  (2) 

msn web 0.6675749 

Webmensseger 0.6621253 

msn online 0.6403270 

windows web messanger 0.6321526 

talking to friends on msn 0.6130790 

school msn 0.5994550 

msn anywhere 0.5667575 

web message msn com 0.5476839 

msn messager 0.5313351 

hotmail web chat 0.5231608 

messenger web version  0.5013624 

instant messager msn 0.4550409 

browser based messenger 0.3814714 

im messenger sign in 0.2997275 

… … 

Figure 1: A fragment of the query click field for the page 

http://webmessenger.msn.com [16]. 



where  ( |   ) takes the form of IBM Model 1 [7] as 

 ( |   )  
 

(   ) 
∏ ∑  ( |   )

      

  (3) 

where  is a constant, J is the length of Q, and I is the length of 

title D.  To find the optimal word translation probabilities of 

Model 1, we used the EM algorithm [13], running for only 3 itera-

tions over the training data as a means to avoid overfitting. The 

details of the training process can be found in [9].  A sample of 

the resulting translation probabilities is shown in Figure 2, where 

a title word is shown together with the ten most probable query 

terms that it will translate according to the model. 

The second method uses a heuristic model, inspired by [27].  

This model is considerably simpler and easier to estimate. It does 

not require learning word alignments, but approximates  ( |   ) 
by a variant of the Dice coefficient: 

 ( |   )  
 (   )

 ( )
  (4) 

where  (   )  is the number of query-title pairs (   )  in the 

training data, where q occurs in the query part and w occurs in the 

title part, and  ( ) is the number of query-title pairs where w 

occurs in the title part.  

5.2 Ranking Documents 

The word-based translation model of Equation (1) needs to be 

smoothed before it can be applied to document ranking. We fol-

low [7] to define a smoothed model as 

  ( | )  ∏  ( | )

   

  (5) 

Here,   ( | ) is a linear interpolation of a background unigram 

model and a word-based translation model: 

  ( | )    ( | )  (   ) ∑  ( | ) ( | )

   

  (6) 

where     ,   -  is the interpolation weight empirically tuned, 

 ( | ) is the word-based translation model estimated using either 

of the two methods described in Section 5.1, and  ( | )  and 

 ( | ) are the unsmoothed background and document models, 

respectively, estimated using maximum likelihood estimation as 

 ( | )  
 (   )

| |
     (7) 

 ( | )  
 (   )

| |
  (8) 

where  (   ) and  (   ) are the counts of q in the collection 

and in the document, respectively; and | | and | | are the sizes of 

the collection and the document, respectively. 

However, the model of Equations (5) and (6) still does not 

perform well in our retrieval experiments due to the low self- 

translation problem. This problem has also been studied in [36, 20, 

24, 21]. Since the target and the source languages are the same, 

every word has some probability to translate into itself, i.e., 

P(q=w|w) > 0.  On the one hand, low self-translation probabilities 

reduce retrieval performance by giving low weights to the match-

ing terms. On the other hand, very high self-probabilities do not 

exploit the merits of the translation models. 

Different approaches have been proposed to address the self-

translation problem [36, 20, 24, 21]. These approaches assume 

that the self-translation probabilities estimated directly from data, 

e.g., using the methods described in Section 5.1, are not optimal 

for retrieval, and have demonstrated that significant improvements 

can be achieved by adjusting the probabilities. We compared these 

approaches in our experiments. The best performer is the one 

proposed by Xue et al. [36], where Equation (6) is revised as 

Equation (9) so as to explicitly adjust the self-translation probabil-

ity by linearly mixing the translation based estimation and maxi-

mum likelihood estimation 

  ( | )    ( | )  (   )   ( | ), where 

   ( | )    ( | )  (   ) ∑  ( | ) ( | )

   

  

(9)  

Here,     ,   - is the tuning parameter, indicating how much the 

self-translation probability is adjusted. Notice that letting     in 

Equation (9) reduces the model to a unigram language model with 

Jelinek-Mercer smoothing [37].  ( | )  in Equation (9) is the 

unsmoothed document model, estimated by Equation (8). So we 

have  ( | )           . 

