Cost Evaluation of Interactively Correcting Recognized Engineering Drawings

Liu Wenyin1,2 Zhang Liang2 Tang Long2 Dov Dori3
1 Microsoft Research, Sigma Center, #49 Zhichun Road, Beijing 100080, PR China

wyliu@microsoft.com

2 Department of Computer Science and Technology, Tsinghua University, Beijing 100084, PR China

3 Faculty of Industrial Engineering and Management, Technion – Israel Institute of Technology, Haifa 32000, Israel, dori@ie.technion.ac.il

We present a new scheme, which is based on the cost of interactively correcting detection errors, for performance evaluation of engineering drawings recognition algorithms. We correct graphic objects so that they match the expected output in a graphics-editing tool using GUI, similar to that of AutoCad™. Through experiments, we define the time spent on the editing operations as the of the output element, and use it as an index for evaluating the performance of graphics recognition.

Keywords: Performance Evaluation, Graphics recognition, GUI

Introduction

Performance evaluation of automatic engineering drawings vectorization has been proposed in several ways, including the number of matches (Kong et al. 1996, Hori and Doermann 1996, and Phillips et al. 1998), detection accuracy (Liu and Dori 1997, 1998), and (Phillips and Chhabra 1999). These proposed protocols provide indices for quantitative comparison among vectorization systems. However, for practical purposes, the index (Phillips and Chhabra 1999) is more useful than others since the imperfect results of vectorization systems require manual corrections, so the parameter we wish to minimize is the . is also based on the number of matches between the ground truths and detected entities.

Each class of graphic entities and each type of detection error may require a different amount of time to correct. For example, a short line, falling completely inside the editing window and a long one covering more than one window require different amount of effort in the correcting action. Hence, an index based solely on the number of matches does not generally reflect the amount of time required for correcting the detected error.

In this paper we propose an alternative definition and approach for the cost of image editing, based on the estimated time of interactively/manually correcting the imperfect graphic object. The graphics editing tool we used in the experiments is AutoCad™ R14. We measured the editing time for the graphic classes of points, lines, arc, circles, polylines, and text/characters. The proposed scheme can be extended to other classes of graphics.

The total edit cost of the entire drawing of a graphic object recognized by a given algorithm is the sum of the edit costs of all the imperfect graphic objects recognized in the drawing. To obtain a normalized and uniform edit cost performance index of an algorithm, an index formed by the total edit cost divided by the cost of redrawing all the graphic (ground truth) objects is used to compare the performance of the same algorithm on different drawings. The value of this index ranges between 0 (which is best, since no cost is needed) and 1 (which is the worst and means that the cost amounts to total redrawing).

We have used the edit cost indices to evaluate the performance of the Machine Drawing Understanding System – MDUS (Dori and Liu 1999) over the test images used in the Second IAPR Graphics Recognition Contest (Chhabra and Phillips 1997). The results are presented in this paper.

1. Basic Operations of Graphics Editing and Their Edit cost

We assume that the raster drawing is used as the background, so that the locations of expected graphic objects (ground truth) are clear and can be used as guidance. The editing of other attributes (e.g., line, style, and color) of graphic objects are not considered in this paper.

In typical graphics editing tools (such as AutoCad) the editing operations of all classes of graphic entities consist of a number of basic operations:

1. Mouse click for picking an object (e.g., a point, a graphic object, etc., the picked object usually is distinguished from others) or click a window object (e.g., a button, scrollbar, etc.). The cost of a mouse click is

Cpo = a

(1)

where a is a constant that can be determined through experiments.

2. Locating a point (e.g., for redrawing an endpoint of a new line or to precisely drop a moving point when correcting a line). The cost of locating a point is

Clp = b

(2)

where b is a constant that can be determined through experiments.

3. Drag and drop for moving a point or a graphic object to a new location. Drag and drop has the following linearly approximated cost:

Cd = k1*dsd + c

(3)

where dsd is the dragging distance from a start point to an end point, k1 is a constant which is equivalent to the dragging speed, and c is a constant. The Drag and drop operation includes two steps. The first step is dragging the object by a distance and the second step is precisely dropping it into a new location. The cost of the second step is at least the same as locating a point, specified in Eq. (2). Therefore it holds that c (b.

4. Searching the next point for correction, Csp. This operation is an important step during graphics editing. For instance, if the two endpoints of a line are not inside the same window, after editing the first endpoint, finding the second endpoint may require substantial time, which is denoted by Csp. The definition of Csp is complex for many situations.

We wish to approximate the cost of scrolling the window from the current point located at (x1, y1) to the expected point located at (x2, y2). Assuming that each click on the horizontal (vertical) scroll bar makes the screen “jump” by a whole screen width (height), we need ((x2–x1)/w(mouse clicks to move horizontally and ((y2–y1)/h(to move vertically. Hence, we can approximate the cost of searching the next point for correction as follows.

Csp = a[((x2–x1)/w(+ ((y2–y1)/h(]

(4)

where w is the window width (with default value of 640 pixels) and h is the height (with default value of 480) of the editing window.

