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ABSTRACT
As the proliferation of compressed video sequences in MPEG
formats continues, the ability to perform video analysis directly
in the compressed domain becomes increasingly attractive. The
availability of motion vectors and pixel values in coded forms
can indirectly provide motion and intensity information for
object analysis, avoiding the need to re-perform motion
estimation. Albeit that the embedded motion field is
contaminated with matching modeling errors and measurement
errors, we will illustrate several motion field filtering and
correction techniques to combat with noisy motion fields. We
strike to reconstruct smooth true motion fields with a minimal
amount of decoding, reducing computational resource and time
requirement. In this paper, we describe the whole moving object
extraction system with the general framework and component
designs and show their effectiveness with two test sequences.

1. INTRODUCTION
The traditional motion segmentation can be categorized into two
types, “direct” and “indirect”. Direct methods operate on pixel
domain use intensity derivatives to perform motion segmentation
directly on the pixels, and indirect methods usually compute
optical flow field or motion field then use various clustering
methods to group motion into separate distinct groups. Wang and
Adelson[6] used a bottom-up approach to perform image layering
with motion. More people have refined their techniques [10].
Motion layering in image domain or optical flow domain, due to
the number of data points and computational complexity,
generally requires large computational resource and time
consumption.

In light of the proliferate use of compressed MPEG streams, it
increasingly makes video analysis in MPEG domain more
attractive. Compressed-domain video possesses several important
characteristics attractive for object analysis. First, motion
information stored in B, P frames are readily available without
incurring cost of re-estimation of motion field. Second, the pixels
have been decorrelated and coded in DCT forms, which can
indirectly yet readily relay information on image characteristics.
On the other hand, the signals are often contaminated with
mismatching and quantization errors. Comparably, motion
processing in uncompressed image-sequence domain is better
suited for accuracy and precision. However the computation in
uncompressed domain is often formidable for large video-
database. With the pros and cons of compressed domain
processing in mind, we establish our goal as to explore the use of

compressed and coded motion and pixel information in novel
ways to avoid excessive decoding and strike to improve layer-
separation accuracy. The bulk of the paper deals with how to
accurately estimate and smooth motion field using confident
measures based on DCT coefficients, and spatial/temporal
continuity of motion. Notice that we do not use any reconstructed
pixel-wise information. We try to avoid performing inverse DCT
transform, which is an expensive computing process. In a related
work in compressed domain, Meng and Chang[8] employ a block
count method to estimate parameters in a three-parameter affine
global motion model. Then they perform GMC (global motion
compensation) to get object mask and perform histogram
clustering to deal with multiple objects.

Since MPEG-1 and MPEG-2 encode the bitstream in terms of I-
frame, B-frame and P-frame. The B and P frames store the motion
information and residues after encoders’ motion compensation.
The I-frame has no motion values and it stores DCT information
of the original frame. Though I-frame provides no motion
information, we still could grasp how textured images are and
propagate that information to the B, P frames. Some observation
made through experiments are that B frames are much more
closely placed with their reference frames than P frames in
general, thus their motion are more closely matched with true
motion vectors. P-frames’ motion field, due to larger temporal
distance to reference frames, are less reliable. I-frames’ DCT
coefficients could give us the texture information needed to flag
motion reliability. The texture and color information from I-
frames can be further propagated into B and P frames by inverse
motion compensation.

In light of the limitation imposed by the MPEG domain, we opt to
build a system that can perform in near-real time and do not miss
objects much but could tolerate false alarms. We realize that the
motion fields in MPEG streams are quite prone to quantization
errors. On top of that, the encoding steps might have blocks intra-
coded or wrongly matched in low-textured areas. Thus, we hope
to build a robust system that would generate a confidence
measure on the motion field and accurately filter out errors and
recover true motion. The goal is to build a fast object
index/retrieval tool that makes compressed domain video stream
from an unstructured version to a more structured one and allow
other component technologies to form a more reliable object
filtering later on in a larger system.

This paper is organized as the following. In Section 2 we discuss
the overall design of the system as well as some key components.



In section 3, we present the results from several experiments
performed on “coast-guard” and “car” sequence. Finally we
summarize our approach and findings in section 4.

2. System and Component Design

2.1 Overall Flow

The system derives spatial, temporal, and directional confidence
measures from incoming stream, buffering three adjacent frames.
Based on the combined confidence score, we perform a hard cut
on low confident macroblock to reject those motion vectors that
are we believe are very likely to be mismatched by encoders. We
then perform one or more linear or non-linear motion filtering
operations to repair the holes occurred in the motion field [2][4].
Then the dominant motion is separated out by a recursive least
square algorithm to get an object mask as a byproduct. To identify
multiple objects, we perform k-means and/or EM clustering based
on spatial and motion features. We then track the objects by their
location and motion. The eventual goal of the system is to
generate the description of objects in a video including
appearance time, length, velocity and object shape characteristics.