5.3 Results 

Table 4 shows the main document ranking results using word-

based translation models, tested on the human-labeled evaluation 

dataset via 2-fold cross validation, as described in Section 4. Row 

1 is the baseline model.  Rows 2 to 5 are different versions of the 

word translation based retrieval model, parameterized by Equa-

tions (5) to (9). All these models achieve significantly better re-

sults than the baseline in Row 1. By setting     in Equation (9), 

the model in Row 2 is equivalent to a unigram language model 

with Jelinek-Mercer smoothing. Row 3 is the model where the 

word translation probabilities are assigned by Model 1 trained by 

the EM algorithm. Row 4 is similar to Row 3 except that the self- 

q  ( | ) Q  ( | ) 
titanic 0.56218 Vista 0.80575 

ship 0.01383 Windows 0.05344 

movie 0.01222 Download 0.00728 

pictures 0.01211 ultimate 0.00571 

sink 0.00697 xp 0.00355 

facts 0.00689 microsoft 0.00342 

photos 0.00533 bit 0.00286 

rose 0.00447 compatible 0.00270 

people 0.00441 premium 0.00244 

survivors 0.00369 free 0.00211 

w = titanic w = vista 

q  ( | ) q  ( | ) 
everest 0.52826 pontiff 0.17288 

mt 0.02672 pope 0.09831 

mount 0.02117 playground 0.03729 

deaths 0.00958 wally 0.03053 

person 0.00598 bartlett 0.03051 

summit 0.00503 current 0.02712 

climbing 0.00454 quantum 0.02373 

cost 0.00446 wayne 0.02372 

visit 0.00441 john 0.02034 

height 0.00397 stewart 0.02031 

w = everest w = pontiff 

Figure 2: Sample word translation probabilities after EM 

training on the query-title pairs. 



translation probability is not adjusted, i.e.,     in Equation (9).  

Row 5 is the model where the word translation probabilities are 

estimated by the heuristic model of Equation (4).  

The results show that (1) as observed by other researchers, the 

simple unigram language model performs similarly to the classical 

probabilistic retrieval model BM25 (Row 1 vs. Row 2); (2) using 

word translation model trained on query-title pairs leads to statis-

tically significant improvement (Row 3 vs. Row 2); (3) it is bene-

ficial to boost the self-translation probabilities (Row 3 vs. Row 4 

is statistically significant in NDCG@1 and NDCG@3); and (4) 

Model 1 outperforms the heuristic model with a small but statisti-

cally significant margin (Row 3 vs. Row 5).  Analyzing the varia-

tion of the document retrieval performance as a function of the 

EM iterations in Model 1 training is instructive.  As shown in 

Figure 3, after the first iteration, Model 1 achieves a slightly 

worse retrieval result than the heuristic model, but the second 

iteration of Model 1 gives a significantly better result. 

6. THE PHRASE-BASED TRANSLATION    

MODEL 

The phrase-based translation model is a generative model that 

translates a document title D into a query Q. Rather than translat-

ing single words in isolation, as in the word-based translation 

model, the phrase model translates sequences of words (i.e., 

phrases) in D into sequences of words in Q, thus incorporating 

contextual information. For example, we might learn that the 

phrase "stuffy nose" can be translated from "cold" with relatively 

high probability, even though neither of the individual word pairs 

(i.e., "stuffy"/"cold" and "nose"/"cold") might have a high word 

translation probability. We assume the following generative story: 

first the title D is broken into K non-empty word sequences 

w1,...,wk, then each is translated to a new non-empty word se-

quence q1,...,qk, finally these phrases are permuted and concate-

nated to form the query Q. Here w and q denote consecutive se-

quences of words. 

