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Congestion Location Detection:
Methodology, Algorithm, and Performance

Shao Liu, Mung Chiang, Mathias Jourdain, and Jin Li

Abstract—We address the following question in this study: Can
a network application detect not only the occurrence, but also
the location of congestion? Answering this question will not only
help the diagnostic of network failure and monitor server’s QoS,
but also help developers to engineer transport protocols with
more desirable congestion avoidance behavior. The paper answers
this question through new analytic results on the two underlying
technical difficulties: 1) synchronization effects of loss and delay
in TCP, and 2) distributed hypothesis testing using only local
loss and delay data. We present a practical Congestion Location
Detection (CLD) algorithm that effectively allows an end host
to distributively detect whether congestion happens in the local
access link or in more remote links. We validate the effectiveness
of CLD algorithm with extensive experiments.

I. INTRODUCTION

A. Motivations

Internet is a best effort network. A major cause of quality
degradation is network congestion, which can be caused by
lack of network resource or uneven distribution of traffic.
By detecting the occurrence of congestion, which is well
investigated in the literature and in practice, congestion control
can be applied to regulate the traffic entering into the Internet,
thus avoiding oversubscription of link capabilities. However,
if we can further detect the location of congestion, at least
to the degree of detecting whether congestion happens on a
local access link shared only by TCP sessions from end hosts
in the same premise (e.g., a home, an office, or a server farm),
or on a remote link shared by TCP sessions across multiple
premises, we could provide additional valuable functionalities.

For example, a network diagnostic module may use the
information to inform the user the location of congestion, thus
providing the user with valuable diagnostic information. If the
location of the congestion is local, the user may be able to
perform certain actions, e.g., shut down a bandwidth heavy
local application, to ease the congestion. If the location of the
congestion is remote, the user may decide not to perform any
action to ease the congestion.

As another example, a server that is capable of detecting the
location of congestion can more effectively monitor its QoS to
the end users and decide whether it will need to subscribe more
bandwidth from ISP. If most of the congestion location is at
remote link, the server’s ISP bandwidth is not a bottleneck to
its QoS. If, on the other hand, most of the congestion location
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is at local link, the server will instead consider subscribing to
more bandwidth from its ISP.

Congestion Location Detection (CLD) can also be used to
design transport protocols with desirable congestion avoidance
behavior. There are usually two types of Internet applica-
tions: 1) high-priority applications that are QoS-sensitive,
such as real-time media streaming, VoIP, instant messaging,
web browsing, and 2) low-priority applications that are QoS
insensitive, such as P2P file sharing, FTP file download, soft-
ware updates, and data backup application. Ideally, the second
category of applications can be served with a low-priority
transport protocol by end-to-end congestion control (e.g., TCP-
Nice [1], TCP-LP [2], BATS [3], BITS [4], 4CP [5]). In fact,
Windows OSes have already used BATS and Linux OSes
have already used TCP-LP for automatic software update.
These low-priority flows give up network bandwidth when
the network is congested, and benefit high-priority flows. An
issue that hinders the wide deployment of the low-priority
TCP protocols is that the low-priority flow gives up bandwidth
whenever the network is congested, no matter where the
congested link is. If the congested link is the local access link,
e.g., a DSL or cable modem link, the aggressive back-off of the
low-priority applications during congestion benefits the high-
priority applications of the same home. On the other hand,
if the congested link is a remote link, either in the Internet
core or at the server side, the back-off of the low-priority
applications only benefits high-priority flows competing for
that link, which are most probably flows from other users.
This altruistic behavior is not desirable for most low-priority
applications. One way to solve the incentive issue for low-
priority TCP deployment is to provide a mechanism that
detects the location of the congestion, or more specifically,
to determine whether the congested link is a local access link
(shared only by all flows from end hosts on the same premise)
or a remote link. The low priority TCP only needs to back off
when the congested link is local.

B. Challenges

While congestion avoidance and Congestion Occurrence
Detection (COD) is a popular topic in the literature, there is
virtually no rigorous results on CLD. Detecting the location
of congestion is a challenging problem due to the following
reasons:
• It is intractable to solve the CLD problem using tradi-

tional estimation and detection techniques, e.g., [6]. If
we think of it as a hypothesis testing problem, the possi-
ble locations of congestions form too many hypotheses,
each of which has to be evaluated through complicated
statistical analysis.
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• In practice, we cannot send many probing packets. Send-
ing a constant stream of probing packets causes too much
overhead. If we send probing packets after the occurrence
of congestion, it will lead to congestion collapse and
inaccurate location detection due to delay.

• Without router support, the only congestion related sig-
nals to end applications are packet losses and delays. If
packet losses were completely synchronized, i.e., all flows
passing a link see packet losses if the link is congested,
then this problem would have been trivial. In reality, the
packet loss pattern is partially synchronized [7]. There
has been no systematic characterization on the number
of flows seeing loss when the shared link is congested.

• Packet delay cannot give sufficient information on CLD,
either. Packet delay measurements are often very noisy
[8], and sometimes can be heavily polluted [9]. There
may be extreme or oscillatory delay samples within one
individual flow, and outliers among the delay statistics of
all flows.

