Cone: Augmenting DHTsto Support Distributed Resource Discovery

Ranjita Bhagwan, George Varghese and Geoffrey M. Voelker
Department of Computer Science and Engineering
University of California, San Diego

1 Introduction

Together with the revolution in peer-to-peer content sharing,
as exemplified by Napster and Gnutella, there has been a
parallel revolution in peer-to-peer distributed computing as
exemplified by SETI@home and Javelin. As with content
sharing, P2P computing networks have evolved from central-
ized to distributed resource discovery. Thus a fundamental
problem in P2P computing is to scalably answer relational
queries of the form, “Find a resource of size X or higher,”
in distributed fashion. Networked server systems can also
benefit from such queries. For example, in high-bandwidth
content delivery networks it would be beneficial to have the
ability to locate a server with sufficient bandwidth to deliver
a large object. Another example is that of wide-area gaming
systems. If these systems supported these queries, players
would be able to locate and join a game server with mini-
mum load to ensure better response time.

Current P2P computing systems such as Javelin use flood-
ing together with heuristics to locate resources, reminiscent
of Gnutella’s content discovery methods. By contrast, recent
advances in P2P content discovery via DHTS have demon-
strated scalable O(log N) algorithms such as Chord [14],
Pastry [11], and CAN [10]. However, DHTs have been
largely limited to exact match queries, with some later work
(e.g., skip graphs [2]) generalizing to prefix match and sim-
ple range queries. As a result, it seems difficult to coerce
DHTs into scalably answering resource discovery queries.

A fundamental abstraction for resource discovery is to find
any resource above a given size. In terms of abstract data
structures, this function is provided by a Heap. Thus a fun-
damental question we pose in this paper is to ask whether
DHTs can be generalized beyond exact and range lookups to
also provide heap functionality. The answer to this question
has both theoretical and practical ramifications. On the prac-
tical side, a positive answer can offer similar benefits to P2P
distributed computing that scalable DHTSs such as Chord of-
fer to P2P content sharing. On the theoretical side, a positive
answer opens the door to investigating other distributed data
structures with richer abstract operations.

One can always approach the problem of providing a dis-
tributed heap from a clean slate, ignoring past work in scal-
able DHTSs. On the other hand, there can be considerable in-
tellectual leverage building on the techniques already devel-
oped within DHTs. Building on existing DHTS also has the
advantage of adding new functions (e.g., heap functionality)
without losing useful existing functions (e.g., exact match).

Thus in this paper we introduce the notion of augment-
ing DHTs: starting with a DHT such as Chord or CAN as
a substrate, we show how to augment the DHT with addi-
tional information to support the added functions. We are, of
course, strongly influenced by the analogy to augmenting bi-
nary trees, in which centralized binary trees [4] are enhanced
to provide rank operations by augmenting tree nodes with
auxiliary information such as subtree sizes. However, to the
best of our knowledge the general question of augmenting
distributed data structures has not been explored.

Our general strategy is to start with a Chord-like ring of
identifiers, and then to build a trie on these identifiers leading
to a structure that resembles a cone. We then augment the
trie to contain additional information (e.g., the max resource
value in the subtree).

The four main contributions of this paper are:

1. We suggest that both P2P Content Sharing and Com-
puting can benefit from a unified perspective via distributed
data structures with suitably chosen abstract operations.

2. We introduce the generic approach of augmenting dis-
tributed data structures. Our approach augments a DHT and
builds a prefix trie on node 1Ds and adds augmenting infor-
mation to nodes. The augmentation can use any aggregate
operator on keys (Max, Min, Sum, etc.).

3. We apply the augmentation approach to introduce a
new distributed data structure called a Cone. Cones support
a variety of queries to locate resources, such as locating a
resource of maximum size or a resource of at least a given
size . For a DHT with NV nodes and IDs of m bits, queries
and updates take an expected-case O(log V') and worst-case
O(m) messages.

