Cloud Faster: milliseconds matter

Albert Greenberg, Cheng Huang, Dave Maltz, Jitu Padhye, Parveen Patel, Murari Sridharan

Data Center Transport

Goals

1. High Throughput
 - Continuous data update
2. High Burst Tolerance
 - The Partition/Aggregate pattern is common
3. Low Latency (milliseconds matter)
 - Soft real time app’s run close to SLA's
 - Indeed, reduce network latency more time for the algorithms, and for better results

What Causes Problems?

- Flow interaction in shared memory switches cause packet loss and delay

Solution: Data Center TCP

- **Switch side**
 - Mark packets when queue occupancy exceeds a small threshold K.

DCTCP Achieves All Three Goals

1. High throughput
 - Creating multi-bit feedback at TCP sources
2. Low Latency (milliseconds matter)
 - Small buffer occupancies due to early and aggressive ECN marking
3. Burst tolerance
 - Sources react before packets are dropped
 - Large buffer headroom for bursts

Wide Area Transport

Goals

1. Minimize connection setup time
 - Loss of initial packets leads to very long delays
2. Minimize transfer delays
 - Short transactions take too long to ramp up
 - E.g., a search query result is only 17KB yet takes 4 RTTs
3. Faster loss recovery for clients
 - Clients experience high losses at the last mile
 - Recovery takes too long to complete

What Causes Problems?

- Slow ramp up even in best case
 - Total delay: n * X + Y
 - High overhead for short transactions
- Very long latencies if packets lost
 - If SYN or SYN-ACK is lost
 - 3 second timeout
 - If packet is lost, timeout is likely
 - Since window is small
 - Default minimum timeout is 200ms
 - Even if RTT to proxy is just 10ms!

Solution: Wide Area TCP Optimizations

- **Quick ramp up**
 - Increase ICW
 - Delay drops to 2 * X + Y
- **Quick loss repair and FEC**
 - Avoid loss penalties by duplicating small critical packets
 - Proactively retransmit SYN-ACK times three
 - Recover faster from losses
 - Reduce MinRTO to 100ms
 - Reduce Initial RTO to 500ms

Wide Area TCP Achieves All Three Goals

1. Faster connection setup
2. Lower transfer delays
3. Faster loss recovery

Web apps are built around short messages Reducing their latency improves user experience

- **Complementary Work**
 - Google’s SPDY protocol minimizes HTTP overhead
 - Wide Area TCP minimizes network transfer time – benefits all applications