Given the issues above, we solve a simplified CLD problem
statement: can an end host use only local loss and delay
information to detect if congestion happens at a local access
link or at a remote link? Even this binary detection problem is
challenging. Indeed, we can draw an analogy with the much
more extensively studied COD problem. In TCP, (1) events
such as 3 duplicated ACK packets imply packet loss, which
(2) in turn implies the occurrence of congestion (somewhere
in the network). Neither implication relationship is always
true, although the resulting TCP design has been working well
enough. In our attempt to solve the more difficult CLD prob-
lem, (1) we use the synchronization of loss and delay behaviors
across multiple TCP sessions in the area controlled by the
same local gateway to imply synchronization of congestion
across the sessions, which (2) in turn implies that congestion
happens close to the end host. Again, neither implication
relationships is always true. In fact, the “synchronization
events” in CLD is much more fuzzily defined than those in
COD, and the implication relationships are much harder to
quantify probabilistically in CLD than those in COD.

C. Contributions and Organization

There are two contributions in terms of methodologies: 1)
this is a comprehensive study of the synchronization behavior
of packet loss and delay among multiple TCP sessions, and
2) we have developed a distributed hypothesis testing theory
for TCP. These are important and under-explored problems
in their own right, and they together lead to the design of a
CLD algorithm using local packet loss and delay information.
Through both analytic results and extensive simulations, we
show that our CLD algorithm can effectively allow an end
host to distributively detect whether congestion happens at the
local access link or at the more remote link.

To highlight the proposed algorithm early on, we will first
introduce the CLD algorithm in Section II, before showing
how it was developed in the rest of the paper. We then quantify
the synchronization of flow loss events in Section III. Next,
we investigate the synchronization of delay increase, describe
the distributed hypothesis testing, justify the CLD parameter

configuration, and analyze the detection accuracy in IV. We
finally provide extensive ns-2 simulation results to test the
performance of our algorithm in Section V, and conclude this
paper in Section VI. Due to space limitation, all proofs of
analytical results can be found in the technical report [10].

II. THE CONGESTION LOCATION DETECTION ALGORITHM

The key ideas of CLD are as follows. Let there be multiple
TCP flows behind a certain local link, e.g., a home with
DSL or cable modem connection. Whenever a flow sees a
packet loss, we consider a congestion event occurred in the
network and trigger the CLD algorithm, which is based on
the following ideas: (1) If many flows “see” synchronized
congestion (as defined later this section), then the local link
is the congested link. This is because if the congested link
is remote, it is less likely that many flows from the same
host pass the same congested remote link and see congestion
synchronously, as it is unlikely for different remote links to
be congested at the same time. (2) If there is only a small
number of flows seeing congestion, we perform CLD based
on queueing delay patterns. If the local link is congested,
typically most flows will experience high delays at a similar
level. If the delay patterns satisfy the above conditions, we
declare that the congestion is local, otherwise, we consider the
congestion to be remote. Since the delay measurements tend
to be polluted with noise, we remove outlier samples when
computing delay statistics among all flows. If there are too
many outliers, it simply means that the queuing delay increases
differently among the flows, and this is an indication that the
congested link is remote.

A. CLD Algorithm

We now first describe the CLD algorithm, then take detailed
discussions afterwards. CLD periodically queries loss and
delay information of all TCP flows in the home, and group
upload and download flows in separate buckets, which gives
congestion location detection for uplink and downlink inde-
pendently. For either downlink or uplink, suppose one home
has altogether N TCP flows, indexed by i = 1, 2, · · · , N .
At each query, let Li be the total loss event number up till
now, and qi be the average queueing delay over the latest
query period, for flow i. If none of the flows sees an increase
in Li compared with the previous query, then there is no
congestion in the network during the last period. Otherwise,
we use the following three modules to detect congestion
location. The flow chart and the pseudo code of the CLD
algorithm described below are shown in Figure 1 and Figure 2,
respectively; and the parameters, counters and state variables
are summarized in Table I and Table II, respectively. The
reasons to choose the default parameters are explained in
Section III and IV.

1) Quick Detection (QD) Module: For each flow i, we
say it “sees” congestion if either it experiences packet losses,
or queuing delay qi is larger than a threshold. As shown in
Table II-A, we maintain four state variables, µ̂LC , µ̂RC , σ̂LC

and σ̂RC , which are estimations of the mean and standard
deviation of delays among N flows at one congestion event,
for local and remote congestions. The estimation mechanism is
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Fig. 1. Flow chart of the CLD algorithm.

Parameter κQD κlow κboth β g
Default Value 0.8 0.2 0.3 0.9 2/3/5

Used in module QD OIR OIR QD OIR
Discussed in section IV-C/D IV-B IV-B IV-D IV-B

TABLE I
SUMMARY OF CLD PARAMETER SETTINGS.

explained in Section IV-C. With these estimations, we set the
threshold to be β× µ̂LC , where β is a parameter with default
value of 0.9. If more than κLN flows “see” congestion, where
κL is a parameter with default value of 0.8, we detect local
congestion, update µ̂LC and σ̂LC , and the algorithm ends.
Otherwise, we enter the next module.

2) Outlier Identification and Removal (OIR) Module:
We use Hampel’s identifier to identify and remove outliers.
For details of the identifier, see Section IV-B. If the number
of the two-side outliers exceeds κbothN , where κboth is a
parameter with default value of 0.3, then the delay samples are
too diversified, and we consider the congestion to be remote.
Furthermore, if it is a local congestion, most delays should
have a large queueing delay, i.e., there should be no or very
few lower side outliers. If the number of lower side outliers
exceed κlowN , where κlow = 0.2 is a parameter, then there
are too many flows with low delay for the congestion to be
local. In either case, we detect remote congestion, update µ̂RC

and σ̂RC , and the algorithm ends. Otherwise, we enter the next
module.