4. We provide an analysis of the load-balancing proper-
ties of Cone with minimal assumptions made on the proba-
bility distribution of resources. Although Cone is essentially
a lightweight tree, we show that it has the same small load
imbalance factor as a DHT (i.e., log N). We also discuss
several techniques for balancing load in Cone, and evaluate
one via simulation.

The rest of the paper is structured as follows. Section 2
describes related work. In Section 3, we describe the Cone
data structure. In Section 4, we describe the Cone operations
and provide bounds on the number of messages used for the
operations. In Section 5, we calculate the load imbalance
factor in Cone and discuss several load-balancing techniques
for improving it. Finally, in Section 6 we summarize the
contributions of this paper and describe future work.

2 Related work

lamnitchi and Foster [7] propose heuristic solutions for de-
centralized distributed resource discovery, but heuristic solu-
tions may not scale well to a large number of resources. [1,
12, 13] modify DHTSs to do resource discovery by mapping
key ranges to different nodes in a DHT, with each node in
the DHT keeping track of all resources that fall within its key
range. These solutions have load-balancing problems since
it is possible that a large number of resources have the same
key value, and this could lead to overburdening some nodes
in the DHT. Also, node joins and leaves can cause a sub-
stantial amount of index copying and maintenance overhead.
Our approach circumvents these problems by not using dis-
tributed indices. Each host is responsible for maintaining
its own key value. Systems such as Astrolabe [15], PIER [6]
and INS/Twine [3] also maintain distributed indices, but their
concentration is not on supporting range-based queries and
heap functions.

SOMO [16] uses a tree-like overlay on DHTSs to perform
metadata gathering and dissemination. Cone is an augmen-
tation to DHTSs, and not a DHT overlay. Hence it does not
require DHT-based lookups for operations other than node
join and leave. Moreover, SOMO in its current form does
not support range-based searches or heap functions.

Skip graphs [2] and SkipNet [5] can provide range
searches which can be used for resource location. In con-
trast, Cone can augment almost any DHT and support any
aggregate operator on keys. It appears fundamentally diffi-
cult to modify skip graphs or SkipNet to also perform aggre-
gate operations on keys because there is no aggregating node
(as in a tree) for a level, but rather a list of nodes. Also, skip
graph operations in the worst case can take O(IV) messages,
while Cone operations require O(m) messages in the worst
case, where m is the number of bits in the DHT identifier.

3 Datastructure

As with a heap, the Cone data structure is a tree of nodes
with an aggregation key at the root of each subtree. The ag-
gregation key can be the result of any aggregation operation,
such as Max, Min, Sum, etc., but in the rest of this paper we
use the Max aggregate operator for clarity of exposition.

Cone differs from a standard heap in two ways, however.
First, the same physical node can be the root of all logical
subtrees to which it belongs. Second, the underlying tree is
a trie, and hence may not be perfectly balanced. We exploit
these differences to smoothly integrate Cone with DHTSs. In
this section, we describe the Cone data structure and how it
is integrated with a DHT.

Cone uses a simple binary tree-based data structure with
the following property. A non-leaf node in Cone is set by
using the following formula:

_ [left(N)

N= { right(N)

if left(N).key > right(N).key
otherwise

19

e

ORROIO
OO GO ©

Figure 1: A basic Conetree.

(19

Anon-leaf node is set if and only if at least one of its children
exists. This formula implies that if a node NV is at level [>
0 in the tree, it is one of its own children. Further, it also
implies that node NV exists in all levels 0, . . ., I of the tree.

Figure 1 shows a simple example of a Cone tree for finding
the node with the maximum key. At the lowest level, two
sibling leaf node keys are compared and the node with the
larger key is made the parent. Next, the siblings at the next
level are compared; the larger one becomes the parent, and
so on. Finally, the root is the node with the largest key.

