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ABSTRACT

An incisive understanding of human lifestyles is not only essential
to many scientific disciplines, but also has a profound business im-
pact for targeted marketing. In this paper, we present LifeSpec, a
computational framework for exploring and hierarchically catego-
rizing urban lifestyles. Specifically, we have developed an algo-
rithm to connect multiple social network accounts of millions of
individuals and collect their publicly available heterogeneous be-
havioral data as well as social links. In addition, a nonparametric
Bayesian approach is developed to model the lifestyle spectrum of
a group of individuals. To demonstrate the effectiveness of Life-
Spec, we conducted extensive experiments and case studies, with
a large dataset we collected covering 1 million individuals from
493 cities. Our results suggest that LifeSpec offers a powerful
paradigm for 1) revealing an individual’s lifestyle from multiple di-
mensions, and 2) uncovering lifestyle commonalities and variations
of a group with various demographic attributes, such as vocation,
education, gender, sexual orientation, and place of residence. The
proposed method provides emerging implications for personalized
recommendation and targeted advertising.

Categories and Subject Descriptors

H.2.8 [Database Management]: Data mining; J.4 [Social and Be-
havioral Science]: Sociology
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1. INTRODUCTION

Understanding human lifestyles is essential to many scientific
disciplines as varied as sociology [4], biomedicine [1], and eco-

nomics [37]. In marketing research, understanding individual lifestyles

is particularly crucial since consumer lifestyles are strong indicators
of their buying behaviors [24]. Hence, if you know more about your
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consumer’s lifestyles, you can reach your targets faster, and more
effectively.

In the past, it was quite costly (in both time and money) for so-
cial scientists to investigate human lifestyles, since such studies de-
pended heavily on large-scale demographic data, e.g., by surveying
thousands of participants. The National Census dataset might be a
good resource for studying individual lifestyles. However, the typi-
cal time cycle between two consecutive censuses is extremely long
(10 years for both the U.S and China) and the data at the individ-
ual level is usually not available to the public (refer to the 72-years
rule'). In short, both the time lag and data granularity limit the
effectiveness and efficiency of traditional survey-based approaches
for understanding dynamic urban lifestyles[24]. In addition, all the
survey-based approaches rely on retrospective self-reports and thus
are vulnerable to memory error, not to mention the well-known ex-
perimenter effects[31].

That is now changing. The emerging era of “big data” provides
unprecedented (in terms of both breadth and depth) potential for us
to uncovering the underlying patterns of our everyday lives. Imag-
ine a typical day in your life: You are awakened on a Friday morn-
ing by the alarm clock, a bit earlier than usual due to an early meet-
ing on that day (the alarm is synced with your online calendar).
You rush to take a taxicab to your company (the GPS trajectories
are logged by the transportation center) and arrive on time. After a
boring meeting that takes up the whole morning, you decide to have
a good lunch. So you search on Yelp for a high-scoring restaurant,
and you check-in (the process of announcing your arrival at a place
and sharing it on a social network) at the restaurant on Foursquare
in order to get a discount. After work, you book yourself a ticket for
a movie at night that has a high score at IMDB. It ends up being a
fantastic Friday evening—not just because of the movie, but because
you come across a wonderful woman/man at the theater after post-
ing to Twitter about the movie and catching her attention when she
clicked the “Who’s Nearby” button.

As can be seen in the above example, many of us already live
in an online world. During the past few years, mobile devices,
ubiquitous sensing technologies, and various kinds of social net-
works have proliferated tremendously, which has turned out to be
the most important catalyst for bridging our offline world with the
online world. The meetings we attend, the restaurants we go to,
the movies we see, the people we meet—everything we do during a
day-will eventually produce behavioral data stored somewhere in
the “Cloud.” Intentionally or not, this data mirrors our daily lives,
just as the digital “footprints” we leave in the online world. Some of
these footprints reveal our movements in the physical world, such
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as check-ins and cell-phone traces. Moreover, a footprint can also
be generated without the necessity of mobility. A diverse range of
data falls into this scope, e.g., posting a tweet, sharing a link to a
song, purchasing a book online, rating a movie and so forth. If we
understand footprints as the linkages between human and entities
(locations, music, videos, etc.), another kind of link—social link—is
the connection between humans that are impatiently migrating from
offline to online, even more rapidly than digital footprints.

Given the overwhelming heterogeneous behavioral data of indi-
viduals, it is tempting to think that exploring their lifestyles through
such data should be easy. This is, however, still not the case. The
major challenges of this work are:

e How to connect multiple network accounts of a user and collect
users’ publicly available* footprints (as many as possible) residing
in different online networks?

e How to computationally model the lifestyle of an individual and
a group of individuals, by integrating users’ heterogeneous behav-
ioral data?

To address the above challenges, in this paper, we propose a data-
driven framework termed LifeSpec, to explore urban lifestyles with
users’ heterogeneous behavioral data and social links. Our explo-
ration ranges from the specification of an individual’s daily lifestyle
as shown in Figure 1, to the lifestyle spectrum (will be explicitly
defined later) within a group of individuals. This model is flexible
enough to deal with groups with various sizes, e.g., a group can ei-
ther be as small as hundreds of students in a university, or as large
as the whole population in a megacity.

