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Abstract

In this paper, a support vector machines (SVMs) based
method is proposed for content-based audio classification
and retrieval. Given a feature set, which in this work is
composed of perceptual and cepstral feature, optimal class
boundaries between classes are learned from training data
by using SYMs. Matchesare ranked by using distancesfrom
boundaries. Experiments are presented to compare various
classification methods and feature sets.

1 Introduction

Audio datais an integral part of many modern computer
and multimedia applications. Numerous audio recordings
are dealt with in audio and multimedia applications. The
effectiveness of their deployment is greatly dependent on
the ability to classify and retrieve the audio files in terms
of their sound properties or content. Rapid increase in the
amount of audio data demands for a computerized method
which allows efficient and automated content-based classi-
fication and retrieval of audio database. For these reasons,
commercial companies developing audio retrieval products
are emerging.

Wold et al. [14] have developed a system called “Mus-
cle Fish”. That work distinguishes itself from earlier work
[5, 3, 2] inits content-based capability. There, various per-
ceptual are used to represent a sound. A normalized Eu-
clidean (Mahalanobis) distance and the nearest neighbor
(NN) rule are used to classify the query sound into one
of the sound classes in the database. In Liu et al. [10],
separability of different classesis evaluated in terms of the
intra- and inter-class scatters to identify highly correlated
features. Foote [4] choose to use 12 mel-frequency cepstral
coefficients (MFCCs) as the audio features. Histograms of
sounds are compared and the classification is done by us-
ing the NN rule. In Pfeiffer et al. [12], audio features are
extracted by using gammaphonefilters.

Recently, a new pattern recognition method, called the

Nearest Feature Line (NFL), is developed. This method
explores information contained in multiple prototypes per
class by using linear interpolation and extrapolation of each
pair of prototypesin the class. It has been shown to produce
better results than Euclidean distance based ranking meth-
ods such as £-NN in face recognition [9], image [8] and
audio [7] classification and retrieval.

In this paper, a support vector machines (SVMs) [1, 13]
based method is proposed for content-based audio classifi-
cationand retrieval. The SVM minimizesthe structural risk,
that is, the probability of misclassifying yet-to-be-seen pat-
ternsfor afixed but unknown probability distribution of the
data. Thisisin contrast to traditional pattern recognition
techniques of minimizing the empirical risk, that is, of to
optimizing the performance on the training data. This min-
imum structural risk principle is equivalent to minimizing
an upper bound on the generalization error.

Given a class-labeled training set, which in this work is
a set of labeled feature vectors composed of perceptual and
cepstral feature (Section 2), class boundaries between each
pair of two classes are learned using SVMs (Section 3. A
binary tree is formed for multi-class problems. A new met-
ric called distance-from-boundary (DFB) isused to measure
and rank similar audio patterns. Extensive experiments are
performed (Section 3) to compare SVMswith NFL, NN and
MuscleFish using a database of 409 sounds from Muscle-
Fish.

2 Audio Feature Selection

Before feature extraction, an audio signal (8-bit ISDN
u-law encoding) is preemphasized with parameter 0.96 and
then divided into frames. Given the sampling frequency of
8000 Hz, the frames are of 256 samples (32ms) each, with
25% (64 samples or 8ms) overlap in each of the two ad-
jacent frames. A frame is hamming-windowed by w; =
0.54 — 0.46 * cos(27i/256). Itismarked as asilent frameif
S22 (w;si)? < 4002 where s; is the preemphasized signal
magnitude at 7 and 4002 is an empirical threshold.

Two types of features are computed from each frame:
(i) perceptua features, composed of total power, sub-band



powers, brightness, bandwidth and pitch; and (ii) mel-
frequency cepstral coefficients (MFCCs). Then audio fea
tures are extracted from each non-silent frame. The means
and standard deviations of the feature trajectories over all
the non-silent frames are computed, and these statistics are
considered as feature sets for the audio sound.

The means and standard deviations of the above 8
original perceptual features are computed over the non-
silent frames, giving two feature vectors of 8-dimension
each. The two vectors are concatenated to form a 16-
dimensional vector. Adding the silence ratio (humber of
silent frames/total number of frames) and the pitched ratio
(number of pitched frames/total number of frames) to this
vector gives an augmented 18-dimensional perceptual fea-
ture vector, named “perc”. Each x; of the 18 componentsin
the perc set is normalized according to =, = (z; — w;)/0;
(correlations between different features are ignored) where
the mean p; and standard deviation o; are calculated over
al the training set. This gives the final perceptual feature
set, named “Perc”.

Note the following differences between the perceptua
featuresused in thiswork and in Muscle Fish: First, thetwo
sets of perceptual features are different. Second, in Mus-
cle Fish, there is no concatenation of the original features
and their standard deviations into an augmented vector; in-
stead, the instantaneous derivative (time differences) for al
of their perceptual features are used as additional features.
Third, in Muscle Fish, thenormalizationis carried out in the
calculation of the Mahalanobis distance by using the means
and covariance matrix.