To formulate this generative process, let S denote the segmen-

tation of D into K phrases w1,…,wK, and let T denote the K transla-

tion phrases q1,…,qK – we refer to these (ci, qi) pairs as bi-phrases. 

Finally, let M denote a permutation of K elements representing the 

final reordering step. Figure 2 demonstrates the generative proce-

dure. 

Next let us place a probability distribution over rewrite pairs. 

Let B(D, Q) denote the set of S, T, M triples that translate D into Q. 

If we assume a uniform probability over segmentations, then the 

phrase-based translation probability can be defined as: 

 ( | )  ∑  ( |   )   ( |     )

(     ) 
 (   )

 
(10) 

Then, we use the maximum approximation to the sum:  

 ( | )     
(     ) 
 (   )

 ( |   )   ( |     ) (11) 

Although we have defined a generative model for translating 

titles to queries, our goal is not to generate new queries, but rather 

to provide scores over existing Q and D pairs that will be used to 

rank documents. However, the model cannot be used directly for 

document ranking because D and Q are often of very different 

lengths, leaving many words in D unaligned to any query term. 

This is the key difference between our task and the general natural 

language translation. As pointed out by Berger and Lafferty [7], 

document-query translation requires a distillation of the document, 

while translation of natural language tolerates little being thrown 

away. 

Thus we restrict our attention to those key title words that 

form the distillation of the document, and assume that a query is 

translated only from the key title words. In this work, the key title 

words are identified via word alignment. Let A = a1…aJ be the 

“hidden” word alignment, which describes a mapping from a que-

ry term position j to a title word position aj.  We assume that the 

positions of the key title words are determined by the Viterbi 

alignment A*, which can be obtained using Model 1 (or the heuris-

tic model) as follows: 

         
 

 (   | ) (12) 

       
 

{ ( | )∏ (  |   )

 

   

} (13) 

 [      
  

 (  |   )]
   

 

  (14) 

Given A*, when scoring a given Q/D pair, we restrict our at-

tention to those S, T, M triples that are consistent with A*, which 

we denote as B(C, Q, A*). Here, consistency requires that if two 

words are aligned in A*, then they must appear in the same bi-

# Models NDCG@1 NDCG@3 NDCG@10 

1 BM25 0.3181 0.3413 0.4045 

2 WTM_M1 (β=1) 0.3202 0.3445 0.4076 

3 WTM_M1 0.3310 0.3566 0.4232 

4 WTM_M1 (β=0) 0.3210 0.3512 0.4211 

5 WTM_H 0.3296 0.3554 0.4215 

Table 4: Ranking results on the evaluation data set, where only 

the title field of each document is used.    

 

 
Figure 3: Variations in (top) NDCG@3 score as a function of the 

number of the EM iterations for word translation model training. 

Document ranking is performed by the word translation based 

retrieval model, parameterized by Equations (5) to (9). 

D: … cold home remedies … title 

S: [“cold”, “home remedies”] segmentation 

T: [“stuffy nose”, “home remedy”] translation 

M: (1  2, 2 1) permutation 

Q: “home remedy stuffy nose” query 

Figure 4: Example demonstrating the generative procedure 

behind the phrase-based translation model. 
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phrase (wi, qi). Once the word alignment is fixed, the final permu-

tation is uniquely determined, so we can safely discard that factor. 

Thus we rewrite Equation (11) as 

 ( | )     
(     ) 
 (      )

 ( |   ) (15) 

For the sole remaining factor P(T|D, S), we make the assump-

tion that a segmented query T = q1… qK is generated from left to 

right by translating each phrase w1…wK independently: 

 ( |   )  ∏  (  |  )
 
   , (16) 

where  (  |  ) is a phrase translation probability, the estimation 

of which will be described in Section 6.1.  