To the best of our knowledge, LifeSpec is the first attempt to in-
vestigate and model human lifestyles in a computational way, based
on millions of people’s heterogeneous behavioral data. Our main
contributions are summarized as follows:

e We have developed an algorithm for connecting multiple net-
work accounts of users, based on our key observations of users’
self-disclosure behavior and social “hub sites.” In turn, we built a
data platform which successfully crawled a large dataset covering
997,500 users (identified to be unique) from 493 cities including
their profiles, footprints, and social links. (Section 3)

e We have derived a nonparametric Bayesian approach to compu-
tationally model the lifestyle spectrum for a group of individuals,
as well as the lifestyle of an individual. This method provides an
automatic and data-driven way of generating a hierarchical lifestyle
segmentation for a group of individuals. (Section 4)

e We present in-depth analytics on the collected behavioral dataset.
Based on this dataset, we conducted extensive experiments and user
studies to validate the effectiveness and flexibility of LifeSpec for
different groups of users, considering a variety of demographic at-
tributes, such as vocation, education, gender, sexual orientation,
and place of residence. (Section 5)

2. RELATED WORK

Lifestyle Research in Social Science. Human lifestyles have long
been studied in social science [16]. In 1967, Ansbacher [3] pro-
vided a historical and systematic review of lifestyle research in so-
cial science literatures, in which they recognized the similarities
among different individuals’ lifestyles and suggested the existence
of lifestyle typologies. Furthermore, they discussed three differ-

In accordance to the United States Code of Federal Regulations
defining Human Subjects Research (45 CFR 46), our collection of
publicly available data would be considered exempt from Institu-
tional Review Board (IRB) review. We anonymized the IDs of each
user on each website when collecting the data, and removed all the
identities before the experiments.
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Figure 1: A screenshot of the individual view in the LifeSpec
system, where the categories and frequency of footprints are
indicated with different colors and sizes. A user can also switch
to the city view for exploring the lifestyle spectrum (as detailed
later) of a city by clicking either the user’s place of residence or
the menu above.

ent levels of aggregation of lifestyles, including “an individual,” “a
group,” and a “(generic) class or category.” While there is a broad
range of lifestyle research focusing on the US, European, and India
markets [26, 36, 23], we have found there is little research on sys-
tematically studying the lifestyles in contemporary China. The tar-
geted population in this work, people who were mostly born in the
1980s and 1990s, have experienced profound changes during their
lives. As the most lucrative target for the market, their lifestyles
significantly differ from their previous generations. Discovering the
dynamics and variations of their lifestyles will have a far-reaching
impact for both marketers and governments.

Cross-domain User Linking. Linking users from different do-
mains is crucial for targeted advertising and personalization. IP

and/or Cookie-based user identification and personalization approaches

have been used for years [17]. Some recent methods addressed this
problem with various new solutions [25, 21, 14]. These approaches
have shown a powerful ability to identify the same user from dif-
ferent networks. However, in most existing methods, a user’s dif-
ferent accounts are identified and linked in a passive way. In other
words, a user might have no intention of being linked from dif-
ferent networks or websites. As a result, these approaches may
sometimes raise privacy concerns among users and thus become
controversial. In addition, these methods are successful in a prob-
abilistic sense, which means that an error rate (i.e., mis-linking) is
inevitable. Our method, however, is based on users’ explicit and
active self-disclosure (detailed later) of the connections between
their different accounts. Instead of inferring any links between their
accounts—we discover their linked accounts.

Bridging Online and Offline. Recent studies converge to sug-
gest that the barrier between individuals’ online and offline lives is
tremendously blurred. Such trend is still being accelerated by the
advance in ubiquitous sensing, social networks, and big data [11,
12, 39, 2, 29]. For example, Cranshaw et al. [10] showed that hu-
man mobility patterns have strong connections with the structure
of their underlying social network. Recently, Kosinski et al. [19]
reported that the “Like” behavior in Facebook can be used to pre-
dict users’ psychological traits with a surprisingly high accuracy.
However, we have found that there is still a lack of research into
human lifestyles that leverages the emerging heterogeneous behav-
ioral data mirroring users’ offline behavior from multiple dimen-



sions. Our work takes one more step forward towards the goal of
bridging the offline world and the online world.

3. COLLECTING AND CONNECTING

This section first presents some observations that enables us to
connect multiple accounts of a user from heterogeneous online net-
works (Section 3.1). Next, we detail the methodology for connect-
ing users’ accounts while collecting the data (Section 3.2).

3.1 Observations

Many people have multiple social network (or website) accounts,

e.g., one person is likely to have both a Twitter account and a Foursquare

account. There might be a number of reasons behind this, while
the most obvious one is that users sign up for different social net-
works to fulfill different needs. It is because of the heterogeneity of
online networks that we have heterogeneous behavioral data, i.e.,
footprints. A critical challenge for collecting users’ cross-domain
footprints is the identification of users’ multiple social network ac-
counts. Unlike existing approaches that leverage machine learning
or rule-based methods to “infer” the connection between a single
user’s different accounts (which is not 100% accurate and may also
be deemed to be a serious invasion of users’ privacy), we identify
the connection with strong “evidence” that users actively and ex-
plicitly disclose. Specifically, our method is based on the following
observations:

O1. Hub site. Some websites function as a hub to serve for users’
other social networks or websites. Here, we call a website “hub
site” if it satisfies the following conditions: 1) It supports index-
ing users by entities or categories, e.g., places (by Foursquare), and
songs (by Last.fm); 2) Users can sync their contents to other net-
works. For example, Foursquare can usually sync users’ check-ins
to Facebook and Twitter, once authenticated by users themselves.
Other examples of hub sites include About.me and Klout.

02. Self-disclosure. Many users explicitly display their other net-
work accounts on their profile pages of one/multiple social net-
works. For example, many users’ Facebook ID and Twitter ID are
easy to identify from their Foursqaure profiles. This is also true for
Jiepang (known as China’s Foursquare).

3.2 Methods

Assume we have a set of known social networking sites ¥ (e.g.,
¥ = {Facebook, Twitter, Foursqure}) and a hub site h € ¥. Based
on observation O1, we can obtain a set of profile pages in h by
querying h with a list of entities. Given the profile pages in h as
seeds, we have developed an algorithm (Algorithm 1) to efficiently
connect users’ accounts on W, as well as to collect their publicly
available footprints and social links from different social networks.
Note that in this paper, we consider a friendship relationship (either
directed or undirected) identified from any network as a social link.