3) Hypothesis Testing (HT) Module: We compute the
mean and standard deviation of the inlier samples, and denote
them by µq and σq , respectively. From hypothesis testing
analysis in Section IV-C, we check whether µq > α1

and µq/σq > α2

√
(N − 1)/N , where α1 and α2 are two

thresholds that are functions of µ̂LC , µ̂RC , σ̂LC and σ̂RC . For
detailed relationship, see equation (21) or Figure 2. If both
conditions satisfy, then the queueing delays of all inliers are

Queried Counters Estimated Statistics/State Variables
Name Li qi µ̂LC µ̂RC σ̂LC σ̂RC

Meaning Loss Delay Estimation of mean and std of {qi,∀i}
for local and remote congestion

Module QD ALL QD+HT HT HT HT
Section III IV IV-C

TABLE II
SUMMARY OF COUNTERS AND STATE VARIABLES OF CLD ALGORITHM.

Congestion Location Detection Algorithm

Parameters: κQD = 0.8, κlow = 0.2, κboth = 0.3, β = 0.9,

g = 5 if N ≤ 5, g = 3 if 5 < N ≤ 10, and g = 2 otherwise.

Input: ∆Li, qi, ∀i = 1, 2, · · ·N .

State Variables: µ̂LC , µ̂RC , σ̂LC , σ̂RC .

if ∆Li = 0,∀i = 1, 2, · · · , N
Output: “No Congestion”.
goto :END

end if
if N = 1

Output: “Congestion, But No Location Detection”.
goto :END

end if
Enter Quick Detection Module:
Count =

∑N
i=1 1(∆Li>0 or qi>βµ̂LC)

if Count > κQDN
Output: “Local Congestion”. Update µ̂LC and σ̂LC .
goto :END

end if
Enter Outlier Identifier Module:
med ← median(qi, i ∈ 1, · · ·N)
mad ← median(|qi −med|, i ∈ 1, · · ·N)/0.6745

OL ←
∑N

i=1 1qi<med−g×mad

OU ← ∑N
i=1 1qi>med+g×mad

if OL > κlowN or OL + OU > κbothN
Output: “Remote Congestion”. Update µ̂RC and σ̂RC .
goto :END

end if
Enter Hypothesis Testing Module:
µq ← mean(qi : qi ∈ [med− g ×mad, med + g ×mad])
σq ← std(qi : qi ∈ [med− g ×mad, med + g ×mad])

α1 ← 1
2
(µ̂LC + µ̂RC) and α2 ← 1

2

(
µ̂LC
σ̂LC

+ µ̂RC
σ̂RC

)

if µq > α1 and µq/σq > α2

Output: “Local Congestion”. Update µ̂LC and σ̂LC .
else

Output: “Remote Congestion”. Update µ̂RC and σ̂RC .
end if
:END

Fig. 2. Pseudo code for the Congestion Location Detection Algorithm.
The mechanism of updating µ̂LC , σ̂LC , µ̂RC and σ̂RC is explained
in Section IV-C.

sufficiently large and close, which we detect local congestion,
and update µ̂LC and σ̂LC . Otherwise, we detect remote
congestion, and update µ̂RC and σ̂RC .

B. Further Discussions

The query of loss and delay can be done by kernel level
modifications, or can be obtained through the existing TCP-
E-STATS-MIB (Extended Statistics Management Information
Base) module [11]. The query is straight forward for upload
bucket, as the home users are senders of these flows. For
download bucket, the home users are receivers of these flows,
and we can use the mechanism in [12], which uses out of
order packet arrival to detect loss and estimates window size
to estimate delay. For each bucket, the loss and delay are only
acquired through local information, so CLD is a one-sided
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algorithm that does not need sender and receiver cooperation.
If there are multiple machines in one home, and they use

Ethernet or WiFi to share one access link, all machines may
broadcast their loss and delay counters periodically, and one
delegate machine may run CLD algorithm and broadcasts
the detection results to all other machines. If not all TCP
flow information can be collected from all machines, running
CLD based on a subset of flows still works, as long as we
collect enough number of flows: from our simulations, the
performance of CLD is sufficiently good if the number of
collected TCP flows is larger than 4.

One query period lasts 0.1 second by default (a longer query
period is also allowed). It is possible that one congestion event
spans over multiple consecutive query periods. If that occurs,
CLD will combine the statistics over all these consecutive
query periods and generate one single set of loss and delay
counters. Obviously, the more frequent CLD queries, the more
accurate and the quicker the detection.

It is also possible that a query period is much longer than
the duration of a congestion event, and packet loss occurs
at the very beginning of this query period. If that occurs,
most delay samples are taken after the congestion is alleviated,
and the moving average q will be much less than the actual
queueing delay caused by this congestion event. To avoid such
underestimation, once we see loss event spanning over only
one query period, we compare the average delays of the current
and previous query periods, and set the delay counter to be
the maximum of the two.

III. SYNCHRONIZATION OF PACKET LOSS

We now summarize the development of CLD algorithm,
study the parameter configuration, and analyze the accuracy
of detection. We focus on packet loss in this section, and
will study delay in Section IV. The main analytical results
are summarized in Table III.