The phrase-based query translation probability  ( | ), de-

fined by Equations (10) to (16), can be efficiently computed by 

using a dynamic programming approach, similar to the monotone 

decoding algorithm described in [22].  Let the quantity    be the 

total probability of a sequence of query phrases covering the first j 

query terms.   ( | ) can be calculated using the following recur-

sion: 

1. Initialization:       (17) 

2. Induction: 
   ∑ {    ( |  )}

               

 (18) 

3. Total:  ( | )     (19) 

6.1 Learning Translation Probabilities 

This section describes the way  ( |  ) is estimated. We follow a 

method commonly used in SMT [23, 27] to extract bilingual 

phrases and estimate their translation probabilities. 

First, we learn two word translation models using the EM 

training of Model 1 on query-title pairs in two directions: One is 

from query to title and the other from title to query.  We then per-

form Viterbi word alignment in each direction according to Equa-

tions (12) to (14).  The two alignments are combined as follows: 

we start from the intersection of the two alignments, and gradually 

include more alignment links according to a set of heuristic rules 

described in [27].  Finally, the bilingual phrases that are consistent 

with the word alignment are extracted using the heuristics pro-

posed in [27].  The maximum phrase length is five in our experi-

ments.  The toy example shown in Figure 5 illustrates the bilin-

gual phrases we can generate by this process. 

Given the collected bilingual phrases, the phrase translation 

probability is estimated using relative counts: 

 ( | )  
 (   )

 ( )
 (20) 

where  (   ) is the number of times that w is aligned to q in 

training data.  The estimation of Equation (20) suffers the data 

sparseness problem.  Therefore, we also estimate the so-called 

lexical weight [23] as a smoothed version of the phrase translation 

probability. Let  ( | ) be the word translation probability de-

scribed in Section 5.1, and A the word alignment between the 

query term position i = 1…|q| and the title word position j = 

1…|w|, then the lexical weight, denoted by   ( |   ), is com-

puted as 

  ( |   )  ∏
 

|* |(   )   +|
∑  (  |  )

 (   )  

| |

   

 (21) 

A sample of the resulting phrase translation probabilities is 

shown in Figure 6, where a title phrase is shown together with the 

ten most probable query phrases that it will translate into accord-

ing to the phrase model.  Comparing to the word translation sam-

ple in Figure 2, phrases lead to a set of less ambiguous, more pre-

cise translations.  For example, the term “vista”, used alone, most 

likely refers to the Microsoft operating system, while in the query 

“sierra vista” it has a very different meaning. 

6.2 Ranking Documents 

Similar to the case of the word translation model, directly using 

the phrase-based query translation model, computed in Equations 

(17) to (19), to rank documents does not perform well.  Unlike the 

word-based translation model, the phrase translation model cannot 

be interpolated with a unigram language model.  We therefore 

resort to the linear ranking model framework for IR in which dif-

ferent models are incorporated as features [15].  

The linear ranking model assumes a set of M features,    for 

m = 1…M. Each feature is an arbitrary function that maps (Q,D) 

to a real value,  (   )   .  The model has M parameters,    

for m = 1…M, each for one feature function. The relevance score 

of a document D of a query Q is calculated as 

     (   )  ∑     (   )

 

   

 (22) 

Because NDCG is used to measure the quality of the retrieval 

system in this study, we optimize ’s for NDCG directly using the 

Powell Search algorithm [29] via cross-validation.  

The features used in the linear ranking model are as follows. 

 A B C D E F  a A 

a #       adc ABCD 

d    #    d D 

c   #     dc CD 

f      #  dcf CDEF 

        c C 

        f F 

Figure 5: Toy example of (left) a word alignment between two 

strings "adcf" and "ABCDEF"; and (right) the bilingual phrases 

containing up to five words that are consistent with the word 

alignment  

q  ( | ) q  ( | ) 
titanic 0.43195 sierra vista 0.61717 

rms titanic 0.03793 sv 0.02260 

titanic sank 0.02114 vista 0.01678 

titanic sinking 0.01695 sierra 0.01581 

titanic survivors 0.01537 az 0.00417 

titanic ship 0.01112 bella vista 0.00320 

titanic sunk 0.00960 arizona 0.00223 

titanic pictures 0.00593 dominoes sierra 

vista 

0.00221 

titanic exhibit 0.00540 dominos sierra vista 0.00221 

ship titanic 0.00383 meadows 0.00029 

w = rms titanic w = sierra vista 

Figure 6: Sample phrase translation probabilities learned from 

the word-aligned query-title pairs. 