We have used AutoCad R14 as a test bed to evaluate the real edit cost of some typical graphics objects. The user was a student, who was familiar with PC and Windows, though not an AutoCad professional. His experience may be considered as that of a typical user.

In the experiment the user tests picking up 10 points, 10 lines, 10 circles, and 10 arcs in the current screen. The average of picking up an object is 1.19 seconds. Hence, the constant in Eq. (1) is Cpo = a = 1.19s.

The experiments on locating (or dropping) a point resulted in the constant in Eq. (2) to be Clp = b = 3.03s.

The reason that b > a is that picking up an object does not require precise location of the mouse, while locating or dropping an object to a precise location takes more diligence. Our result shows that it is about 2.5 longer.

The constants in Eq. (3) were obtained by linear regression done on dragging experiment results. Their average values are k1=0.0083 and c=3.80s.

2. Costs of Correcting/Redrawing Typical Graphic Objects

Having defined the edit cost of the basic operations, the correction editing cost of a graphic object is defined as

[image: image1.wmf]d

po

C

C

Ec

+

=

(4)

where Ci (I = 1..n) is the edit cost of the operation in the ith step of correction or redrawing of the graphic entity.

Typical classes of graphic objects require the following basic editing operations.

1) Point
The editing of a point consists of two steps: picking up the point and dragging and dropping it to the destination. Therefore the cost consist of Eqs. (1) and (2):

[image: image12.wmf]å

=

=

m

j

j

total

Ec

Ec

1

Cp = Cpo + Clp = a + b

(5)

2) Line
There are two conceivable methods to correct a line. One is “move line, move point”: first translate the whole line that requires correction parallel to itself, until one of its endpoints coincides with the endpoint of the ground truth line, and then dragging the other endpoint to its correct location, as shown in Figure 1. The second method is “move point, move point”: correct one endpoint, then the other, as shown in Figure 2.

The “move line, move point” is cost effective if the line only requires translation from its expected location, such that the “move point” step is not required, so only one step of moving (the entire line) is enough. For other cases, moving of both endpoints is required. The “move point, move point” method is especially recommended when the line is long, such that the two endpoints are not shown simultaneously in the same screen area.

The cost includes moving two endpoints, the cost of each of which is written in Eq. (5), and the cost of searching for the next line endpoint to be corrected, the cost of which is written in Eq. (3). The result appears in Eq. (6).

[image: image2.wmf]sp

d

po

d

po

C

C

C

C

C

Ec

+

+

+

+

=

)

(

)

(

2

2

1

1

d

d

(6)

where (i (i=1 or 2) is 0 if the ith endpoint is at its expected location (so it does not need to be moved), and 1 otherwise.

[image: image3.wmf]
(a) (b) (c)

Figure 1. The “move line, move point” method of correcting a line. (a) original situation; (b) move the line to coincide one endpoint, and (c) coincide the other endpoint.

[image: image4.wmf]
(a) (b) (c)

Figure 2. The “move line, move point” a line. (a) original situation; (b) coincide one endpoint; and (c) coincide the other endpoint.

While redrawing a line consists of precisely locating the two endpoints and finding the second endpoint from the first endpoint. Therefore the cost of redrawing a line is

[image: image5.wmf]sp

lp

C

C

Rc

+

=

2

(7)

3) Circle
We correct a circle by correcting the center and the radius of the circle (actually a point on the circle). The correcting cost is equivalent to that of correcting a line in Eq. (5) and the redrawing cost is equivalent to that of redrawing a line.

4) Arc
Similarly to correcting a line, we correct an arc by correcting the three points (two endpoints and the center or another point on the arc). The correcting cost is

[image: image6.wmf]å

=

=

n

i

i

C

Ec

1

(8)

The redrawing cost of an arc includes 3 times of locating points in Eq. (2) and twice finding the next point in Eq. (4).

5) Polyline
We correct a polyline by correcting each of its point. The correcting cost is

[image: image7.wmf]3

3

3

2

2

2

2

1

1

1

d

sp

d

sp

d

po

C

C

C

C

C

C

Ec

×

+

+

×

+

+

×

+

=

¢

-

¢

-

d

d

d

(9)

The redrawing of a polyline includes a sequence of locating a point and finding the next point.

After defining the edit cost and redraw cost of graphic objects, we observed that the calculated edit cost may be greater than the redraw cost in some cases, e.g., a short recognized line matched with a long ground truth. Particularly in these cases we use the redraw cost as the final edit cost of the object.

The edit cost of the entire drawing is defined as

[image: image8.wmf]å

=

=

m

j

j

total

Ec

Ec

1

(10)

where m is the number of ground truth objects in the drawing. Note that some ground truth objects may not have a corresponding detection. The correction for this kind of error is simply redrawing the entire missing objects, whose edit cost is the redrawing cost.

Although the total cost of drawing, defined in Equation (10), can be used as a performance evaluation index of the vectorization, it is not normalized and hence cannot be used to compare among different drawings. In order to get a comparable index among all drawings, the index is normalized by dividing it by the total redrawing cost for all the ground truths. Since the normalized edit cost falls in the range 0 to 1, it provides a comparable index not only among algorithms/systems but also among drawings and can serve as the unique index to indicate the relative performance evaluation of each vectorization system. The smaller the normalized edit cost index, the better the system.