Packet loss is used in the Quick Detection Module. If most
flows see congestion either by packet loss or very large delay,
local congestion is detected. To study the parameter setting
of κQD and analyze the false local detection probabilities, we
need to answer the following problem on the synchronization
level of packet losses: assume a link shared by N TCP flows
is congested, and let H be the number of flows that experience
a loss event (one or more packet losses from this congestion),
what is the distribution of H?

Suppose during one congestion, altogether M packets are
dropped at the link. To derive the distribution of H , we must
know the distribution of M first. Therefore, the synchroniza-
tion problem is divided to the following two subproblems: 1)
What is the distribution of M? and 2) what is the distribution
of H after we know the distribution of M? We study the two
subproblems one by one.

A. Total Number of Dropped Packets (M )

1) Homogeneous RTT Users: Consider a link with buffer
size B and capacity C, shared by N users with homogeneous
RTT T = D+q, where D and q are propagation and queueing
delays, respectively. Suppose flow i has quantized integer
value window size Wi, then totally there are

∑N
i=1 Wi packets

pushed into the network pipe, and we know that the network
pipe can hold at most CD + B packets. A congestion event
starts when the queue becomes full and the next arrival packet
has to be dropped1, and ends when a flow sees a loss event,
backs off its TCP window size, and the total arrival rate at the
link drops to below its capacity. We denote by Ta the length
of the congestion event duration, and by W−

i and W+
i the

window sizes of flow i right before and after the congestion
event, respectively. Taking randomness of packet arrival pro-
cess into consideration, we have E[

∑N
i=1 W−

i ] = CT + B.
If Ta does not exceed one RTT, then there are altogether∑N

i=1 W+
i packets pushed into the network pipe during the

congestion event, and we have M =
∑N

i=1 W+
i − (CT + B).

So E[M ] =
∑N

i=1 E[W+
i −W−

i ]. Since Wi is quantized, and
it increases by 1 per RTT, we have E[W+

i −W−
i |Ta] = Ta/T .

Therefore, we have the following proposition:

Proposition III.1. If a link shared by N homogeneous-RTT
flows is congested, then M , the number of packet dropped
at this congestion event, is a random variable, and E[M ] =
ηN , where η = 1 for Droptail, η = D/T = D/(D + q) =
CD/(CD + B) for Dropfront. Furthermore, Std(M) is also
proportional to N .

The reason why Dropfront queue reduces E[M ] is that, with
a packet at the front of queue dropped, its sender realizes the
congestion occurrence earlier than if the packet at the end of
queue is dropped, and the congestion event lasts a shorter time.
This advantage of Dropfront has been qualitatively stated in
[14], but not quantitatively studied before.

2) Heterogeneous RTT Users: We next consider heteroge-
neous users case, where user i has propagation delay Di and
RTT Ti. Suppose there are Bi packets in the buffer from flow
i, and flow i has throughput xi, then Wi = xiDi +Bi. During
each congestion event, we have

∑N
i=1 xi = C,

∑N
i=1 Bi = B,

q = B/C = Bi/xi, and Ti = Di + q, ∀i.
The key difference between heterogeneous and homoge-

neous RTT flows is that, a congestion event lasts a fixed
duration for homogeneous RTT case, but has a variable
length for heterogeneous RTT case: the length could be any
value between the minimum and maximum of all RTTs (or
propagation delays for Dropfront), depending on the packet
loss pattern. We make the following assumption on the packet
loss pattern [7]:

Assumption 1. The probability of each dropped packet be-
longs to flow i, is Bi/B = xi/C.

This assumption comes from the following reasoning: the
probability that a random packet in the queue or a random
incoming packet belongs to flow i is Bi/B = xi/C, so is the
probability for the dropped packet. From Assumption 1, we
can prove the following result:

Proposition III.2. For heterogeneous RTT case, we have
E[M ] = N for Droptail queue, and for Dropfront queue,

ηminN ≤ E[M ] ≤ ηmaxN , (1)

1This may not be true for Active Queue Management (AQM), like Random
Early Detection (RED). However, AQM and RED are in general not enabled
at Internet routers, especially in home routers [13].



5

where

ηmin := min
i

Di/Ti and ηmax := max
i

Di/Ti . (2)

Furthermore, Std(M) is also proportional to N .

From Proposition III.1 and III.2, both E[M ] and Std(M)
are always proportional to N , and we can write

E[M ] = ηN and Std(M) = γN , (3)

where η = 1 for Droptail queue, η = D/T for homogeneous
RTT with Dropfront, η ∈ [ηmin, ηmax] for heterogeneous
RTT with Dropfront, and ηmin and ηmax are defined in (2).
As for γ, its value cannot be analytically derived, but can
be empirically studied through simulations, and we know
that γ ¿ 1 for homogeneous RTT case and γ / 1 for
heterogeneous RTT case.
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Fig. 3. E[M ] and Std(M) as functions of N , B. Top row: homogeneous
RTT. Bottom row: heterogeneous RTT. Left column: Ave(M). Right column
Std(M). For all simulations, we vary N from 2 to 40, set C = 2N Mbps,
set B = 2bN packets and vary b from 2 to 20, set D1 = 60 Mbps, and set
DN = 140 ms for heterogeneous RTT case.

