
Understanding Network Connections October 30, 1995 1

Understanding Network Connections

Butler Lampson

There are lots of protocols for establishing connections (or equivalently, doing at-most-
once message delivery) across a network that can delay, reorder, duplicate and lose
packets. Most of the popular ones are based on three-way handshake, but some use
clocks or extra stable storage operations to reduce the number of messages required. It’s
hard to understand why the protocols work, and there are almost no correctness proofs;
even careful specifications are rare.

I will give a specification for at-most-once message delivery, an informal account of the
main problems an implementation must solve and the common features that most
implementations share, and outlines of proofs for three implementations. The
specifications and proofs based on Lamport’s methods for using abstraction functions to
understand concurrent systems, and I will say something about how his methods can be
applied to many other problems of practical interest.

Understanding Network Connections October 30, 1995 2

Understanding Network Connections

Butler Lampson

October 30, 1995

This is joint work with Nancy Lynch.

The errors in this talk are mine, however.

Understanding Network Connections October 30, 1995 3

Overview

Specify at-most-once message delivery.

Describe other features we want from an implementation

Give a framework for thinking about implementations.

Show how to prove correctness of an implementation.

Understanding Network Connections October 30, 1995 4

The Problem

Network Connections
or

Reliable At-Most-Once Messages

Messages are delivered in FIFO order.

A message is not delivered more than once.

A message is acked only if delivered.

A message or ack is lost only if it is being sent between crash and
recovery.

Understanding Network Connections October 30, 1995 5

Pragmatics

“Everything should be made as simple as possible, but no simpler.”
 A. Einstein

Make progress: regardless of crashes,
 if both ends stay up a waiting message is sent, and
 otherwise both parties become idle.

Idle at no cost: an idle agent
 has no state that changes for each message, and
 doesn’t send any packets.

Minimize stable storage operations — <<1 per message.

Use channels that are easy to implement:
 They may lose, duplicate, or reorder messages.

Understanding Network Connections October 30, 1995 6

Pragmatics

Some pragmatic issues we won’t discuss:
 Retransmission policy.
 Detecting failure of an attempt to send or ack, by timing it out.

Understanding Network Connections October 30, 1995 7

Describing a System

A system is defined by a safety and a liveness property:

Safety: nothing bad ever happens. Defined by a state machine:
A set of states. A state is a pair (external state, internal state)
A set of initial states.
A set of transitions from one state to another.

Liveness: something good eventually happens.

An action is a named set of transitions; actions partition the transitions.
For instance: put(m); get(m); crashs

A history is a possible sequence of actions, starting from an initial state.
The behavior of the system is the set of possible histories.

An external action is one in which the external state changes.
Correspondingly there are external histories and behaviors.

Understanding Network Connections October 30, 1995 8

Defining Actions

An action is:

A name, possibly with parameters: put(“red”).

A guard, a predicate on the state which must be true for this action
to be a possible transition: q � < > and i > 3.

An effect, changes in some of the state variables: i := i + 1.

The entire action is atomic.

Example:

get(m): m first on q take first from q, if q now empty
 and status = ? then status := true

name guard effect

Understanding Network Connections October 30, 1995 9

Specifying At-Most-Once Messages

State: q : sequence[M] := < >
 status : {true, false, ?} := true
 recs/r : Boolean := false

“Sender Actions” “Receiver Actions”

Name Guard Effect Name Guard Effect

put(m)** if ~recs then
 append m to q,
 status := ?

get(m)* ~recr, m first on q take first from q,
if q now empty
 and status = ? then
 status := true

getAck(b)* ~recs , status = b none

crashs** recs := true crashr** recr := true

recovers* recs recs := false recoverr* recr recr := false

lose recs or recr delete any element
 of q; if it’s the last
 then status := false
or status := false

Understanding Network Connections October 30, 1995 10

Histories for AMO Messages

Action q status Action q status Action q status

Initially < > true

put(“red”) <“red”> ?

get(“red”) < > true

getAck(true) < > true

put(“green”) <“green”> ?