 Phrase translation feature:    (     )      ( | ),  
where  ( | ) is computed by Equations (17) to (19), and 

the phrase translation probability  ( |  ) is estimated using 

Equation (20). 

 Lexical weight feature:    (     )      ( | ), where 

 ( | )  is computed by Equations (17) to (19), and the 

phrase translation probability is the computed as lexical 

weight according to Equation (21). 

 Phrase alignment feature:    (     )  ∑ |    
   

      |, where B is a set of K bilingual phrases,    is the 

start position of the title phrase that was translated into the 

kth query phrase, and      is the end position of the title 

phrase that was translated into the (k-1)th query phrase.  The 

feature, inspired by the distortion model in SMT [23], mod-

els the degree to which the query phrases are reordered. For 

all possible B, we only compute the feature value according 

to the Viterbi              (   | ) . 

We find B* using the Viterbi algorithm, which is almost iden-

tical to the dynamic programming recursion of Equations 

(17) to (19), except that the sum operator in Equation (18) is 

replaced with the max operator. 

 Unaligned word penalty feature     (     ) is defined 

as the ratio between the number of unaligned query terms 

and the total number of query terms. 

 Language model feature:    (   )       ( | ), where 

  ( | ) is the unigram model with Jelinek-Mercer smooth-

ing, i.e., defined by Equations (5) to (9), with    .  

 Word translation feature:    (   )      ( | )  where 

 ( | ) is the word translation model defined by Equation 

(1), where the word translation probability is estimated with 

the EM training of Model 1. 

6.3 Results and Discussions 

Table 5 shows the main results of different phrase translation 

based retrieval models.  Row 1 and Row 2 are models described 

in Table 4, and are listed here for comparison.  Rows 3 to 5 are 

the linear ranking models using all the features described in Sec-

tion 6.2, with different maximum phrase lengths, used in the two 

phrase translation features, fPT and fLW. The results show that (1) 

the phrase-based translation model leads to significant improve-

ment (Row 3 vs. Row 2); and (2) using longer phrases in the 

phrase-based translation models does not seem to produce signifi-

cantly better ranking results (Row 3 vs. Rows 4 and 5 is not statis-

tically significant).   

To investigate the impact of the phrase length on ranking in 

more detail, we trained a series of linear ranking models that only 

use the two phrase translation features, i.e., fPT and fLW.  The re-

sults in Table 6 show that longer phrases do yield some visible 

improvement up to the maximum length of five.  This may sug-

gest that some properties captured by longer phrases are also cap-

tured by other features. However, it will still be instructive, as 

future work, to explore the methods of preserving the improve-

ment generated by longer phrases when more features are incor-

porated.  

 Table 7 shows the phrase length distributions in queries and 

titles. The phrases are detected using the Viterbi algorithm with a 

maximum length of 5. It is interesting to see that while the aver-

age length of titles is much larger than that of queries, the phrases 

detected in queries are longer than the phrases in titles. This im-

plies that many long query phrases are translated from short title 

phrases. There are two possible interpretations. First, titles are 

longer than queries because a title is supposed to be a summary of 

a web document which may cover multiple topics whereas a user 

query usually focuses on only one particular topic of the docu-

ment. Second, title language is more formal and concise whereas 

query language is more causal and wordy. So, for a specific topic, 

the description in the title (title phrase) is usually more well-

formed and concise than that in queries, as illustrated by the ex-

amples in Table 8.  