B. Number of Flows Seeing Loss (H)

We now study the mean and variance of H by first consider-
ing the conditional distribution of H given M , then extending
to unconditional distribution of H .

1) Conditional Mean and Variance of H given M : From
Assumption 1, we know that, at one particular congestion
event, the probability that each dropped packet belonging to
flow i is λi, where λi = Bi/B = xi/C and

∑N
i=1 λi = 1.

Define Ai = 1 if flow i sees packet losses, and Ai = 0
otherwise, then we have H =

∑N
i=1 Ai. Given M = m, we

have
Ai =

{
1 w.p. 1− (1− λi)m ,
0 w.p. (1− λi)m .

Let f(m) := E[H|M = m] and g(m) := V ar(H|M = m),
then it is easy to see that f(m) =

∑N
i=1 P (Ai = 1). For

variance, it is not that straight-forward: since
∑N

i=1 Ai ≥
1, Ai’s are not independent, and thus g(m) depends on

Cov(Ai, Aj),∀i 6= j. However, as N and m become large,
the probability that Ai = 0, ∀i is very small even if we
assume that they are independent. Therefore, we can ignore
the correlation of Ai’s, and assume g(m) ≈ ∑N

i=1 V ar(Ai).
We further define

{
ξmin := N mini λi = N mini xi/C ,
ξmax := N maxi λi = N maxi xi/C .

(4)

Proposition III.3. For the conditional expectation, we have

f(m) =
N∑

i=1

(1− (1− λi)m) , (5)

and

N(1− (1− ξmin

N
)m) ≤ f(m) ≤ N(1− (1− 1

N
)m) . (6)

Furthermore, for conditional variance, we have

g(m) ≈
N∑

i=1

(1− λi)m(1− (1− λi)m) . (7)

2) Unconditional Mean and Variance of H: For uncondi-
tional distribution, we have the following equations:





E[H] = E[f(M)] ,
V ar(H) = V ar(E[H|M ]) + E[V ar(H|M)]

= V ar(f(M)) + E[g(M)] .
(8)

From Jensen’s inequality, E[f(M)] ≤ f(E[M ]), since f(m)
is concave over m. As E[f(M)], V ar(f(M)) and E[g(M)]
appear in (8), and their exact formula are unknown, we choose
the Taylor expansions for the moments of functions of random
variables [15]. Then, we have the following approximations:




E[f(M)] ≈ f(E[M ]) + f ′′(E[M ])
2 V ar(M) ,

E[g(M)] ≈ g(E[M ]) + g′′(E[M ])
2 V ar(M) ,

V ar(f(M)) ≈ (f ′(E[M ]))2V ar(M) .

(9)

Plugging the results of Proposition III.1, Proposition III.2 and
Proposition III.3 to (8) and (9), we have the following result:

Proposition III.4. The unconditional expectation of H has
the following bounds:

N(1− e−ηξmin − γ2 e−η

2
) ≤ E[H] ≤ N(1− e−η) , (10)

where η and γ are defined in (3), and ξmin is defined in (4).
Numerically, for all case, we have the following upper bound:

E[H] ≤ N(1− e−1) ≈ 0.632N . (11)

and for the special homogeneous RTT flows and Droptail
queue case, we have the following lower bound:

E[H] ≥ 0.21N ≈ N(1− e−
1
2 − e−1

2
) (12)

Furthermore, for the standard deviation of H ,

Std(H)
Std(M)

' min(ξmine−ηξmin , ξmaxe−ηξmax) , (13)
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Section of Discussions III-A1 III-A2 III-B1 III-B2 IV-C IV-D

Results on E[M ] and Std(M) E[H|M ] and Std(H|M) E[H] and Std(H) Hypothesis Testing Detection Accuracy
Major Equations (3) (5-7) (10-14) (20)

TABLE III
SUMMARY OF ANALYTICAL RESULTS.

Homogeneous RTT, Droptail Homogenous RTT, Dropfront Heterogenous RTT, Droptail Heterogenous RTT, Dropfront
E[M ] N D

T
N N ηN , where mini

Di
Ti
≤ η ≤ maxi

Di
Ti

Std(M) γN , where γ ¿ 1 γN , where γ ¿ 1 γN , where γ / 1 γN , where γ / 1

E[H] 0.21N ≤ E[H] ≤ 0.632N see right, with α = 1 see right, with η = 1 N(1− eη/(2α) − e−η

2
) ≤ E[H] ≤ N(1− eη)

Std(H)
Std(M)

' 0.271 ' min( e
− η

2
2

, 2e−2η) see right, with η = 1 ' min( 1
2αmax

e
− η

2αmax , 2
αmin

e
− 2η

αmin )

TABLE IV
SUMMARY OF RESULTS ON M (NUMBER OF DROPPED PACKETS) AND H (NUMBER OF FLOWS SEEING CONGESTION).

where ξmin and ξmax are defined in (4). For the special case
of homogeneous RTT flows and Droptail queue, we have the
following numerical results:

Std(H) ' min( e−
1
2

2 , 2e−2)Std(M)
≈ 0.271Std(M) ≈ 0.271 · γ ·N .