Accessibility and Connectivity. Given a user u’s profile page p
belonging to a website in ¥ (where p can be accessed by a URL),
let @), be all the profile page URLSs displayed on p, including both
her own profile URLs (note p’s URL is also in (),,) and her friends’
profile URLs (i.e., social links). We say ¢ is directly accessible
from p if ¢ € Q. If there is a path that starts from p, and reaches
another profile page p’ by traversing only through directly accessi-
ble URLs (one by one), we say p’ is accessible from p, denoted as
prp.

Furthermore, let () be the set of all profile pages in W. For each
website W € W, by inspecting the structure of a user’s profile page,
we can identify whether a user discloses her accounts (profile page
URLSs) of other websites in W based on observation O1 and O2
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Figure 2: Accessibility relationships and connectivity relation-
ships among users’ different profile pages.

(since profile pages in W follow a certain HTML template). For any
q1,q2 € Q, we say g1 and g2 are directly connected (or with a di-
rect connectivity relation) if there exist a profile page p and a user u,
such that q1, g2 € Q}, where Q}; C @, denotes u’s self-disclosed
profile URLs on p. Then we define the connectivity relation be-
tween any pair of profile pages in ) as the transitive closure [32]
of the direct connectivity relation.

To explain the connectivity relation in a more natural way, we can
regard each profile page in @) as a node in an undirected graph G.
For any two nodes g1, g2 € Q, there is an undirected edge between
¢q1 and g2 if q1 and q2 are directly connected in some profile page
p of user u. Thus, the connectivity relationship defined above is
equivalent to the common sense of connectivity in an undirected
graph, i.e., there exist a path connecting ¢; and g2 in G. Since the
connectivity relation is reflexive, symmetric and transitive, it is an
equivalence relation. Hence our problem is formulated as:

Given a set of profile pages h, find all equivalence classes U
from all accessible profile pages of h.

Actually, when all nodes (profile pages) in G are known in ad-
vance, this problem can be efficiently solved using the Union-Find
algorithm [33]. In our situation, however, both the nodes and edges
are unknown. To address this issue, we propose the ICONNECT al-
gorithm (Algorithm 1) to keep track of all the equivalence classes
(unique users) in real time as we discover new nodes (accessible
profile pages).

Specifically, as formally presented in Algorithm 1, a queue Py
stores all unvisited profile pages, and each iteration starts by travers-
ing from a popped profile page p (line 6), which contains a user’s
directly connected profile URLs (e.g., URL L2 in Fig.2a). Here, we
traverse only through these directly connected and directly accessi-
ble profile pages to obtain connected profile pages D of this user un-
til we encounter previously visited profile pages Po (line 8). Since
all these profile pages are connected with each other, we merge
all the original profile pages in Po as one user (line 9) using the
Union-Find structure with almost constant time [34]. For exam-
ple, L1, L2, L6 and L3, L4, L5 are merged into two equivalence
classes respectively, as shown in Fig.2. Meanwhile, we collect all
the footprints and social links obtained from p. In particular, if
we discover new hub sites (e.g., another check-in service provider)
from the footprints (typically indicated by the patterns in the URL,
such as “I’'m AT”), we can further add them into the hub site set
(line 18), and enqueue discovered new users (line 15 and line 17).
Iteratively, we crawl more profiles, footprints, and social links.

Here, to prevent potential confusion between connectivity and
accessibility, we note that in Algorithm 1, accessibility relation is
merely leveraged for discovering new profile pages (i.e., nodes in
the undirected graph (7), while we traverse from one profile page
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Algorithm 1: IdentifyConnectedUsers (ICONNECT)

Procedure VisitProfile(p, Pv, D, Po, F, L)

Input: seed hub site h
Output: users U, where each user u € U is a set of profile pages;
footprints F; social links £, hub sites H

1 H + @, H.add(h);

2 F+ O, L+ O,

3 A queue storing unvisited profile pages Py < h.getAllUsers();
4 A set of visited profile pages Py < O

5 while Py.length> 0 do

6 p < Py .dequeue();

7 D+ 2, Po + @

8 (D, Pp) < VisitProfile(p, Py, D, Po,F,L);
9 Merge {u € U|Pp Nu # @} tou/;

10 Py <+ Py UD; Py+ Py\D;

1 if u' = & then u’ < U .createUser();

12 foreach d € D do

13 v .add(d);

14 Hj < hub sites obtained from F(d);

15 Py .enqueue(L(p).getProfilesO\ (Py U Prr));

16 foreach b/ € Hy \ H do

17 L Py .enqueue(h’.getAllUsersO\ (Py U Py));
18 H <+ HyUH,;

19 return U, F, L, H

to another only if they are directly connected (i.e., an edge in G),
which means that we can maintain equivalence classes (connected
users) in real time by traversing each profile page once. The cor-
rectness and complexity of this algorithm are given in Theorem 1.

THEOREM 1. Algorithm I keeps track of all connected users in
currently visited profile pages after each loop (line 18) by accessing
each profile page once, and finally finds all connected users from
all accessible profile pages hy of hub site h, with time complexity
O(|hs|a(|hs|)), where « is the inverse Ackermann function® (the
proof is left to Appendix A).

Another benefit of this algorithm is that we can stop it at any time,
while still guarantee having numerous unique users (instead of one
single user’s different profile pages). Specifically, at any time, we
can obtain a set of users U = {u; }f\’: 1 with disjoint profile pages on
heterogeneous networks. Let U" denote the users who have profile
pages on website W. Assuming a single user does not have two
profile pages on W (which is usually true), theoretically we have in
total |U" | different users. Note that choosing a different W may
lead to a different number of users as well as their footprints and
social links. In our method, we have chosen a W which maximizes
the number of footprints. Hence, the total number of footprints is

max U Uf(p). 1)

ueUW pEu

Based on this algorithm, we developed a data platform, to in-
crementally and continuously identify new users, connect their ac-
counts on different networks, and collect their heterogeneous be-
havioral data as well as social links, which in turn supports our
further exploration of their lifestyles.