We now describe how the Cone structure can be integrated
with a DHT. Assume the DHT uses an m-bit ID space. The
Cone data structure starts with a trie built over the ID space
of the DHT. The trie has m levels with the DHT forming the
lowest level. When a node joins the DHT, it also joins the
lowest level of Cone, i.e., nodes form the Cone tree leaves.
Their positions in Cone are determined by their (random)
IDs. This ensures that node joins occur at random points in
the Cone tree, which is essential for load-balancing. Cone
is a dynamic data structure and nodes can join and leave at
any time, just as they join and leave the DHT. Cone can also
support multiple simultaneous joins and leaves to the extent
that the DHT can.

Figure 2 shows an example of a 3-bit Cone/DHT struc-
ture. The shaded circles denote nodes that have joined the
network with the corresponding IDs; unshaded circles repre-
sent unassigned node IDs. The tables below each node show
the state used to maintain the Cone data structure.

For each node, the table consists of m entries, one for each
level of the tree. Each entry represents an edge in the tree,
and holds the 1P address (not the DHT ID) of the node which
is the immediate parent of the node at that level. If a node is
a parent to a different node at a given level, the table entry
for that level also contains the IP address of the child node.
A “-” represents an edge from a node to itself. For example,
node 1 has an edge to itself from level 0 to level 1. This is
because node 1 does not have an immediate sibling, so by
default it is its own parent. However, since node 1’s key (5)
is less than node 2’s key (10), at the second level node 1 is the
child of node 2. Hence node 1°s table holds the IP address of
node 2 in the second entry. The second table entry for node 2
also maintains the IP address of node 1, its immediate child:
node 2’s second-level table entry is “-, IP;”, denoting that
node 2 is its own parent and that its immediate child, other
than itself, is node 1.

level 3

Logical
represen-
tation

level 2

level 1
de ID

level 1 Physical
level 2 represen-
_ tation
level 3 APs P, D,
Table Table Table
for for for

node 1 node 2 node 5

Figure 2: Thisfi gure shows how a Cone treeis constructed from 3
nodes, starting from aDHT with a 3-hit ID space. The 3 nodes have
IDs1, 2 and 5, with key values 5, 10 and 6 respectively. Thetreeis
the logical representation, while the tables for each node show how
the data structure is physically maintained in distributed fashion.

4 Cone operations

In this section, we show how Cone can be maintained in a
completely distributed fashion using O(log V) state at each
node. Cone supports four main operations: join, leave, find
and change key. We describe these in the following subsec-
tions. Note that in the following figures, we have replaced
the table entries of form IP, to X for clarity.

41 Join

When a node R joins the network, it joins the DHT using the
DHT’s join operation. In addition, it also joins the Cone tree
by first using the DHT to find a node S with which it shares
the longest common prefix (its neighbour). Using S, R finds
the least common ancestor (LCA) in the tree that it shares
with S. This is the point at which R joins the Cone tree.
Figure 3 shows an example. A node with ID 0 (binary:000)
joins with key 20, as shown in Figure 3(a). Its neighbour,
with which it shares the longest common prefix, is node 1
(binary:001). By comparing prefixes, node 0 knows that its
LCA is at level 1 of the tree, or at the 00* position of the trie,
which in this case is node 1 itself.

Once the LCA is found, the “trickling” phase of the insert
begins. The new node trickles up starting from the LCA, and
its key determines the level up to which it trickles. Going
back to the example, the two nodes 0 and 1 compare their
keys and find that node 0 has a larger key (20) than node 1
(5). Hence the parent of the two nodes should now be node
0. Node 0 enters a “-, 1” in its first table entry, denoting
that it is its own immediate parent, and its immediate child
at level 1 is node 1. Likewise, node 1 needs to change its
table to reflect that its parent at level 1 is node 0. It therefore
replaces the “-” in its first table entry with “0”, as shown in
Figure 3(b).

At level 2, node 0 knows that it has to compare its key
with node 2 by referring to node 1’s table. In doing so node

Figure 4: The Cone leave operation.

0 finds that it has a higher key than node 2, and a change
similar to the previous step results in Figure 3(c). Similarly,
at the third level, node 0 takes over as the root since it has a
higher key than node 2. From the third-level table entry of
node 2, node O learns that node 5 was an immediate child of
node 2. As shown in Figure 3(d), it changes its own table to
make node 5 its child at level 3, and informs node 5 that it is
now its parent at level 3. Consequently, node 5 changes its
third-level table entry from 2 to 0. This concludes the join
operation.