(14)

The results on M and H from all above analysis are
summarized in Table IV, and αmin and αmax in Table IV
are defined as

αmax :=
1
N

N∑

j=1

Tmax

Tj
and αmin :=

1
N

N∑

j=1

Tmin

Tj
. (15)

Note that the most important implications of M and H
analysis are: 1) E[H] is proportional to N , which means that
we can get a rough idea on N if we do not know N but can
observe H; and 2) Std(H) is also proportional to N , and thus
Std(H)/E[H] does not diminish as N → ∞, which means
that if we only use loss to detect congestion location, the false
detection probability does not go to 0 as N →∞.

C. Simulation Validations on M and H Analysis

We have performed extensive ns-2 simulations to validate
our analysis of M and H , for both homogeneous and heteroge-
neous RTT users, and for both Droptail and Dropfront queue.
For our simulations, we choose a dumbbell network topology,
vary N from 2 to 50, vary C from 5 to 200 Mbps, vary B
from 10 to 1000 packets, vary background traffic volume, and
test both Droptail and Dropfront. For homogeneous RTT case,
we choose slightly different RTTs to introduce randomness
by setting Di = D1 + (i − 1) × 0.4, and vary D1 from
60 ms to 220 ms. For heterogeneous RTT case, we set
Di = D1 +(i−1)×DN/(N −1), and vary the ratio between
DN/D1 from 2 to 5. For each simulation corresponding to
a particular combination of N , C, B, D1, DN , background
traffic volume, and queueing policy, we run 400 seconds, and
for each congestion event, we measure M at the router and
measure H at the senders. After each simulation finishes, we
compute Ave(M), Std(M), Ave(H) and Std(H) over all
congestion events. Due to space limitation, we summarize
typical examples of M (total number of dropped packets)
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Fig. 4. E[H] and Std(H) as functions of N and B. Top row: homogeneous
RTT users. Bottom row: heterogeneous RTT users. Left column: E[M ]. Right
column: Std(M). Simulation setups are the same as those in Figure 3

and H (number of flows seeing loss) with regard to N (total
number of flows) in Figure 3 and 4, respectively.

The simulation results in these figures validate our analysis
on M and H: 1) E[M ], Std(M), E[H], and Std(H) are all
proportional to N ; 2) For Droptail queue, E[M ]/N ≈ 1, and
for Dropfront queue, E[M ]/N < 1, is a decreasing function
of buffer size B (large B means small D/T ratio), and is less
dependent on B as D becomes large; 3) E[H]/N is between
0.632 and 0.21; 4) Std(M) for heterogeneous RTT is much
larger than that of homogeneous RTT case; and 5) the ratio of
Std(H)/Std(M) is larger than 0.271, and this ratio is smaller
for heterogeneous RTT than that for homogeneous RTT. Other
simulations in [10] show that these properties hold for a
wide range of scenarios (combination of N,C, B, D1, DN ,
and queueing policy) and the distribution of M and H do
not depend on the volume of background traffic.
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IV. SYNCHRONIZATION OF DELAY INCREASE

A. Modeling on Queueing Delays

Traditional queueing theory results cannot be directly ap-
plied to TCP flows, as feedbacks play an important role and the
packet arrival process of TCP flows is unknown. There have
been a few modeling and measurement studies [8], [16], [17]
on TCP RTTs, and the following properties of TCP RTTs are
generally observed from measurement studies: 1) the variation
of TCP RTTs can be very large, where the variation can be
either inter-session, or intra-session; 2) there might be sessions
with abnormally large RTT samples. Therefore, in this paper,
we model the measured queueing delay to be sum of the real
queueing delay and a noise term. As the instantaneous noisy
delay samples fluctuate significantly, a common technique is
to compute the moving average of sample delays over a certain
period, like one RTT or one query period, and call this average
value the current delay. Assume that the distributions of delays
within one moving average window do not change and the
queueing delay sequence is Martingale, and assume that the
moving window contains sufficiently large number of samples.
From the Martingale Central Limit Theorem, we can model the
current delays to be Gaussian random variables: qi = ni + si,
where ni ∼ N (µn, σn) is a Gaussian noise, ni’s of all flows
are i.i.d., and si is the real queueing delay signal, which is zero
if the flow does not experience congestion, and si ∼ N (µi, σi)
otherwise. If one delay sample is abnormally large, there is a
third term beyond real queueing delay and Gaussian noise:
qi = ni + si + ωi, where ωi is a random variable whose
expectation is much larger than µi and µn. We assume that
during each query period, only a small proportion of flows
yields extreme values.

We now study how to use {qi,∀i} to detection congestion
location. Assume qi’s follow the same distribution, congestion
location detection becomes a hypothesis testing problem. As
we will show in Section IV-C, we can use the sample mean
and standard deviation to do hypothesis testing. However, qi’s
are not of the same distribution in general: if the congestion is
remote, some flows have si ∼ N (µi, σi) and some flows have
si = 0; even if the congestion is local, there might be extreme
values containing the extra term ωi. For local congestion,
we model the sample set to consist of inliers and outliers,
where the inliers have the same distribution and the outliers
have different distributions. With this model, we further divide
delay based CLD into two modules: Outlier Identification and
Removal (OIR) Module and Hypothesis Testing (HT) Module.

B. Outlier Identification and Removal

There has been a lot of algorithms for outlier identification
and removal, like Chauvenet’s criterion [18], Peirce’s criterion
[19], Hampel’s identifier [20], [21], etc. Major metrics for
outlier identifer are masking (miss) and swamping (false
positive) probabilities [21]. We choose Hampel’s identifier and
modify it to accommodate our special case that “swamping”
effect is not bad as long as the number of false positives is
not too large.