Analyzing the example bi-phrases extracted from titles and 

queries shown in Table 8 also helps us understand how the 

phrase-based translation model impacts retrieval results. The 

phrase model improves the effectiveness of retrieval from two 

aspects. First, it matches multi-word phrases in titles and queries 

(e.g., #1, #5, #6 and #7 query-title pairs in Table 8), thus reduces 

the ambiguities by capturing contextual information. Comparing 

with the previous approaches that are based on phrase retrieval 

models [10, 30] and higher-order n-gram models [31, 14], the 

phrase-based translation model provides an alternative, and in 

many cases more effective approach to dealing with the polysemy 

issue. Second, the phrase model is able to identify the phrase pairs 

that consist of different words but are semantically similar (e.g., 

#2, #3, #4 and #6 query-title pairs). We notice that these pairs 

cannot be easily captured by a word-based translation model. 

Thus, the phrase model is more effective than the word model in 

bridging the lexical gap between queries and documents. In sum-

mary, the results justify that the phrase-based translation model 

provides a unified solution to dealing with both the synonymy and 

the polysemy issues, as we claim in the introductory section of 

this paper. 

# Models NDCG@1 NDCG@3 NDCG@10 

1 BM25 0.3181 0.3413 0.4045 

2 WTM_M1 0.3310 0.3566 0.4232 

3 PTM (l=5) 0.3355 0.3605 0.4254 

4 PTM (l=3) 0.3349 0.3602 0.4253 

5 PTM (l=2) 0.3347 0.3603 0.4252 

Table 5: Ranking results on the evaluation data set, where only 

the title field of each document is used. PTM is the linear ranking 

model of Equation (22), where all the features, including the two 

phrase translation model features fPT and fLW (with different max-

imum phrase length, specified by l), are incorporated. 

 

Phrase lengths NDCG@1 NDCG@3 NDCG@10 

1 0.2966 0.3213 0.3861 

2 0.2981 0.3248 0.3906 

3 0.2996 0.3260 0.3917 

4 0.3018 0.3278 0.3926 

5 0.3028 0.3287 0.3932 

Table 6: Ranking results on the evaluation data set, where only 

the title field of each document is used, using the linear ranking 

model of Equation (22) to which only two phrase translation mod-

el features fPT and fLW (with different phrase lengths) are incorpo-

rated.  

 

Phrase length Query phrases Title phrases 

1 2,522,394  4,075,367 

2 836,943   332,250 

3 539,539   68,613 

4 322,294   13,177 

5 271,725   3,488 

Table 7: Length distributions of title phrases and query phrases 



# Queries Titles Bi-phrases 

1 canon d40 digital cameras nikon d 40 digital camera reviews yahoo shopping [canon d40 / nikon] [digital cameras / digital camera] 

2 jerlon hair products croda usa news and news releases [jerlon hair products / croda] 

3 jerlon hair products curlaway testimonials [jerlon hair products / curlaway] 

4 recipe zucchini nut bread cashew curry recipe 101 cookbooks [recipe / recipe] [zucchini nut bread / cashew] 

5 recipe zucchini nut bread bellypleasers cookbook free recipe zucchini nut 

bread 

[recipe / recipe] [zucchini / zucchini]  

[nut bread / nut bread] 

6 home remedy stuffy nose the best cold and flu home remedies [home remedy / home remedies] [stuffy nose / cold] 

7 washington tulip festival tulip festival komo news seattle washington 

younews trade 

[washington / washington] [tulip festival / tulip festival] 

8 cambridge high schools 

wisconsin 

cambridge elementary school cambridge wiscon-

sin wi school overview 

[cambridge / cambridge] [high schools / school]  

[wisconsin / wisconsin] 

Table 8: sample query/title pairs and the bi-phrases identified by the phrase-based translation model. 