crashr, lose <“green”> ? crashr, lose <“green”> false crashr, lose < > false

 ? getAck(false) <“green”> false getAck(false) < > false

put(“blue”) <“green”,
 “blue”>

? put(“blue”) <“green”,
“blue”>

? put(“blue”) <“blue”> ?

get(“green”) <“blue”> ? get(“green”) <“blue”> ?

get(“blue”) < > true

getAck(true) < > true

Understanding Network Connections October 30, 1995 11

Channels
State sr : multiset[P] := {} P = I × M rs : multiset[P] := {}
 or I × Bool

Name Guard Effect Name Guard Effect

sndsr(p) sr := sr ∪ {p} sndrs(p) rs := rs ∪ {p}

rcvsr(p) p ∈ sr sr := sr – {p} rcvrs(p) p ∈ rs rs := rs – {p}

losesr ∃ p | p ∈ sr sr := sr – {p} losers ∃ p | p ∈ rs rs := rs – {p}

Understanding Network Connections October 30, 1995 12

Stable Implementation
State: modes : {acked, send, rec} := acked moder : {idle, rcvd, ack} := idle
 goods : set[I] := I goodr : set[I] := I
 lasts : I lastr : I
 cur : M buf : sequence[M] := <>

Name Guard Effect Name Guard Effect

put(m)**

sndsr(i, m)*

mode = acked
and ∃ i | i ∈ good

mode = send,
i = last, m = cur

cur := m, last := i,
mode := send,
take i from good

none

rcvsr(i, m)
**

 if i ∈ good then
 mode := rcvd, take i from good,
 last := i, append m to buf
else if i = last and mode = idle
then mode := ack

get(m)* mode = rcvd,

m first on buf
take first from buf;
if it’s now empty,
mode := ack

rcvrs(i, –)
**

 if mode = send and
i = last then
 mode := acked

sndrs(i,
true)*

mode = ack,
i = last

mode := idle

getAck
(true)*

mode = acked none

Understanding Network Connections October 30, 1995 13

What Does “Implements” Mean?

Divide actions into external (marked * or **) and internal (unmarked).
 External actions change external state, internal ones don’t.

An external history is a history (sequence of actions) with all the
internal actions removed.

T implements S if

every external history of T is an external history of S, and

T’s liveness property implies S’s liveness property.

Understanding Network Connections October 30, 1995 14

Abstraction Functions

Suppose we have a function f from T’s state to S’s state such that:
f takes initial states to initial states;
f maps every transition of T to a sequence of transitions of S,
perhaps empty (i.e., the identity on S);

 f(t) S or skip → f(t')

 ↑ ↑

 t T → t'

f maps every external action of T to a sequence containing the same
external action of S and no other external actions.
f maps every internal action of T to a sequence of internal actions.

Then T implements S.
Why bother? Transitions are simpler than histories.

Understanding Network Connections October 30, 1995 15

Proof of Stable Implementation

Invariants

(1) goods ∩ ({lasts} ∪ ids(sr) ∪ ids(rs)) = {}

(2) goodr ∩ ids(rs) = {}

(3) goodr ⊇ goods

(4) ((i, m) ∈ sr and i ∈ goodr) implies m = cur

Abstraction function

q = <cur> if modes = send and lasts ∈ goodr
 < > otherwise
 + buf

status = ? if modes = send
 true otherwise

Understanding Network Connections October 30, 1995 16

Methodology for Proofs

Simplify the spec and the implementations.
 Save clever encodings for later.

Make a “working spec” that’s easier to handle:
 It implements the actual spec.
 It has as much non-determinism as possible.
 All the prophecy is between it and the actual spec.

actual←← implements working←← implements implemen-

 spec spec tation

Find the abstraction function. The rest is automatic.

Give names to important functions of your state variables.

To design an implementation, first invent the guards you need,
then figure out how to implement them.

Understanding Network Connections October 30, 1995 17

History Variables

If you add a variable h to the state space such that

If s is an old initial state then there’s an h such that (s, h) is initial;

If (s, h) → (s', h') then s → s';

If s → s' then for any h there’s an h' such that (s, h) → (s', h')

then the new state machine has the same histories as the old one.