The means and standard deviations of the L MFCCs
are calculated over the non-silent frames, giving a 2L-
dimensional cepstral feature vector, named “ CepsL”. Inthe
experiments, CepsL with L values in the range between 5
and 120, with the corresponding feature sets named Cepsb,
- -+, Cepsl20, are evaluated.

Note that the cepstral coefficients are not normalized.
Empirically, the normalization of the perc set into Perc
set by the mean and standard deviation gives better results
whereasasimilar normalization of the cepstral vectorsleads
to worse results.

The Perc and CepsL feature sets are weighted and
then concatenated into still another feature set, named
“PercCepsL”, of dimension 18 + 2L (see [7] for more de-
tails), giving PercCeps5, - - -, PercCeps120. See [7] for de-
tailed definitions of these features.

3 Learning Using Support Vector Machines
3.1 Linear Support Vector Machines

Consider the problem of separating the set of training
vectors belonging to two

separate classes, (x1,y1),---, (X1, 1), wherex; € R™is
a feature vector and y; € {—1,+1} aclass label, with a
hyperplane of equation wx + b = 0. Of al the boundaries
determined by w and b, the one that maximizes the mar-
gin (Fig.1.Left) would generalize well as opposed to other
possible separating hyperplanes.

A canonical hyperplane [13] has the constraint for pa-
rameters w and b: miny, y;(w - x; + b) = 1. A separat-
ing hyperplanein canonical form must satisfy the following
constraints, y; [(w-x;) +b] > 1, ¢ =1,...,l. The mar-
ginis ”fv—H according to its definition. Hence the hyperplane
that optimally separates the data is the one that minimizes
B(w) =5 || w ||

The solution to the optimi zation problem can be obtained
asfollows[13]: First, find the maximization solution to the
following problem
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where x . is a support vector of the “+” classand x _ isa
support vector of the “-” class. Now, a new data point xis
classified by the sign of

!
f(x) = sign (Z @;yi(x; - X) + b> (4)
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3.2 Linearly Non-Separable Case

In non-separable cases, dack variables £; > 0, which
measure the mis-classification errors, can be introduced and
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Figure 1. (Left) A linear SVM. (Right) A non-
linear SVM.



apendlty function, ' (¢) = Y_'_, &, added to the objective
function [1]. The optimization problem is now treated asto
minimize the total classification error as well as the bound
on the VC dimension [13] of the classifier. The solution is
identical to the separable case except for a modification of
the Lagrange multipliersas0 < a; < C, i =1,...,1. We
refer to [13] for more details on the non-separabl e case.

3.3 Kernel Support Vector Machines

In linearly non-separable but nonlinearly (better) sepa-
rable case, the SVM replaces the inner product x - y by
a kernel function K(x,y), and then constructs an opti-
mal separating hyperplane in the mapped space. Accord-
ing to the Mercer theorem [13], the kernel function im-
plicitly maps the input vectors, viaa ® associated with the
kernel, into a high dimensional feature space in which the
mapped data is linearly separable (Fig.1.Right). This pro-
vides a way to address the curse of dimensionality [13].
Possible choices of kernel functionsinclude (1) Polynomial
K(x,y) = ((x -y + 1))*, where the parameter d is the de-
gree of the polynomial; (2) Gaussian Radial Basis Function

K(x,y) = exp (— (x2;§)2), where the parameter o is the
width of the Gaussian function; and (3) Multi-Layer Percep-
tion K (x,y) = tanh (k(x - y) — u), wherethethe x and p

are the scale and offset parameters. However, Exponential
Radial Basis Function (ERBF) K (x,y) = exp (— "‘*Y‘)
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has been empirically observed to perform better than above
three [6]. For a given kernel function, the classifier is given

by £(x) = sign (S}, @ik (xi,%) + ).

3.4 Multi-Classes

Classification of multi-classes can be achieved by com-
bining al the two-class SVYMs. There are two common
schemes for this purpose: one-against-all and the one-
against-one. We use the latter and construct a bottom-up
binary tree for classification. By comparison between each
pair, one class number is chosen representing the “winner”
of the current two classes. The selected classes (from the
lowest level of the binary tree) will come to the upper level
for another round of tests. Finally, a unique class label will
appear on the top of the tree.

Denote the number of classes as ¢, the SVMs learn
,:(ch1) discrimination functions in the training stage, and
carry out comparisons of ¢ — 1 times under the fixed bi-
nary tree structure. If ¢ is not equal to a power of 2, we
can decompose ¢ as. ¢ = 2™ + 2™ + ... 4 2™ where
ny > ng > ... > nj, because any natural number (even or
odd) can be decomposed into finite positive integers which
are the power of 2.