We also analyze the queries where the phrase model has a 

negative impact. An example is shown in #8 in Table 8. The mod-

el maps “high schools” in D to “school” in Q, ignoring the fact 

that the “school” in Q is actually an “elementary school”. One 

possible reason is that the phrase model tries to learn bi-phrases 

that are most likely to be aligned without taking into account 

whether these phrases are reasonable in the monolingual context 

(i.e., in D and Q). Future improvement can be achieved by using 

an objective function in learning bi-phrases that takes into account 

both the likelihood of phrase alignment between D and Q, and the 

likelihood of monolingual phrase segmentation in D and Q. 

6.4 Comparison with Latent Variable Models 

This section compares the translation models with PLSA [17], one 

of the most studied latent variable models. Instead of building a 

full p.d.f. to probabilistically translate words in titles to words in 

queries, PLSA uses a factored generative model for word transla-

tion as  

 ( | )  ∑  ( | ) ( | )
 

  

where z is a vector of factors that mix to produce an observation 

[6]. The probabilities  ( | ) and  ( | ) are estimated using the 

EM algorithm on the query-title pairs derived from the click-

through data. Empirically, the derived factors, frequently called 

topics or aspects, form a representation in the latent semantic 

space. Therefore, PLSA takes a different approach than phrase 

models to enhance the word-based translation model. Whilst the 

phrase model reduces the translation ambiguities by capturing 

some context information, PLSA smoothes translation probabili-

ties among words occurring in similar context by capturing some 

semantic information. 

In our retrieval experiments, we mix the PLSA model with the 

unigram language model, and use the ranking function as 

 

  ( | )  ∏  ( | )

   

 (23) 

  ( | )    ( | )  (   )   ( | ) (24) 

   ( | )    ( | )  (   ) ∑    ( | ) ( | )

   

 
(25) 

   ( | )  ∑ ( |  ) (  | )

 

   

 
(26) 

Notice that this ranking function has a similar form to that of the 

word-based translation model in Equations (5) and (9). K in Equa-

tion (26) is the number of factors of PLSA. Setting K=1 reduces 

the PLSA to the word-based translation model. In our experiments, 

we built PLSA models with K = 20, 50, 100, 200, 300, 500, and 

found no significant difference in retrieval results when K ≥ 100. 

As shown in Table 9, similar to the case of word-based trans-

lation model, using PLSA alone does not produce good retrieval 

results (Row 3 vs. Row 4). When mixing with unigram model, 

PLSA outperforms the word-based translation model by signifi-

cant margins, but still slightly underperforms the phrase model. 

Since PLSA and phrase models use different strategies of improv-

ing word models, it will be interesting to explore how to combine 

their strengths. We leave it to future work. 

# Models NDCG@1 NDCG@3 NDCG@10 

1 WTM_M1 0.3310 0.3566 0.4232 

2 PTM (l=5) 0.3355 0.3605 0.4254 

3 PLSA (K=100) 0.3329 0.3592 0.4256 

4 PLSA (K=100, β=1) 0.3244 0.3505 0.4145 

Table 9: Comparison results of word, phrase translation models 

and PLSA, tested on the evaluation data set. 

 

7. CONCLUSIONS 

It has often been observed that search queries and Web documents 

are written in very different styles and with different vocabularies. 

In order to improve search results, it is important to bridge queries 

terms and document terms. Clickthrough data have been exploited 

for this purpose in several recent studies. In this paper, we extend 

the previous studies by developing a more general framework 

based on translation models and by extending noisy word-based 

translation to more precise phrase-based translation. This study 

shows that many techniques developed in SMT can be used for 

IR. 

Instead of using query and document body pairs to train trans-

lation models, we use query and document title pairs. This choice 

is motivated by the smaller language discrepancy that we ob-

served between queries and document titles. Two translation 

models are trained and integrated into the retrieval process: a 

word model and a phrase model. Our experimental results show 

that the translation models bring significant improvements to re-

trieval effectiveness.  In particular, the use of the phrase transla-

tion model can bring additional improvements over the word 

translation model.  This suggests the high potential of applying 

more sophisticated statistical machine translation techniques for 

improving Web search.  
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