1) Hampel’s Identifier: We first briefly introduce Hampel’s
Identifer. Suppose we have N samples: XN = (X1, · · · , XN ).
Among them, N−k samples are regular (inliers) with common

distribution N (µ, σ), and k samples are irregular (outliers).
Neither (µ, σ) nor k is known. Let med(XN ) be the median of
XN , and mad(XN ) be the normalized median of the absolute
sample deviation from the median:

mad(XN ) :=
1

0.6745
median(|Xi −med(XN )|, ∀i) ,

where 1/0.6745 is a re-normalization factor to make the
MAD value Fisher consistent [20]. Using median and MAD to
estimate µ and σ is less sensitive to extreme outlier values than
using sample mean and standard deviation. Hampel’s identifier
states that: Xi is an outlier if

|Xi −med(XN )| ≥ g(N, αN )mad(XN ) , (16)

where g(N, αN ) is a critical value that is chosen such that
even if all the samples are inliers, the swamping probability is
upper bounded by α = 1−(1−αN )N . Here, α typically takes
values like 0.01, 0.05 or 0.1. The critical value g(N, αN ) can
be analytically derived for some special values of N and α,
or computed by Monte Carlo method in general [20], [21].

2) Our Modification: The standard Hampel’s identifier
takes the critical value to upper bound the swamping prob-
ability. For our problem, we actually allow the existence of
swamps (false outlier detection), as long as the number of
swamps is upper bounded. Recall our detection rule: we detect
remote congestion only if the number of two-side outliers
exceeds κbothN , or the number of lower-side outliers exceeds
κlowN . This suggests that we should take a different critical
value:

g(N,κboth, κlow, α) = max(g1(N, κboth, α), g2(N, κlow, α)) ,

where g1(·) and g2(·) are such that:




P
(
(
∑N

i=1 1|qi−med|>g1(N,κboth,α)mad) > κbothN
)

< α ,

P
(
(
∑N

i=1 1qi<med−g2(N,κlow,α)mad) > κlowN
)

< α .

(17)
We call the two probabilities in (17) “strong two-side swamp-
ing probability” and “strong lower-side swamping probabil-
ity”, respectively.

We have used Monte Carlo method to find g1(N, κboth, α)
and g2(N,κlow, α) curve for κboth = 0.3, κlow = 0.2, and
α = 0.01, 0.05, or 0.1. The results are shown in the left plot
of Figure 5. From the plot, we see that, if we set g = 5 for
N ≤ 5, g = 3 for 5 < N ≤ 10, and g = 2 otherwise, then
none of the two strong swamping probabilities exceed 0.05.
We further verify that conclusion by fixing g value by the
above rule, and use Monte Carlo method to find the two strong
swamping probabilities. The results are shown in the right plot
of Figure 5. From the analysis and the Monte Carlo results,
if the congested link is local, the false remote probability is
upper bounded by 0.05 for small N values and is negligible
for large N values.

C. Hypothesis Testing with Delay Distribution

We consider the outcome after the OIR Module. For local
congestion, extreme values are removed as outliers, and the
inliers have identical distribution N (µLC , σLC). For remote
congestion, suppose Nc flows are congested. If κbothN <
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N ≤ 5, g = 3 if 5 < N ≤ 10 and g = 2 otherwise.

Nc < (1 − κlow)N , then remote congestion is detected due
to many outliers. If Nc < κQDN , or Nc > (1 − κlow)N ,
then there are too many congested flows to distinguish remote
from local congestion: either it is detected as local congestion
at the QD module, or the non-congested samples are removed
as outliers, and the inliers yield a local congestion pattern. If
Nc < κbothN , then the large delay samples are removed, and
the inliers have identical distribution N (µn, σn). Therefore,
after the OIR Module, if Nc < κbothN , we translate the
location detection to the following binary hypotheses testing
problem:

H0 : qi ∼ N (µn, σn) , ∀i ∈ I ,
H1 : qi ∼ N (µLC , σLC) , ∀i ∈ I ,

(18)

where I is the set of inliers, H0 represents remote congestion,
and H1 represents local congestion.

This hypotheses testing is a composite problem, as both
θn := (µn, σn) and θLC := (µLC , σLC) are unknown. We
need to identify the parameter regions Γ0 and Γ1 under the
two hypothesis. We make the following assumption:

Assumption 2. µLC À µn, σn ∼ µn, and σLC ¿ µLC .

From Assumption 2, we have the following modeling on
the parameter region:

{
Γ1 = {µ > α1 and µ > α2σ} ,
Γ0 = {µ < α1 or µ < α2σ} ,

(19)

where α1 and α2 are constant threshold values.
It is easy to verify that there is no UMP solution for this

composite hypothesis testing problem, and the LMP approach
does not apply either. However, we can use the General
Likelihood Ratio (GLR) approach [6] and we have:

Proposition IV.1. Given a set of inlier delay samples {qi,∀i ∈
I}, denote by µq and σq the sample mean and standard
deviation. Then, the optimal detection rule from GLR with
equal cost of false local and remote detections is:





µq > α1 and µq

σq
>

√
N−1

N α2 ⇒ H1 ,

µq ≤ α1 or µq

σq
≤

√
N−1

N α2 ⇒ H0 .
(20)