Figure 1. the system diagram with coded stream going in and
structured object information coming out, while without pixel decoding.

In section 2.2, 2.3, 2.4, we describe how we measure spatial,
temporal and textural confidences and combine them into an
overall confidence indictor in 2.5. These are what the 2nd box on
top row in the system diagram constitutes. Then 2.6 describes
motion filtering process, and 2.7 describes how to use confidence
and filtered motion field to perform motion layer separation. 2.8
and 2.9 complete the last stages of the system.

2.2 Spatial Confidence Measure

Discontinuity in motion magnitude and direction comes from
several sources including object boundaries and/or motion
estimation failure. The magnitude and directional confidence
measure produces a spatial confidence score that reflects how
current motion vector violates the neighbor-hood smoothness
constraint. The measure maps motion discontinuity into a range
of confidence score of 0-100 as a probabilistic expression. The
same range is used for all other types of confidence measure.
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where Θ is the structural element set, either cross structure or 8-
neighbor one, that defines neighborhood motion vectors. N is the

normalization term, the number of elements in the set Θ. M is
motion magnitude and D is the motion direction in gradient.
Subscripts indicate block indices.

2.3 Temporal Confidence Measure

This confidence measure is derived from the temporal adjacent
neighborhood of a macroblock. This confidence measure comes
from temporal neighborhood of the current macroblock based on
the intuition that a ‘good’ motion vector should not have its
direction altered in a drastic manner. The confidence measure is
just a variation of the directional measure above.

2.4 Texture Confidence Measure

AC coefficients in a DCT transformed macroblock can indirectly
provide information on how textured the area of the image is.
Low-textured region tends to cause poor encoding matching
errors [3]. As B and P frames are residue coded, their texture
measures are propagated from the I frames by inverse motion
compensation. The resultant macroblock from performing inverse
motion compensation could overlap with four other 8x8 DCT
blocks in I-frame. We measure the average of the four
neighboring blocks’ energy as an approximation to true block
energy. Texture measure is then based on AC energy computed by
grouping AC DCT co-efficient into Horizontal, Vertical and
diagonal energy groups then computing the average of the three
energy [1].
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The top row of equation (2) shows the masking of H(horizontal),
V(vertical), and D(diagonal) DCT coefficients. The average
energy is the equal-weighted sum of the three. To map the average
energy to the confidence range, we employ an energy threshold
through experiments as the breakpoint for low and high texture.
Anything above the energy threshold is marked as 100%
confident on the high textured region. For energy value below the
threshold, we measure the ratio of the value to the threshold.
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where E is the average energy value, Et is a normalizing threshold.
A sample frame illustrates the texture relevance.

Figure 2. Left: original frame, Right: low texture regions marked out
by confidence processing, where darker regions indicate lower



confidence. The pavement and sky are correctly marked out as low
confidence regions.

2.5 Confidence Measures Combination

Combining the four confidence measures, two from the spatial
domain, one from temporal, and the last from texture, we form a
single score to express our overall confidence to the current
motion block. The combination is a weighted sum one, and the
weights in our implementation are set to be equally important.
Further experimentation is required to identify an empirically
optimal weighting function.

2.6 Motion Filtering

Spatial box filtering is performed with a box filter [4], and
optionally ensued by a median filter or morphological filter, or
neighboring max filter.

The temporal filter coefficients are determined from all three
frames’ confidence score, three frames’ frame types. First, we
normalize all motion vectors from B,P frames by their relative
distance to their reference frames. Then, the temporal filtering is
simply a 1-D weighted sum of motion vectors from the previous,
current and next frame’s corresponding macroblocks. Suppose
a,b,c being the previous, current, and next frame’s macroblocks,
and MV being their motion vectors. Then filtered MV is the
weighted sum of the three, weighted by each one’s confidence
score, and the frame type. The center frame’s weight is further
doubled to signify its importance.
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2.7 Global Motion Compensation

The GM estimation is a recursive least square method that
iteratively refines the object mask to estimate three affine
parameters, zoom, vertical and horizontal translations[5]. The
method is modified by injecting the confidence score for each
macroblock. The injection ensures that low confidence of motion
vector would contribute less to estimating global motion. The
byproduct of this process gives us an object mask where potential
multiple moving objects lie in. With no loss of generality, we
show the formulation of a four-parameter affine model.
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where (u,v) is the pixel location at next frame, while (x,y) is the
pixel location in current frame. a,b,c,d are the parameters for the
model. Let X=[a b c d] be the parameter vector, Y be the
observation matrix in next frame, H being the pixel coordinates in
pervious frame. We then express the model with equation (6).