3. Cost Evaluation of MDUS

We have used the edit cost definition to evaluate the Machine Drawing Understanding System (MDUS) (Liu and Dori 1996). We used two test images (ds08.tif and ds33.tif) downloaded from the web site developed by Chhabra and Phillips (1997) for the second IAPR graphics recognition contest. We evaluated only the edit cost of lines and arcs. The results are presented in Table 1.

The edit cost is evaluated at three different position tolerance level: 1, 3, and 5 pixels. Points lying within the allowed tolerance are not corrected, so the corresponding edit costs are saved.

Table 1 shows that the normalized edit cost of the two recognized drawings is very high. The edit cost is still about two thirds of the cost of totally redrawing even for a permissive tolerance of 5 pixels. Probably this is the reason why users are unsatisfied with the current raster to vector conversion products.

Table 1. Edit cost of lines and arcs recognized by MDUS on two test images.

Image
Redraw Cost (seconds)
 Edit Cost (seconds) at Different Tolerance (pixels)
Normalized Edit Cost Index at Difference Tolerance (pixels)

1
3
5
1
3
5

Ds33
2311
1945
1691
1562
0.84
0.73
0.67

Ds08
2096
1572
1315
1296
0.75
0.63
0.62

4. Summary

We have defined the edit cost for a class of basic graphic objects within the AutoCad GUI environment and estimated the values of their pertinent parameters through a limited set of experiments. However, the edit cost within other editing tools, or by different people using different editor options and at different skill levels may have different evaluation of edit cost. The purpose of this paper is provide a scheme of evaluating the edit cost of graphic recognition results. More experiments should be done to obtain more objective evaluation of the edit cost of graphic objects.

A conclusion may be drawn from the experiments that the relative edit cost of recognized drawings is very high and this may be the reason why the current users are reluctant to use the raster to vector conversion products. We researchers may have to make some changes to the state of the art.

References

Chhabra A and Phillips I (1997) Web pages for the Second International Graphics Recognition Contest—Raster to Vector Conversion. http://graphics.basit.com/iapr-tc10/contest.html

Chhabra A and Phillips I (1998) The Second International Graphics Recognition Contest—Raster to Vecter Conversion: A Report. In: Tombre K, Chhabra A (eds). Graphics Recognition—Algorithms and Systems (Lecture Notes in Computer Science, Vol. 1389). Springer, 1998, pp 390-410.

Dori D and Liu W (1999) Automated CAD Conversion with the Machine Drawing Understanding System: Concepts, Algorithms, and Performance. IEEE Transactions on Systems, Man, and Cybernetics, 29, 4, pp 411-416

Hori O and Doermann DS (1996) Quantitative Measurement of the Performance of Raster-to-Vector Conversion Algorithms. In: Kasturi R, Tombre K (eds) Graphics Recognition -- Methods and Applications (Lecture Notes in Computer Science, vol. 1072). Springer, Berlin, pp 57-68

Kong B, Phillips IT, Haralick RM, Prasad A, Kasturi R (1996) A Benchmark: Performance Evaluation of Dashed-Line Detection Algorithms. In: Kasturi R, Tombre K (Eds.) Graphics Recognition -- Methods and Applications (Lecture Notes in Computer Science, vol. 1072). Springer, Berlin, pp 270-285

Liu W and Dori D (1996) Automated CAD Conversion with the Machine Drawing Understanding System. In: Proc. of 2nd IAPR Workshop on Document Analysis Systems, Malvern, PA, USA, October, 1996, pp 241-259

Liu W and Dori D (1997) A Protocol for Performance Evaluation of Line Detection Algorithms. Machine Vision Applications 9(5) pp 240-250

Liu W and Dori D (1998) Performance Evaluation of Graphics/Text Separation. In: Tombre K, Chhabra A (eds). Graphics Recognition -- Algorithms and Systems (Lecture Notes in Computer Science, Vol. 1389). Springer, 1998, pp 359-371.

Phillips IT, Liang J, Chhabra A, and Haralick RM (1998) A Performance Evaluation Protocol for Graphics Recognition Systems. In: Tombre K, Chhabra A (Eds.) Graphics Recognition -- Algorithms and Systems (Lecture Notes in Computer Science, Vol. 1389). Springer, 1998, pp 372-389

Phillips I and Chhabra A (1999) Empirical Performance Evaluation of Graphics Recognition Systems. To appear in IEEE T-PAMI.

�

�

�

6

[image: image9.wmf]å

=

=

n

i

i

C

Ec

1

[image: image10.wmf]3

3

3

2

2

2

2

1

1

1

d

sp

d

sp

d

po

C

C

C

C

C

C

Ec

×

+

+

×

+

+

×

+

=

¢

-

¢

-

d

d

d

[image: image11.wmf]å

å

-

=

+

¢

-

=

+

×

+

=

1

1

1

1

n

j

j

j

sp

n

i

di

i

po

C

C

C

Ec

d

_992192655.doc

_992192658.doc

_992192660.unknown

_992192653.unknown