With the detection rule at hand, we only need to find
the proper α1 and α2 values. For the first few congestion

events (initial stage), we set α1 to be half of the maximum
experienced queueing delay, and set α2 to be 1/2 (this number
comes from Assumption 2). For each congestion event, we
compute the mean of the queueing delays over the samples
between the 25% percentile and the 75% percentile, denote it
by µ̂k, compute the sample standard deviation over all inlier
samples, and denote it by σ̂k, where k indexes this congestion
event. As k goes by, we average µ̂k and σ̂k over all past local
(respectively, remote) congestion events to estimate µLC and
σLC (respectively, µn and σn), and denotes the estimations by
µ̂LC and σ̂LC (respectively, µ̂RC and σ̂RC). After we make
several local and congestion detections, we set

{
α1 = (µ̂LC + µ̂RC)/2 ,
α2 = (µ̂LC/σ̂LC + µ̂RC/σ̂RC)/2 .

(21)

D. Summary: CLD Accuracy
With characterizations of both loss and delay at hand, we

derive the following result on CLD accuracy:

Proposition IV.2. Both the false remote and false local
detection probabilities of the CLD algorithms approach 0
as N → ∞, as long as Nc < min(1 − κlow, κQD)N and
β > µn/µLC , where Nc is the number of congested flows for
a remote congestion, and µn and µLC are the expectations
of noise term and local link queueing delay. Furthermore, for
fixed N and parameter configuration, the accuracy improves
as B, the local link buffer size, increases.

Proposition IV.2 gives both the parameter configuration
guideline and asymptotical result on detection accuracy. From
our simulations, we see that the accuracy of CLD is insensitive
to parameter configurations as long as they are set within a
reasonable wide range.

V. NS-2 SIMULATIONS AND VALIDATION

We perform simulations for the following network scenario
illustrated in Figure 6. As shown in the left plot, the network
has three links L1, L2 and L3. There are N1 and N2 persistent
flows passing L1 + L2, and L1 + L3, respectively. There are
further 3 groups of M on-off flows passing the single link
L1, L2 and L3, and are turned on one at a time at slot 2, 4,
6, respectively. The link capacities and the receiver window
sizes are chosen such that, each link is not congested if its
corresponding on-off flows are off, and is congested if they
are on. For this setup, L1 mimics the home access local link,
as all flows pass L1, and L2 and L3 mimics remote links, as
only part of flows pass them.

Since the real-world delay samples are more noisy than
those in ns-2, to test robustness of the CLD algorithm, we
add noise (either Gaussian or uniformly distributed) into each
RTT measurement. For our simulations, we choose a variety
of values for N1 and N2, link capacities C, router buffer size
B, RTT T , noise level n, and check the performance of the
CLD algorithm. Due to space limitation, we summarize typical
examples in Figure 7. The left figure gives the detection result
for one simulation setup of N1 = N2 = 9 and n = 8 ms. In
this figure, positive values represent local congestion detection
and negative values represent remote detection, and CLD gives
correct detection except two out of hundreds of congestion
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Fig. 7. Examples of CLD Detection Result. (Left) Detection of one
simulation with N1 = N2 = 9 and noise level = 8 ms. The x-axis is time,
and y-axis gives the detection result: 0 for no congestion, positive values for
local congestion and negative values for remote congestion. Right: Detection
Result Vs Number of Congested Links. The x-axis is Nc and y-axis is the
probability of local and remote congestion corresponding to Nc congested
links. Since κboth = 0.3, as long as Nc < 8, the detection is very accurate.

events. The right figure gives a summary of detection as
Nc varies while N is fixed. From this figure, as long as
Nc < min(1−κlow, κQD)N = 0.8N , the detection is accurate
even with large noise: the false detection probability is less
than 1% when N1 6= N2, and is less than 5% if N1 = N2.
The performance degradation when N1 = N2 is because the
OIR Module is less likely to remove outliers for this special
case, and thus the hypothesis testing assumption of identical
inlier distributions no long holds. For the N1 = N2 = N/2
worst case, we vary N and n, and the CLD performance
is demonstrated in Figure 8, which shows that as long as
N1 = N2 > 2 and the noise level is less than the RTT level,
the false local or false remote probability is always less than
5%. Furthermore, the false detection probabilities increase as
noise level increases, and decrease as flow number increases.

Due to space constraint, more extensive simulation results
are shown in [10], with different network topology, different
combinations of N , C, B, T , noise distribution and magnitude,
RTT heterogeneity and queueing policies, and different param-
eter configurations. They show that our CLD algorithm gives
very accurate detection for a wide range of network topology
and scenarios, and is insensitive to parameter configurations
as long as they lie in a wide reasonable range.

VI. CONCLUSION AND FUTURE WORK

We proposed an end application Congestion Location De-
tection (CLD) algorithm, which may be used for network
diagnosis, server QoS monitoring, and low priority TCP.
We described the CLD algorithm in details, showed that it
can accurately detect whether the congested link is local or
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Fig. 8. Detection Result Vs Noise Level. The x-axis is the noise level, and
the y-axis gives false detection probabilities. (Left) False local detection prob-
ability. (Right) False remote detection probability. As long as N1 = N2 ≥ 3,
the detection is accurate.

remote, and validated our analysis with extensive simulations.
In developing the CLD algorithm, we also proved a series of
analytic results on two issues important in their own right:
synchronization of packet loss and delay increase across TCP
sessions and distributed hypothesis testing in TCP.
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