4. MODELING LIFESTYLES AND
LIFESTYLE SPECTRUM

This section first explicitly clarifies some related concepts in our
model (Section 4.1), then tackles the challenge of integrating het-

%A quasi-constant function, which grows incredibly slowly [34].

Input: profile page p, visited pages Py, newly discovered pages D,
previously visited pages Po C Py, footprints F, social linksC
Output: D, Pp
D.add(p);
F(p) + footprints obtained from the account of p;
L(p) <« social links obtained from the account of p;
P’ + other profile pages displayed on p or F(p), directly connected
with p;
foreachp’ € P and p’ ¢ D do
if p’ € Py then Pp.add(p’);
else VisitProfile (p/, Py, D, Po,F,L);

return (D, Pp)
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erogeneous footprints and social links to learn the lifestyle spectrum
of a group of individuals (Section 4.2).

4.1 Preliminary

A footprint f of an individual u is a combination of domain-
specific tokens or tags, which discriminatingly describe the behav-
ior of individual u on a certain domain at a particular time. The
granularity of a footprint can vary according to different demands
and the data format obtained from the data providers. For example,
a mobility-related footprint can be represented with a timestamp
and a geo-coordinates, or a POI category, such as “shopping mall”
and “office”; a movie-related footprint can be a movie’s exact name,
or the category of that movie, e.g., “drama and romance”.

A living pattern S is a combination of frequently co-occurring
footprints. For example, an individual may often listen to British
pop music and read sci-fi fictions. Note that different individuals
may share some typical living patterns and different living patterns
may also share some common footprints.

Given a group of individuals, A lifestyle spectrum 7 is a tree-
structured hierarchy summarizing the living patterns of these indi-
viduals, where each node of 7 is a living pattern. The higher nodes
in this tree stand for more commonly shared living patterns and the
lower nodes are variations. Thus, a specific lifestyle [ is a path from
the root to a leaf in 7, i.e., a sequence of living patterns, ordered by
the degree of commonality.

For example, Fig.3 shows the lifestyle spectrum of 100,000 Bei-
jing citizens (sampled from the data we collected). As is shown,
Node 1 is the most common living pattern (each living pattern is
represented with the top 3 frequent footprints). Node 2, 3, and 4
are various living patterns pertaining to subgroups, e.g., Node 2 is a
typical living pattern for an office worker and Node 3 is common for
students. The path connecting 1 — 2 — 7 forms a typical lifestyle
for urban-dwelling office workers who love coffee, western-food
and frequent bars at night. Here, the size of a node in the spec-
trum indicates the number of people who own such a living pat-
tern (the larger, the more). As a result, we can easily target a sub-
group of individuals with a certain lifestyle (path) in 7. Since a
large group (e.g., a megacity) usually contain millions or even tens
of millions of citizens, many people may share similar lifestyles,
compared with a flat model or simple enumerations, the hierarchi-
cal topology of lifestyle spectrum inherently captures the similarity
and difference between members in a group.

4.2 Learning the Lifestyle Spectrum

Given millions of footprints and social links of a group of in-
dividuals, we leverage topic modeling to learn their lifestyles and
lifestyle spectrum, where a “topic” is a distribution of words in a
document [6]. As shown in Fig. 4, this is established by building an
analogue from the lifestyle spectrum to a hierarchical topic struc-
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Figure 3: A screenshot of LifeSpec showing the lifestyle spec-
trum and living patterns (partially presented) of Beijing citi-
zens.

ture as follows: Given a group of users as a corpus, we regard all
the users in this group as documents, where the words in each doc-
ument are an individual’s footprints. Just as a topic is described
using a collection of words, a living pattern is represented by a set
of footprints (recall the definition of living pattern), so it can be
considered as a latent topic in a document. Here, the lifestyle spec-
trum is a hierarchical topic tree in which each node is a topic. Each
document can exhibit multiple topics, which are derived as a path
(containing a set of nodes) from the topic tree. In this tree, more
commonly shared topics are near the root and more specified topics
are close to the leaves.

Blei et al. [7] proposed the hierarchical Latent Dirichlet Alloca-
tion (hLDA) for the above model. This model is powerful in the
sense that it allows both the parameters and the structure of the
model to be automatically adapted as more data is observed. For
example, this model can support arbitrary branches and depth of
the tree-structured spectrum. This is achieved with the aid of the
“nested-Chinese restaurant process” (nCRP), which is widely used
in Bayesian nonparametric statistics (refer to [15] for details of this
process).

Nevertheless, hLDA still does not take the full advantage of our
data, since another important signal that we have captured—the so-
cial graph—has not been considered. Actually, social psychologists
have found that “perceived and real activity similarity would be
equally good predictors of liking.” [38] Inspired by this theory, we
model a social link between two individuals as a function of their
similarity with respect to their living patterns. Given the living pat-
terns Xy, = {Tu,1, Tu,2--.,Tu,n} Of individual u, we calculate
the empirical living pattern distribution of u by X, = % D T
(where each x,, ; is a distribution over the vocabulary of footprints).
For any pair of individuals u, v, the probability that u follows v’
on a social network is given by
Xy 0 Xl

exp(¢( )+ v), @)

%
where o is the Hadamard product and , v are parameters that need
to be learned from the data.

Intuitively, we can deem social links between individuals as cita-
tions between documents, e.g., a paper usually cite papers that are
similar or related. Several approaches have been developed to deal
with the citation relationships between documents, such as the Re-
lational Topic Model (RTM) [8, 9], however, they are for flat topic
models instead of a hierarchical topic structure.