Understanding Network Connections October 30, 1995 18

Predicting Non-Determinism

Suppose we add mode := acked to crashs.

Consider the sequence put(“red”), snd, crashs, put(“blue”), snd.

Now we have sr = {(1, “red”), (2, “blue”)}. We need an ordering on
identifiers to order these packets and maintain FIFO delivery. On rcvsr(i,
m) the receiver must remove all identifiers � i from goodr.

But now “red” is lost if (2, “blue”) is received first. If we use the
obvious abstraction function

q = the m’s from {(i, m) ∈ sr ∪ (lasts, cur)| i ∈ goodr} sorted by i,

this loss doesn’t happen between crashs and recovers, as allowed by
the spec, but later at the rcv.

We give a working spec that makes this delay explicit.

Understanding Network Connections October 30, 1995 19

Delayed-Decision Specification

State: q : sequence[(M, Flag)] := < > Flag = {OK, ?}
 status : ({true, false, ?}, Flag) := true
 recs/r : Boolean := false

Name Guard Effect Name Guard Effect

put(m)** if ~recs then
 add (m, OK) to q,
 status := (?, OK)

get(m)* ~recr,
(m, –) first on q

take first from q,
if q now empty
 and status = (?, f)
 status := (true, f)

getAck(b)* ~recs ,
status = (b, –)

none

mark recs or recr in some element of
q or in status, set
flag := ?

unmark in some element of
q or in status, set
flag := OK

drop true delete some element of q with flag := ?,
 and if it’s the last, status := (false, OK)
or if status = (–, ?), status := (false, OK)

Understanding Network Connections October 30, 1995 20

Prophecy Variables

If you add a variable p to the state space such that

If s is an old initial state then there’s a p such that (s, p) is initial;

If (s, p) → (s', p') then s → s';

If s → s' then for any h' there exists an h such that (s, h) → (s', h')

If s is an old state, there’s a p such that (s, p) is a new state.

then the new state machine has the same histories as the old one.

If T implements S, you can always add history and prophecy variables
to T and then find an abstraction function to S.

Understanding Network Connections October 30, 1995 21

Prophecy for Delayed-Decision

Extend Flag to include a lost component drawn from the set {OK, lost}.

The lost component prophesies whether drop will attack or not.

The abstraction function is

 qS = the first components of elements of qDP that are not lost

 statusS = the first component of statusDP if it is not lost, else false.

Understanding Network Connections October 30, 1995 22

Delayed-Decision with Prophecy DP
State: q : sequence[(M, Flag)] := < > Flag = ({OK, ?},
 status : ({true, false, ?}, Flag) := (true, OK2) {OK, lost})
 recs/r : Boolean := false

Name Guard Effect Name Guard Effect

put(m)** if ~recs then
 add (m,OK2) to q,
 status := (?, OK2)

get(m)* ~recr,
(m, –) first on q
and not lost

take first from q,
if q now empty
 and status = (?, f)
 status := (true, f)

getAck(b)* ~recs , status =
 (b, –), not lost

none

mark recs or recr,
∃ x ∈ {OK, lost}

in some element of
q or in status, set
flag := (?, x). If last
of q is lost, set
status flag (?, lost)

unmark in some element of
q or in status that
isn’t lost,
set flag := OK

drop true delete some lost element of q
or if status is lost, status := (false, OK2)

Understanding Network Connections October 30, 1995 23

Generic Implementation
State: modes : {acked, send, rec} := acked moder : {idle, rcvd, ack} := idle
 goods : set[I] := {} goodr : set[I] := {}
 lasts : I lastr : I
 cur : M buf : sequence[M] := <>
 used : set[I] := {} nacks : sequence[I] := <>
 ack : Boolean := false