Complexity: For a DHT with N nodes and IDs of m
bits, node joins consisting of the combination of finding the
least common ancestor and the trickling take an expected-
case O(log N) and worst-case O(m) messages.

4.2 Leaveoperation

When a node leaves the network unexpectedly, it can mo-
mentarily create up to m disconnected components of the
Cone tree. This is the worst case, which happens if the root

leaves. Consider the previous example tree shown in Fig-
ure 4 again. Suppose the root leaves, as shown in Figure 4(a).
This creates three disconnected subtrees of the Cone tree,
shown in Figure 4(b), which need to be reconnected. The
roots of these subtrees detect (by timeouts) that their parent
has left and make themselves their parents by changing their
tables. The stabilization of Cone after arbitrary failures re-
lies on the stabilization of the underlying DHT together with
a simple tree stabilization mechanism in which each node
periodically checks for and corrects (if necessary) its parent.
As shown in Figure 4(b), node 1 becomes its own parent at
level 1, node 2 becomes its own parent at level 2, and node 5
becomes its own parent at level 3.

The reconnect operation proceeds as follows. Each dis-
connected subtree root finds its parent using the DHT and
re-attaches to it. Node 1, which is the root of the subtree con-
sisting of nodes 0 (binary:000) and 1 (binary:001), or what
we call the “00* subtree”, needs to find its parent at level 2,
which is the node at position 0* in the trie. To do so, node
1, using the DHT, looks up any node in the neighbouring
01* subtree (either node “2” or “3”). In this case, node 1
discovers node 2 (binary:010). Node 1 then uses node 2’s
table to trace back to the node at the 0* position in the trie,
which in this case is node 2 itself. Figure 4(c) shows this
case. In this way node 1 can reconnect to node 2, its parent
at the second level, and the two nodes make appropriate ad-
justments to their table entries. Similarly, to reconnect to the
main tree, node 2 finds node 5 and becomes its child at level
3. In the example, however, node 5 has a smaller key than
node 2. Consequently, node 2 takes over as root after the
nodes make the required changes to their respective tables.

Complexity. The reconnect phase for every disconnected
subtree takes expected O(log N) messages. This is because
the DHT lookup to find a node in the closest subtree takes
O(log N) messages, and the trace-back to find the point of
reconnection also takes O(log N) messages. The expected
number of disconnected subtrees is O(log V). Hence the ex-
pected number of messages for handling an involuntary leave
is O((log N))?). However, the reconnect phases can be per-
formed in parallel so that the entire delete operation takes
as long as the longest reconnect phase, which is O(log N).
Note that if a node terminates gracefully, the leave operation
can be implemented using O(log N') messages.

4.3 Find operations

The Cone data structure supports finding a node containing
a resource greater than a specified threshold by starting from
any node in the DHT, and tracing up the tree until the search
reaches a node satisfying the given condition. At this point
the search terminates, requiring an expected-case O(log N)
messages. Note that Cone naturally supports finding the
largest value node, a traditional heap operation.

4.4 Changekey

Changing the key, or key update, can be gracefully handled
in Cone using expected O(log N) messages. A change in

key value of a node can cause it to be higher than that of its
parent in the Cone tree, or lower than its child. Thus the node
either trickles up (in the former case) or down (in the latter
case) until the Cone property is restored. Note that change
key (O(log N) messages) is much more efficient than node
deletion (O((log N)?) messages). This is desirable since we
expect key changes to be much more frequent (as resources
get used and freed) than involuntary node failures.

5 Load balancing

As in DHTs, some nodes in Cone (nodes at higher levels)
will experience more load than others. For DHTSs like Chord
the expected maximum imbalance in the number of items
stored by two random nodes is O(log N) [9]. Thus in Chord,
assuming uniform access to items, the ratio of the maximum
to the minimum load experienced by any two nodes is also
O(log N). We call this ratio the load imbalance factor.