To integrate the signals from footprints and social links for learn-
ing the lifestyle spectrum, we propose a hybrid model, termed Re-

user

document & &)
2
e @ 5
; g
lifestyle spectrum follow (cite) lifestyle: 1-2-4 3
(topic hierarchy) (topic sequence) e
user @
o document)
group =
o o (corpus) @ ®6 O
N lifestyle: 1-2-5
o () © (7) ' (topic sequence)
- user @
nodes: living patterns ‘document

higher levels: commonalities () @3)
lower levels: variations
@ ®

lifestyle: 1-3-7
(topic sequence)

Figure 4: From lifestyle spectrum to a topic hierarchy.

lational Hierarchical Latent Dirichlet Allocation (RH-LDA), which
is a generalization of both hLDA and RTM. Specifically, the gener-
ative process of RH-LDA is as follows:
1. For each node k in the spectrum tree 7~
(a) Draw a living pattern S, ~ Dirichlet(n).
2. For each individual d € {1,2,...,D}
(a) Draw a path cq ~nCRP(7).
(b) Draw a distribution over levels in the tree,
04|(m, m) ~ GEM(m, m)[27].
(c) For each footprint,
i. Choose level Z4,,|0p ~ Discrete(9).
ii. Choose footprint Wy, »|{zd,n,cad, 3} ~ Discrete(8e,),
which is parameterized by the living pattern in position
Z4,» on the path cq4.
3. For each pair of individuals d, d’,

(a) Draw binary link with a probability given by Equation (2).
Note that Step 3 differs from the approach proposed in [9], where
we extend the original RTM to directed graph by Eq. 2 (social
links are usually directed). The inference of this model is imple-
mented using collapsed Gibbs Sampling (refer to Appendix B) and
the Metropolis-Hasting(MH) algorithm.

S. EXPERIMENTS

In this section, we first describe and analyze the data we collected
using Algorithm 1 (Section 5.1). Later, based on this huge dataset,
we conduct experiments to explore lifestyle spectrums of different
groups in terms of various demographic attributes (Section 5.2), as
well as a user study on the lifestyle spectrum of different cities (Sec-
tion 5.3).

5.1 Data Description and Analytics

We chose Jiepang (China’s Foursquare) as a hub site. We first
crawled the city list and retrieved all the Points of Interest (POI) for
each city. Then, for each POI, we obtained all the users who have
checked-in at that POI. Using Algorithm 1 and choosing Jiepang
as the W which maximizes Eq. 1, we eventually obtained a collec-
tion of 997,500 unique users from 439 cities all over China (note
some users do not indicate their places of residence on their pro-
file pages), with their 53 million footprints, as well as 3,094,965
social links. Among these users, 99.1% users have at least 2 net-
work accounts and 33.7% users have at least 3 network accounts.
We crawled users’ publicly available profiles, footprints, and so-
cial links from the following 4 social networking sites: Jiepang,


http://jiepang.com
http://jiepang.com

Table 1: Summarization of collected footprints for different cities (partially presented due to page limit).

city Shanghai

Beijing Guangzhou Tianjin ~ Hangzhou Hongkong Xiamen Suzhou Nanjing

Chengdu Wuhan Xian

users 417,681 162,764 53,089 15,490 34,322

12,599 10,123 19,673 21,558 23,372 20,975 15,261

check-in 25,178,189 5,898,447 1,092,138 392,943 619,219

8 movie 1,661,214 1,466,479 171,789 118,775 238,721
g music 766,165 737,254 85,953 60,658 103,936
g book 402,318 387,138 51,913 28,188 57,835
= event 609,076 803,158 101,246 52,133 78,587

total 28,616,962 9,292,476 1,503,039 652,697 1,098,298

424,650 369,231 560,274 414,202 327,634 321,646 229,678
57,003 70,172 89,706 174,664 191,042 166,337 123,223
30,313 29,716 39,701 82,513 88,426 76,316 62,876
18,117 18,516 19,521 44,345 42,241 44,804 28,435
18,277 20,889 27,400 46,788 66,640 44,764 72,902

548,360 508,524 736,602 762,512 715,983 653,867 517,114

Beijing JU\/\MMJW/\/\AM‘/\WNV%

04129 06/22 09/30
Guangzmuwwwmww
04129 06/22 09/30

Figure 5: Daily trends of check-ins in different cities.
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Figure 6: Diurnal distribution users’ check-ins.

Sina Weibo (China’s Twitter), Douban (an interest-based social net-
work), Dianping (China’s Yelp).

Check-ins. We collected in total 39,358,679 check-ins, where
each check-in was represented with a timestamp, a latitude, a lon-
gitude, and a POI category. Since these physical footprints are ex-
tremely crucial for understanding individual lifestyles, we analyzed
them in several dimensions.

For example, Fig. 5 shows the daily trends (during Apr. 9, 2012
to Nov. 15, 2012) of the total number of check-ins with respect to
two major cities in north and south China respectively (Beijing and
Guangzhou). As is shown, the number of check-ins periodically
rises on weekends and falls on weekdays. Here, the dates that we
have labeled on the x-axis are important public holidays (at least
three days) in China, including Labor Day (3 days), Dragon Boat
Day (3 days), and National Day (8 days). On these days, the number
of check-ins is relatively higher than normal weekends, especially
on National Day, which has a clearly longer peak than other holi-
days. This is mainly because that a lot of people travel with their
families and friends during this long holiday.