Name Guard Effect Name Guard Effect

put(m)**

choose-id
(i, m)

sndsr(i, m)*

mode = acked

mode = needid,
i ∈ good, m=cur

as usual

mode := needid,
cur := m, good:={}

mode := send,
last := i, move i to
from good to used

rcvsr(i, m)
**

 if i ∈ good then
 mode := rcvd, take all Is� i from
 good, last := i, append m to buf
else if i � last then add i to nacks
else if i = last and mode = idle
 then mode := ack

 get(m)* as usual as usual

rcvrs(i, b)
**

 if mode = send and
i = last then ack:=b
 mode := acked

sndrs(i,T)

sndrs(i,F)

mode = ack,
i = last

i first on nacks

mode := idle

take first from nacks

getAck(b)* mode = acked,
b = ack

none

Understanding Network Connections October 30, 1995 24

Generic Magic
State: goods : set[I] := {} goodr : set[I] := {}
 lasts : I lastr : I
 useds : set[I] := {} issued : set[I] := {}

Name Guard Effect Name Guard Effect

shrink-gs(i)

grow-gs(i)

true

i ∈ good,
i ∉ used

take i from good

add i to good

shrink-gr(i)

grow-gr(i)

i ∉ goods ∪
 {lasts}

i ∉ issued

take i from good

add i to good, issued

cleanup mode � rcvd,

last � lasts
last := nil

recovers rec mode := acked,
last := nil,
ack := false

recoverr rec mode := idle,
last := nil, take some
Is from good,
clear buf, nacks

Understanding Network Connections October 30, 1995 25

Generic Abstraction Function

msg(id) = {m | (id = lasts and m=current) or id ∈ ids(sr)
 or (id = lastr and m is last on buf)}
This defines a partial function msg: ID → M.

current-q = <(current, OK)> if modes = send and lasts ∈ goodr
 or modes = needid and goods � goodr
 <(current, ?)> if modes = needid and not goods � goodr
 <> otherwise

inflightsr = {id | id ∈ ids(sr) and id ∈ goodr
 and not (id = lasts and modes = send) },
 sorted by id to make a sequence

inflight-m = the sequence of Ms gotten from msg of each I in inflightrs.

inflightrs = {lasts} if (ack, lasts, true) ∈ rs and not lasts = lastr

Understanding Network Connections October 30, 1995 26

Generic Abstraction Function

queue the elements of bufr paired with OK

 + the elements of inflight-m paired with ?

 + current-q

status (false, OK) if modes = rec
else (?, f) if current-q = <(m, f)>
 (?, OK) if modes = send, lasts = lastr and buf � empty
 (true, OK) if modes = send, lasts = lastr and buf = empty
 (true, ?) if modes = send and lasts ∈ inflightrs
 (false, OK) if modes = send
 and lasts ∉ (goodr ∪ {lastr} ∪ inflightrs)
 (ack, OK) if modes = acked

Understanding Network Connections October 30, 1995 27

Practical Implementations

Generic Five-packet handshake Liskov-Shrira-Wroclawski

goods {id | (accept, jds, id) ∈ rs} if mode = needid
{} otherwise

{times} – {lasts}

goodr {lastr} if moder = accept
{} otherwise

{i | lower < i
 and (i ≤ upper or moder = rec) }

lastr lastr if mode � accept
nil otherwise

lastr

shrink-
goods

mode = needid and losers(accept, jds, id) of last copy
or receivers(accept, jds, id), ids = goods – {id}

tick(id), id = times

grow-
goods

sendrs(accept, jds, id) tick(id)

cleanup receivesr(acked), mode = ack cleanup

shrink-
goodr

mode = accept and receivesr(acked, idr, nil) increase-lower(id),
 ids = {i | lower < i � id}

grow-
goodr

mode = idle and receivesr(needid, ...), increase-upper(id),
 ids = {i | upper < i � id}

Understanding Network Connections October 30, 1995 28

Summary

Client specification of at-most-once messages.

Working spec which maximizes non-determinism.

Generic implementation with good identifiers maintained by magic.

Two practical implementations

Five-packet handshake

Liskov-Shrira-Wrowclawski

Understanding Network Connections October 30, 1995 29

To follow up ...

You can find these slides on research.microsoft.com/lampson, as well
as a paper (item 47 in the list of publications).

L. Lamport, A simple approach to specifying concurrent systems,
Comm. ACM 32, 1, Jan. 1989.

M. Abadi and L. Lamport, The existence of refinement mappings,
DEC SRC research report 29, Aug. 1988.