NXHY += * (6)

where Y is a confidence-weighted observation column vector and
H is a confidence-weighted coordinate matrix(dimension is

2*number of macroblocks by 4, in this case). N is an additive
Gaussian modeling of encoding noise.
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(ui, vi) are coordinates of corresponding pixel at (xi,yi) in next
frame.

XLS=(Ht * H)-1 * Ht * Y then becomes the ML solution for the
particular model. The algorithm takes a generalized EM approach
to minimize the statistics of outlier motion vectors. Within every
iteration, it calculates the ML solution of X, and compensates the
motion field, decides outliers and then derives the statistics of
outliers by examining the residue components of the motion field.
The notion of pixel in the model is changed to macroblock in the
compressed domain. Moving block coordinates in H to Y and
performing a subtraction of (x,y) from (u,v) help to incorporate
motion vectors in the formulation.

2.8 Object Mask Filtering

With the temporal continuity constraint imposed on object
movement, we use temporal alignment of previous several frames’
object masks to filter out unwanted segmentation errors
introduced at each frame. A temporal median filter is applied to
the frames aligned by the motion at each frame.

2.9 Object Clustering

For frames that contain more than one object, we need to perform
clustering to separate object mask into multiple parts. One type of
clustering is performed first is the K-means clustering on spatial
adjacency alone. The clustering works well for objects that are
“far” apart. On top of this type of clustering, an EM clustering
incorporating the motion model closeness constraint is applied to
segment out the objects moving at different direction and speed.

3. Results
We tested the proposed system on two MPEG-2 sequences, “car”
and “coastguard”. The “coastguard” sequence has a horizontal
camera pan while the boat is moving across the water. The “car”
sequence has multiple motions including simultaneous panning
and zooming. There is a car moving from left to right and the
ground is very low-textured.

Frame70 of “car”, &mask Frame100 of “car” &mask



Frame126 “coastguard” Frame299, “coastguard”

Figure 3. sample frames from the sequence.

We construct three cases for testing. Case 1, there is no
confidence measure or any type of filtering applied to the
sequences. Case 2, the confidence measure is applied but no
filtering. Case 3, both confidence measure and filtering are
applied. The shape masks reduced to 16x16 blocks for all the
frames serve as the ground truth. We measure the mean and
standard deviation of the mean object block count, missing blocks
and false alarm blocks.

Case/

Sequence

Mean
Block
Count

Std
Block
Count

Mean
Block
Miss

Std
Block
Miss

Mean
False
Alarm

Std
False
Alarm

1/coast 50 18.2 10 9.6 11 11.9

2/coast 55 17.6 8 6.4 14 14.0

3/coast 56 4.5 3 1.8 9 3.7

1/car 83 50.5 10 3.6 67 52.4

2/car 83 49.8 10 3.5 71 53.0

3/car 90 25.2 4 2.8 70 25.8

In both sequences, we observe that the system has successfully
reduced the mean and standard deviation of the number of
missing blocks and false alarms. One trend is that the confidence
measure and subsequent rejection could cause higher false alarm
while reducing and keeping the missing block counts. This is due
to that the global motion estimation with confidence injection
assumes lower probability of the rejected region as background,
thus higher probability of the rejected region as foreground.
Further constraints on other features or a priori object knowledge
would significantly reduce the number of false alarms. As we said
before, we could tolerate false alarms while opting for lower
misses.

Current implementation of the system is not based on the mpeg
decoder but on motion and DCT extracts from the sequence. It
thus requires much unnecessary file I/O processing. The speed of
the current system is only bout 0.5 sec/frame for the CIF size on a
Pentium III 450Mhz. The achievable speed is expected to be
much faster when the system is transferred to be on top of a mpeg
decoder.

4. Summary

Compared with object analysis in conventional domain, the
compressed domain segmentation provides a tradeoff between
speed and accuracy. Faced with contaminated motion field and
transformed subset of pixel information, our proposed technique
and system aim to improve on motion layer separation accuracy
with minimal amount of decoding. We incorporate several
confidence measures in our object analysis to have some
probabilistic knowledge on reliability of encoded motion to their
‘true’ motion counterparts. The confidence measures then motion
filtering have straightforward computation. We believe, with
some careful implementation design, that the system could
achieve much faster speed than our current implementation. Work
ahead includes incorporating other features such as color into

object segmentation and tracking. A scheme for signaling heavy-
noised frames is also desirable to allow the system to skip those
frames.
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