We further examined the diurnal distribution of people’s check-
in behavior by sampling the 1000 individuals in different cities and
analyzing their diurnal check-in distributions, as shown in Fig. 6.
Unlike the aggregated daily trends, the diurnal distribution varies in
different cities. For example, Fig. 6a and Fig. 6b reveal that people
in Guangzhou check in earlier than people in Beijing in the morn-
ing (7AM), and later in the evening (12AM). This result conforms

Shanghai citizens Hongkong citizens

Beijing citizens

Shanghai

Hongkong

Figure 7: Check-in density distribution of 3 cities showing
where people check-in in each other’s cities. The diagonal sub-
plots (local citizens) show significantly higher diversity than
other subplots (travelers).

very well to a recent survey * with 1 million respondents performed
by Chinese Medical Doctor Association, which shows that the av-
erage bedtime of Guangzhou citizens is 23:08pm and 22:15pm for
Beijing.

Fig. 7 plots the density distribution of check-ins posted by Bei-
jing, Shanghai and Hongkong citizens when they are in each other’s
city, e.g., grid (1,2) in the 3 x 3 grids tells us where Shanghai
citizens check-in at Beijing. This figure clearly indicates that the
check-ins of local citizens are much more diverse than those of trav-
elers (as expected), and people in different cities have differentiated
preferences when traveling in other cities. e.g., the hot spots in grid
(2,1) and grid (2,3) are quite different.

Movies/Music/Books/Events. We collected in total 82,451 movies,
477,712 songs , 406,564 books, and 407,950 social events/gatherings.
All of the above entities have their taxonomies, which were also
crawled and leveraged for constructing the footprints. Note these
are the number of entities, not footprints. In terms of footprints, we
crawled 6,241,036 movie footprints, 3,075,305 music footprints,
1,560,206 book footprints, and 2,596,252 event footprints. Table 1
summarizes the different kinds of footprints for different cities.

*http://bit.ly/l4cvnem


http://weibo.com
http://douban.com
http://dianping.com
http://en.wikipedia.org/wiki/Beijing
http://en.wikipedia.org/wiki/Guangzhou
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Figure 8: Lifestyle spectrums of different groups in terms of vocation and education.

(a) homosexual men (b) homosexual women

Figure 9: Social graphs of homosexual men and women in our
dataset, where different colors indicate different places of resi-
dence.

5.2 Results on Different Demographic Groups

We extract profiles from users’ multiple networks, such as gen-
der, place of residence, sexual orientation, education, and vocation.
We note that all these networks have privacy options for users to
hide their profiles from others, and we only crawled public profiles.
Based on which, we segmented users into different groups and gen-
erated the lifestyle spectrums for each group. Due to space limit, we
only present part of our findings and results here. For each lifestyle
spectrum, we show the top-3 levels, where each living pattern is
presented by the top-3 frequent footprints.

Vocation and Education. Fig. 8a,b present the lifestyle spectrums
for two vocational groups: financial practitioners and software prac-
titioners, both containing 1,000 samples. As is shown, the most
common living pattern for these financial practitioners is reading
economics books and checking-in at apartment hotel (indicating
that they are often on business trips). However, for software prac-
titioners, reading programming books is their most-typical living
pattern, which makes perfect sense. Node 6 (N6 for short, similarly
hereinafter) in Fig. 8a targets a subgroup of individuals who are



probably working for banks. Compared with software practition-
ers, the result suggests that these financial practitioners live a chicer
life, e.g., more often they show at bars and scenic places (N3, N11
of Fig. 8a), while the software engineers are still coding or reading
programming books at apartment or office (N6, N9 of Fig. 8b).
Fig. 8c and Fig. 8d are lifestyle spectrums of graduates and stu-
dents from two universities: Tsinghua University (known as one
of the best science and engineering university in China) and Bei-
jing Film Academy (BFA), which graduated many famous alumni
in filming industry such as Yimou Zhang and Kaige Chen. The re-
sults (generated with 300 samples for each group) show that their
lifestyles widely differ from each other, e.g., N1 in Fig 8c reveal
that most students/graduates in BFA go to bar and western food
restaurants frequently and their music tastes are more diverse than
Tsinghua students/graduates. In addition, students and graduates
from Tsinghua are automatically categorized into two subgroups:
Living patterns rooted at N2 reveal many characteristics of a stu-
dent such as “teaching-building”; while the living pattern of N3 is
commonly shared by working people.
Gender and sexual orientation. Gender and sexual orientation dif-

ferences were intensely studied in sociology and social psychology[28].

Based on self-identified sexual orientation provided in users’ public
profiles, we randomly sampled 500 homosexual men and women to
generate the lifestyle spectrums, as depicted in Fig. 10a,b. In 2006,
China was estimated to have 5-9 million homosexual men among
452 million adult males (aged 15 to 64)[13]. To be comparable,
we sampled 45,000 heterosexual men and women (for each), and
generated their lifestyle spectrums. As a result, some characteris-
tic living patterns for homosexual men/women are prominently re-
vealed, e.g., watching homosexual movies, gym, and reading tanbi
books (describing the love between boys). For homosexual women,
however, the living pattern “watching homosexual movie” is not as
dominant as for homosexual men. Another remarkable signal im-
plied by the result is that a certain number of homosexual men are
students (N10 in Fig. 10a). Note that social links are also leveraged
in our model for learning lifestyle spectrums. Fig. 9 is a visual-
ization of their social graphs (using OpenOrd layout [22] for edge-
cutting and community clustering), where we removed 21 isolated
nodes for homosexual men and 27 for homosexual women. It’s
clear that the gay community has a much stronger social connec-
tion than the lesbian community.