3.5 Maetricfor Ranking

Givenaquery q, the classification and retrieval is ranked
by using the signed distances from g to the ¢ boundaries
as follows. The k** boundary separating class k£ from the
othersis defined by (x}, 85, b)), wherexj, =
bfy; | j=1,---,my} arethem; support vectors, 8 =
{B%; = ag;yr;+ and by = {b;} the optimal coefficients.
The signed distance of q to the k£ boundary is calculated
by

km * * *
ok 7k Zj:l Bk]K (ij’ q) + bk
D(q; B, X, by) = [ ®)
| 2250 Brixij |l

The patternswithin the same class have positive distancesto
their enclosing boundary, while other patterns have negative

distance to this boundary. The top matched class is found
by k* = arg max;<p<. D(q; B, X}, by)

4 Experiments

The experiments compare the SVM (using ERBF kernel
with 0 = 4 and C' = 200) with the NFL method using
the NN as the baseline, and also with the MuscleFish sys-
tem, for the Perc, Ceps, PercCeps feature sets. An audio
database of 409 sounds from MuscleFish is used for the ex-
periments, which ismanually classified into 16 classes[14].
The data of each class ¢ containing N, sounds is randomly
partitioned into a prototype (training) set and atest set, with
ceiling(N./2) soundsin the training set and floor(N./2)
in the test set, resulting in total numbers of 211 sounds in
the former and 198 in the latter altogether. 10 such random
partitions are obtained.

The error rate is used to measure the classification per-
formance, which is averaged over al the queriesin atest set
and over al the 10 random partitions. The average retrieval
accuracy [11] is calculated similarly as the retrieval per-
formance measure. Among the results for Cepsb, Cepsl10,
.-+, Cepsl20, only that for Ceps40 is shown because the
SVM achieved best results with that. Among the results for
PercCepsN, only PercCeps8 is shown for the same reason.

Table 1 showsthe average error rates of SVM (linear and
kernel-based), NFL and NN obtained by using the separate
training and test sets, for the three types of feature sets, in
which the absences of some [-SVM data are dueto its non-
convergence. Fig.2 shows the average retrieval efficiencies,
with the results obtained by using the leave-one-out (LOO)
test also shown.

From the results, we see that both SYM and NFL are
better than NN in terms both of the error rate and retrieval
efficiency. SVM has error rates similar to NFL but the low-
est error rate is obtained by using NFL with the PercCeps8



[ Feafure Set [ I-SVM [ K-SVM [ NFL [ NN ]

Perc 18.74 15.05 | 17.12 | 19.80
Ceps40 24.75 2222 | 2242 31.47
PercCeps8 17.93 1409 | 1318 | 1854

Table 1. Average error rates (%).
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Figure 2. Average retrieval efficiencies ob-
tained by using LOO test on a single database
(top) and by using separate training and test
sets (bottom).

feature. SVM hasabit lower retrieval efficienciesthan NFL
by the LOO test but higher by using the separate training
and test sets.

Complexity wise, SVM takes long time to train whereas
NFL needs no training. During classification, NFL's com-
plexity is linear to the number of classes C' whereas SVM’s
isproportional to C'x (C' — 1) /2 when the binary tree recog-
nition strategy is used; within a class ¢, SYVM’s is propor-
tional the number of supporting vectors whereas NFL's is
proportional to N, x (N. — 1)/2 where N, is the number
of prototypesin c. Note that the nearest class center (NC),
and the £-NN (for £ > 1), which also make use of class
information, produce less favorable results than the simple
1-NN in al the applications we have evaluated [9, 7, 8].

Finaly, the results are compared with that of Muscle-
Fish [14] in terms of the error rates obtained by LOO test.
The MuscleFish method is equival ent to a perceptual feature
set with an NN rule. Its error rate, which is obtained from
http://ww. nuscl efi sh. com cbrdeno. htm ,
is 19.07% (78 errors out of 409 queries). In comparison,
the error rates of the NN+Perc method is 13.94% (57 er-
rors), which means our Perc feature set is better than Mus-
cleFish's. Lower error rates are obtained using the Perc-
Ceps8 feature set: 11.00% (45 errors) by kernel SVM and
9.78% (40 errors) by NFL.

5 Conclusion

A SVM based method is proposed for content-based
audio classification and retrieval. Like NFL, the SVM
has good performance in audio classification and retrieval,
better than currently achieved by the MuscleFish system.
When tested using separate training and test sets, SVM
is more advantageous than NFL in terms of retrieval effi-
ciency, demonstrating its said generalization ability to clas-
sify patterns unseen in the training set. However, SVM
takes long time to train, and currently, and needs to select
kernel function and parameter therein which is currently

practiced by trial and error.
I
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