In this section, we first describe two kinds of load on a
node in Cone. Next, we describe a novel analysis that shows
that despite the Cone data structure being a binary tree, the
load imbalance factor for both aspects of load-balancing is
the same as that of a DHT, i.e., O(log N). Moreover, the
analysis does not assume any specific distributions of re-
source values (keys) or query values. Finally, we outline
several load-balancing techniques that can be used to further
improve load balancing in Cone.

As with any system used for distributed resource discov-
ery, there are two aspects to load balancing in Cone:

Data traffic: The load of query satisfaction should be
shared equally by all nodes that are capable of satisfying
the query. Let Ny,...,Ng have key values greater than
g. Let Pp(IN1) be the probability that N; satisfies a query
find > ¢. ldeal data load balance is achieved when for
any s, j < k,Z 7é J?PD(NZ) = PD(NJ)

Control traffic: The amount of control traffic passing
through all nodes in the system should ideally be the same.
Let Po(V;) be the probability that, for some query, a con-
trol message is sent to node NN;. Ideal control load balance is
achieved when for any i, j, i # j, Po(IN;) = Pc(Nj).

In the following subsections we show that, in both data
and control load balancing, the imbalance factor is A = log
N, where N is the number of nodes in the system. In our
analysis, we assume that all nodes generate queries using the
same distribution, and have the same frequency of requests.
Note that the only assumption we make is that the resource
value probability distribution is the same as the query value
distribution. As a result, our results are equally valid for
resource distributions that range from a uniform distribution
to a power law.

Below, we assume for simplicity that the number of nodes
in the Cone tree, N, is equal to the total number of IDs al-
lowed in the DHT, which is 2™. However, the results gen-
eralize to provide identical results for the more general case
that the number of nodes is smaller than 2.

5.1 Datatraffi cload

The worst-case data traffic load imbalance occurs when two
nodes N; and N, can satisfy a given query, and one of the
nodes is the root (adding more nodes only improves data im-
balance). If Ny is the root and Vs is a leaf, the data imbal-
ance can be O(N). Fortunately, the analysis below shows
that randomization of node IDs makes this scenario rela-
tively rare.

The key to the analysis is the observation that the proba-
bility of the two nodes NV; and N, being in adjacent subtrees
each of height & is 1/2"*, and the ratio of the data traffic
load of the two nodes is (2" — 2¥)/2*. Hence, the expected
value of the data imbalance factor is:

2h—1+(1 2h —1 1 2h—2+ +1 2h—2h_1)
2h 2h 1 2h—1 2 T2 2k
1 1
= (1= g7) +(h—Sjoy) = h=log N

5.2 Control traffi c load

We now calculate the maximum control traffic imbalance
factor in the Cone tree. For this analysis, we assume that
the key value distribution is the same as the query value dis-
tribution, and that this distribution is continuous.

)\

«— 2kl _—»

Figure 5: Control traffi ¢ load imbalance in Cone.

Consider the Cone tree depicted in Figure 5. The proba-
bility that any query originating at node N; will reach its an-
cestor node N> at level k is equal to the probability that the
query value is larger than the key values of all 2¥~1 nodes
in the subtree of height £ — 1. This is the same as picking
2k=1 + 1 (where the extra one represents the query) samples
from a distribution, and estimating the probability that one
of them (i.e., the query) is the maximum. By symmetry any
sample could be the maximum with equal probability, and
hence this probability is 1/(2¥~1 + 1).

Next, the number of nodes from which queries can reach
N, at level & is 2¥—1. Recall that N, is one of its own chil-
dren (its right child in Figure 5 at level k), and that no re-
quests come to N at level & from the right subtree since
all request messages to it from this subtree are accounted
for at earlier levels. Hence the expected number of queries
reaching N at level k is that coming from only the left
subtree, which is 2¢=1 . 1/(2¥~1 4 1). Consequently, the
root of the Cone tree has to handle an expected number of

INote that because the distribution is continuous we can ignore the prob-
ability that the key value is equal to one of the 21 resource values.