The gender difference between heterosexual men and women is

also significant, e.g., men watch more sci-fi and action movies while
women prefer romance movies (N1 of Fig. 10c,d). N2 and N4 of
Fig. 10c may refer to two kinds of men: men who spend more time
on career vs. men who spend more time with family. For women,
regardless of which subgroup they belong to, they all love shopping
(N1 of Fig. 10d). A majority group of females like Taiwan or west-
ern pop-style music (N2 of Fig. 10d). Many typical living patterns
for Chinese women are also brought to light, such as shoe-store,
hot-pot, snack, bread and KTV (N3,4,7,11,13 of Fig. 10d).
Place of Residence. We generated the lifestyle spectrum of 15
cities in China using 10,000 sampled citizens for each city, e.g.,
Fig. 3 shows the result of Beijing (results of other cities are not
visualized here due to space limit). Meanwhile, we calculated the
similarity of lifestyle spectrums between different cities based on
Hausdorff distance [30], which is commonly used as a similarity
measure between two sets.

Specifically, a lifestyle spectrum 7 can be represented by a set
containing all the lifestyles (i.e., paths), as modeled in Section 4.1.
Consider a lifestyle [ as a point in a m-dimension space, where m
is the number of unique footprints. For each footprint f that occurs
in some living pattern S € [, we assign the dimension in [ that cor-
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Table 2: Average recognition ratio

Method RTM hLDA RH-LDA
Check-in 0.361 0.500 0.667
+Movie 0.389 0.556  0.694
++Music 0.444 0583 0.722
+++Book 0472  0.639  0.806
++++Events  0.472 0.667  0.833

responds to f with the proportion of people who exhibit lifestyle .
Then the distance between any two lifestyles can be calculated us-
ing the Euclidean distance. Hence, the Hausdorff distance between
T1 and 7> is defined as
du (71, T2) = max(max min d(I,1), max mind(l,1')).
lETH I'ET2 UVeT2 €T

Fig. 11 shows the similarity matrix of these cities, where green
cubes indicate a smaller distance (i.e., similar) and red cubes stand
for a larger distance. Many similarities found in this matrix can
be explained by geographical proximity and culture homology. For
example, Chengdu and Chonqing have similar lifestyles, which is
widely known to the public since they are geographically close to
each other and they share the root of Ba-Shu Culture’. Another
example is Shanghai and Tianjin, the two major seaports in China,
which were both colonized in the 19th century, and for both of them,
there is a “mother” river flowing through their hinterlands (Haihe
River® and Huangpu River’). It has been found long ago that a river
plays a key-role in a city’s economy, civilization and culture devel-
opment [18].

5.3 User Study

In order to further validate our method in the field, we performed
a user study, which focused on evaluating the lifestyle spectrum of
a city. Our study is guided by the following questions: 1) Whether
our model can capture the characteristics of lifestyles in a city,
thus reveal the intergroup difference between different cities? 2)
Whether our method can reveal diverse lifestyles of a city, thus can
uncover the intragroup variations?

Participants. We recruited 36 participants (aged 21-45, 20 males
and 16 females) who reside in 6 cities, including Beijing (BJ), Shang-
hai (SH), Guangzhou (GZ), Hangzhou (HZ), Chengdu (CD), and
Xiamen (XM) (6 participants for each city), and all of them have
lived in their cities for more than 8 years.

Baselines. In terms of learning the lifestyle spectrum, we com-
pared our model (RH-LDA) with two baselines: 1) The hLDA model,
which only considers words of a document (i.e., footprints). 2) The
RTM model, which only leverages social links and does not support
a hierarchical structure of topics. Thus the lifestyle spectrum gen-
erated by RTM is a list of topics instead of a tree-structure. In addi-
tion, RTM requires the number of topics n to be fixed beforehand.
To make RTM comparable with hLDA and RH-LDA, we fixed n
to be identical to the number of living patterns generated by hLDA
and RH-LDA respectively, and chose the best performance between
them as the result of RTM. All these models were inferred using
collapsed Gibbs sampling, and the hyper parameters were learned
through Metropolitan Hasting [7].

Intergroup Difference. Using each of the 3 methods, we gener-
ated lifestyle spectrums of these cities and visualized them to the
participants, without telling them which city each spectrum stands

Shttp://bit.ly/15B2Qvm
*http://bit.ly/ZSHO9T
"http://bit.1ly/10tpl5U
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for. Then each participant picked one among the 6 different spec-
trums, which she believed is most likely to be her place of residence
(we had told them to consider not only their own lifestyles but the
variations of lifestyles according to their knowledge of their cities).
Later, we calculated the recognition ratio (RR) (the number of users
who successfully identified the spectrum of their cities divided by
the number of users) for each model. Fig.12 shows the recognition
ratio for each city when we leveraged all kinds of footprints. We
further studied how well these models can perform if we reduce
the heterogeneity of footprints. Table 2 summarizes the average
recognition ratio for all the considered cities, given different types
of footprints including checkins, movies, songs, books, and offline
events. Clearly, the performance of these models were all improved
by increasing the diversity of footprints. However, for each setting,
RH-LDA achieves the highest recognition ratio, which suggests that
our model is more effective than competing methods in terms of the
ability to summarize the lifestyles of a city and uncover the inter-
group differences.

Intragroup Variation. For studying the effectiveness of our model
in terms of capturing lifestyle variations within a group, we asked
the participants for their online network accounts, and collected
their footprints. Among them, 23 participants own multiple social
network accounts. We used the trained model for each city to in-
fer these participants’ lifestyles beforehand. Then we compared the
generated lifestyle (a path on the spectrum for RH-LDA and hLDA,
and a set of living patterns for RTM) with their own lifestyles cho-
sen by themselves for each model pertaining to their own cities. We
then calculated their similarity by extracting the top-5 footprints
for each related living pattern of these two sequences (lifestyles),
and compared their average Jaccard Similarity (JS). Furthermore,
we studied the effect induced by the number of levels in the spec-
trum (the number of topics for RTM is determined as before), as
shown in Fig.13. As a result, our model outperforms the competi-
tors significantly, however, when the number of levels increases,
the similarity between the inferred lifestyle and the user’s perceived
lifestyle decreases for all the models. In particular, when the num-
ber of level goes from 3 to 4, the performance of the other methods
declines precipitously, nevertheless, our method is relatively more
stable and robust. According to users’ feedback, when the number
of levels becomes too large, it’s not easy for them to choose the
most relevant lifestyles.

6. DISCUSSIONS

e Limitations. While showing the potential to leverage massive
behavioral data for learning lifestyles, we are aware that this method
has several limitations. First, human lifestyle is complicated. It is
still possible that the actual lifestyle of a person deviates from what
reflected in the behavioral data. Second, the targeted population
mainly consists of young people who use online social networks
extensively, which may bias the lifestyle spectrum. However, this
is actually induced more by the limitation of the data rather than
the model. Note that conventional social studies might also suffer
from sampling bias [5], with much smaller scale and coverage (e.g.,
dozens of college students) compared to the dataset used in this
work. We believe by employing more types of footprints that mir-
ror users’ offline behaviors, e.g., credit card transactions and public
transit records, this framework can cover a broader demographic
and attain a more faithful understanding of their lifestyles.

e Privacy. We re-emphasize that in this work we only collected
users’ publicly available data (i.e., visible to everyone on the web)
including profiles, social links, and footprints. Besides, the con-
nections between users’ different accounts are identified from their
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self-disclosed contents (refer to Section 3.1). However, we remind
that some users may have no intention to (or carelessly) disclose the
connections of their different accounts (e.g., by adopting the default
privacy options of some websites, or by posting a tweet with loca-
tion check-in automatically embedded). Thus, we suggest both the
users and social networking sites re-consider their privacy policy in
terms of the linkage between multiple accounts, which may poten-
tially be exploited by attackers and thus bring privacy risk [20] to
the users.

7. CONCLUSION

We have presented LifeSpec, a data-driven framework for explor-
ing and hierarchically summarizing urban lifestyles. In this frame-
work, we have built a data platform to connect users’ heterogeneous
behavioral data and their social links. Given the behavioral data
as digital footprints, we have formally modeled the lifestyle spec-
trum of a group and generalized a probabilistic model to learn the
lifestyle spectrum. We conducted a series of experiments and user
studies to validate the usability and flexibility of this framework.

Please note that this framework is not designed to replace tradi-
tional methods in lifestyle research. Instead, we believe that these
methods can complement each other (actually this work is also a
collaboration with sociologists) to enable a better and more com-
prehensive understanding of human lifestyles, which is not only
important for advancing the lifestyle research in social science, but
also essential to personalized recommendation and targeted adver-
tising.
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APPENDIX
A. PROOF OF THEOREM 1

PROOF. Since Algorithm 1 only visits each profile page once
(line 2-4 of Procedure VisitProfile), and the merge operation (line
9) can be implemented using the Union-Find algorithm [33] (note
that the number of connected URLSs per profile page is limited by
the types of networks), thus Algorithm 1 keeps the complexity of
Union-Find with O(|hy|) find operations and |h| elements, i.e.,
O(|he|a(|h-1)) [34, 35]. Therefore, the theorem holds when the
following statements are true: 1) After termination, U contains all
the profile pages in h;; 2) At any time, there are no two users who
have a joint profile page and 3) After each loop (line 18), for any two
profile pages p’,p” € hy, where p’ € v/ € U and p”’ € uv” € U,
if u' # u” (i.e., p” and p”" are merged into different classes), then
p’ and p’’ are not connected.

The first statement is true since every visited page is added to
auser in U at line 13. The second statement holds because every
time, we add all the visited profile pages (line 8 of Algorithm 1) into
a single user u’, and no profile page is visited more than once. We
assume the last statement does not hold, i.e., v’ # u” and 3 an undi-
rected path W = po(= p')pip2-..pn(= p”) connecting p’ and
p”, where each p;p;+1 are directly connected Vi = 0,1...,n— 1
(see Section 3.2). Thus, Vi = 0,1,...,n — 1, 3 a profile page ¢;,
s.t. the URLs of p; and p;+1 co-occur on c¢;, which leads to three
cases: 1) ¢; = p;, thus p; > piy1;2) ¢; = piy1, thus pig1 > py;
3) ¢; > p; and ¢; > pi+1. In each of the above cases, Algorithm 1
will add p; and p;41 into the same equivalence class, i.e., v’ = u”,
which yields a contradiction. Therefore, the theorem holds. [

B. INFERENCE OF RH-LDA

The collapsed Gibbs sampling process is summarized as follows:
Given the current state of the sampler,{cg?D7 zgf)D , iteratively for
each individual d € {1, 2,..., D},

1. Randomly draw c,(;“) from p(cq|w, c_q,z,n,), which is ex-

actly the same as given in [7].



2. For each footprint f € {1,2,..., N4} of u, randomly draw
(tj;l) from

n,

Zz

p(Zd,f = l‘zf(d,f% c,w,m,m,n, <7 U)

O(p(zd,f|zd,ff7 m, ﬂ—)p(wd,f|z7 C, Wf(d,f)7 m, Cv U) (3)
H Ve (Ya,ar = 1|€(d,zq), C(a,2,)5 G5 V) 4)

d’#d:ydyd/:l
H we(yd,d’ = O‘C(d,zd)7c(d’,z:i)7<’v)' (5)

d/;ﬁd:ydyd/:o

Eq. (3) is the same as hLDA, given in [7].
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Eq. )= I  exp(zays)and
d/yéd:yd’d/:l d

Ba®= T (1-exp (5rhe So eNENG) +0)),
d'#diyy qr=0 d>d

where k = cg4; is the assigned living pattern of n, N¥ is the num-
ber of footprints assigned with living pattern k, and N4 denotes the
number of footprints in w.

3. TIteratively learn the parameters ¢ and v, using the method pro-
vided in the appendix of [9].
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