Th_ (2F71/(2k=1 4+ 1)) < h query messages since the root
is present at every level of the tree. On the other hand, a node
that occupies only a leaf position in the Cone tree needs to
handle an expected value of 1 control message. Hence the
control imbalance factor is A = log N. We performed ex-
tensive simulations of the basic Cone data structure that con-
firmed the results of our analysis.

If the key distribution and the query distribution are dis-
tinct, we can no longer rely on symmetry and the results will
depend on the specific distributions chosen. However, the
basic framework of the analysis can still be reused.

5.3 Load balancing techniques

Finally, we discuss several techniques for improving the bal-
ance of load in Cone. In our analysis we have assumed that
the nodes pick IDs randomly and are therefore evenly dis-
tributed in the 1D space. This may not always be the case in
practice. For example, an adversary can take over some part
of the ID space and advertise very small resource values. In
this scenario, both control-traffic and data-traffic load can be
severely imbalanced.

One technique to reduce such imbalance is to use what we
call “random fingers”. In this technique, when a query is
made at a node Vy, it first checks if it satisfies the query. If
not, it tries f = log IV other random nodes in the DHT to see
if they satisfy the query. If not, the query is propagated up
the Cone tree.

600

) Qne‘ —
Cone+random fingers
500

400
300

200

Control imbalance factor

100

0 n
0 100 200 300 400 500 600
No. of nodes with minimum key value

Figure 6: Improvement in the control load imbalance factor by
using random fi ngers.

To evaluate the effect of random fingers, we simulated a
Cone network of 1024 nodes and skewed the distribution of
key values among nodes to induce load imbalance. To skew
key values, we randomly chose a subtree of a given size and
set the values of the nodes in that subtree to the minimum key
value. Figure 6 shows the effect of skewed key distributions
on control traffic load experienced by nodes in Cone as the
size of the minimum-key subtree increases. The dark curve
shows the control load imbalance factor for the original Cone
find operation, and the light curve shows the effect of using
f = 10 random fingers. From the graph we see that, as
the size of the subtree increases and the number of nodes
with minimum key value increases, the control imbalance
factor for basic Cone increases rapidly. However, the use of
random fingers significantly reduces the imbalance factor.

In addition to using random fingers, we intend to explore
several other load-balancing techniques:
Variable node degree: The analysis indicates that both data
and control load imbalance are proportional to tree height.
Thus the simplest technique to reduce imbalance further is to
use tries of higher radix (rather than the binary tries we used
so far). Note that higher node degrees also makes search
proportionately faster at the cost of making node joins and
leaves more expensive.
Caching: Nodes at lower levels can cache previous query
results to reduce control traffic on nodes at higher levels.
Virtual servers This technique is similar to the one men-
tioned in [9]. A node can create several virtual servers, the
number of which depends on its key value. Doing so poten-
tially improves the data load imbalance factor of the system.

6 Conclusion

In essence, Cone builds a tree over the random IDs assigned
to nodes within a DHT. Compared to recent distributed data
structures, this seems very straightforward. Yet there are
possibly unexpected aspects to Cone. First, consider build-
ing a tree. How should nodes find their positions in the tree?
Choosing a trie of given radix provides a deterministic an-
swer; further, the DHT provides the trie building facility by
which a node efficiently finds another node that shares the
same initial set of bits, while dealing with holes in the ID
space that appear in the trie.

Second, and more importantly, the standard arguments
against trees (compared to richer hypercube-like intercon-
nections such as Chord and Pastry) are issues of load balance
and fault tolerance. For load balance it may appear that all
requests must pass through the root, leading to a O(NV) load
imbalance. However, random assignment of resources to tree
leaves (regardless of resource values) is surprisingly power-
ful. Our analysis uses symmetry arguments to show that the
expected imbalance factor for data and control is O(log N),
regardless of the probability distribution of resources.

Similarly, Cone takes only logarithmic messages to add a
node or change its value, and log-square messages to delete
a node. By contrast, a simple augmentation of a richer data
structure such as Chord (e.g., in which every Chord arc is
augmented with the maximum of all nodes contained within
the arc) can lead to O(NV) deletion scenarios. Thus the very
simplicity of a tree seems helpful in enabling augmentation
with efficient update properties.

Finally, our paper raises the following broader research
questions. First, are there other interesting tasks besides
resource discovery that are useful in grid-based and P2P
distributed computing that can be solved in scalable fash-
ion? For example, a potentially useful aggregate operator
is to combine sets representing node software attributes to
support queries about node diversity for fault-tolerant sys-
tems [8]. Second, are there other interesting and useful aug-
mentations of distributed data structures besides the Max

operators mentioned in this paper, and can separate opera-
tors be combined economically without the overhead of a
separate Cone structure for each operator? Third, the load
balance analysis in this paper are dependent on the use of
the Max operator; can this analysis be generalized to other
aggregation operators? Fourth, what are the system issues
that arise when deploying in a real setting — for example,
what other heuristics (e.g., hysteresis, artificial lowering of
resource values for load control) will be needed?

To extend our evaluation beyond the simple analysis and
simulations done so far, we plan to experiment with a work-
ing prototype using publicly available DHT code as a base.
We intend to drive our experiments with models of resource
usage patterns that are relevant to distributed computing and
networks. We also intend to explore the interaction and ef-
ficient integration of multiple Cones built for different re-
sources and operators.

References

[1] A.Andrzejak and Z. Xu. Scalable, effi cient range queries for
grid information services. In Proc. of P2P 2002.

[2] J. Aspnes and G. Shah. Skip graphs. In Fourteenth Annual
ACM-S AM Symposium on Discrete Algorithms, 2003.

[3] M. Baazinska, H. Balakrishnan, and D. Karger. INS/Twine:
A scalable peer-to-peer architecture for intentional resource
discovery. In Proc. of Pervasive 2002, 2002.

[4] T.H.Cormen, C.E. Leiserson, and R. L. Rivest. Introduction
to Algorithms. McGraw-Hill Book Company, 1989.

[5] N.J. A.Harvey et al. SkipNet: A scalable overlay network
with practical locality properties. In Proc. of USITS 2003,
Seattle.

[6] R.Huebsch et al. Querying the internet with PIER. In Proc.
of VLDB 2003.

[7] A. lamnitchi and I. Foster. On fully decentralized resource
discovery in grid environments. In Intl. Workshop on Grid
Computing, 2001.

[8] F. Junquieraet al. Phoenix: Rebuilding from the ashes of an
internet catastrophe. In Proc. of HotOS 2003.

[9] A. Rao et al. Load balancing in structured P2P systems. In

Proc. of IPTPS2003.

S. Ratnasamy et a. A scalable content addressable network.

In Proc. of ACM SGCOMM, 2001.

A. 1. T. Rowstron and P. Druschel. Pastry: Scalable, decentral-

ized object location, and routing for large-scale peer-to-peer

systems. In Middleware, 2001.

C. Schmidt and M. Parashar. Flexible information discovery

in decentralized distributed systems. In Proc. of HPDC 2003,

Sesttle, WA.

D. Spence and T. Harris. Xenosearch: Distributed resource

discovery in the xenoserver open platform. In Proc. of HPDC

2003, Seattle, WA.

|. Stoicaet a. Chord: A scalable peer-to-peer lookup service

for internet applications. In Proc. of ACM S GCOMM, 2001.

R. van Renesse et al. Astrolabe: A robust and scalable tech-

nology for distributed systems monitoring, management, and

datamining. ACM Trans. on Computer Systems, 21(3), 2003.

Z. Zhang, S.-M. Shi, and J. Zhu. SOMO: Self-organized

metadata overlay for resource management in p2p dht. In

Proc. of IPTPS2003.

(10]

(11]

(12]

(13]

(14]

(19]

(16]

