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Abstract

We give a deterministic, polynomial-time algorithm for approximately counting the number
of {0, 1}-solutions to any instance of the knapsack problem. On an instance of length n with
total weight W and accuracy parameter ε, our algorithm produces a (1 + ε)-multiplicative
approximation in time poly(n, logW, 1/ε). We also give algorithms with identical guarantees
for general integer knapsack, the multidimensional knapsack problem (with a constant number
of constraints) and for contingency tables (with a constant number of rows). Previously, only
randomized approximation schemes were known for these problems due to work by Morris and
Sinclair and work by Dyer.

Our algorithms work by constructing small-width, read-once branching programs for approx-
imating the underlying solution space under a carefully chosen distribution. As a byproduct
of this approach, we obtain new query algorithms for learning functions of k halfspaces with
respect to the uniform distribution on {0, 1}n. The running time of our algorithm is polynomial
in the accuracy parameter ε. Previously even for the case of k = 2, only algorithms with an
exponential dependence on ε were known.
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1 Introduction

In this paper we give the first deterministic, polynomial-time approximation schemes for several
well-studied #P -hard counting problems such as knapsack and multidimensional knapsack. There
are many celebrated, randomized polynomial-time algorithms for approximately counting #P -hard
problems (for example, approximating the permanent [JSV04]). There are far fewer examples,
however, of deterministic approximation algorithms for #P -hard problems. A few notable examples
can be found in [Wei06], [BGK+07], [HKM+09].

The knapsack counting problem (#KNAP) is defined as follows: given a non-negative vector
a ∈ Zn+ and non-negative b ∈ Z+, count the size of the set KNAP(a, b) = {x ∈ {0, 1}n :

∑
i aixi ≤

b}. It is well-known that the #KNAP problem is #P -hard, and much attention has been given
to the problem of approximately counting the size of KNAP(a, b). More specifically, given an
error parameter ε, we are interested in finding a value p such that |KNAP(a, b)| ≤ p ≤ (1 +
ε)|KNAP(a, b)| in time polynomial in n and 1/ε (such a value p is often referred to as an ε relative-
error approximation or ε-approximation for short).

Dyer et al. [DFK+93] were the first to study the problem of approximately solving #KNAP
and gave a sub-exponential time algorithm for the problem. Morris and Sinclair [MS04] were the
first to give a polynomial-time, randomized approximation scheme (FPRAS) for #KNAP, they use
a rapidly mixing Markov chain to sample randomly from the solution space. Subsequently, Dyer
[Dye03] gave a simpler FPRAS based on dynamic programming for #KNAP. In this work, we give
the first deterministic polynomial-time approximate counting algorithm for #KNAP1:

Theorem 1.1 (determnistic counting for knapsack). Given a knapsack instance (a, b) ∈ Zn×1+ with
weight W =

∑
i ai + b and ε > 0, there is a deterministic O(n3 log(W ) log(n/ε)/ε) time algorithm

that computes an ε-relative error approximation for |KNAP(a, b)|.

Our algorithm is simple and yields a fast method for generating a uniformly random element
of KNAP(a, b). The algorithm is inspired by a recent work due to Meka and Zuckerman [MZ10] on
monotone branching programs in the context of building pseudorandom generators for halfspaces.
Further, we show how to extend our algorithm to work with respect to a broad class of natural
non-uniform distributions on {0, 1}n including all symmetric and product distributions. To the
best of our knowledge, no efficient algorithms (randomized or otherwise) for counting with respect
to these natural distributions were known previously (see Section 1.1 for more details).

Morris and Sinclair [MS04] and Dyer [Dye03] also gave an FPRAS for counting the number
of solutions to the multidimensional knapsack problem for a constant number of constraints. In
this problem, we are given k knapsack instances (a1, b1), . . . , (ak, bk) ∈ Zn×1+ , ε > 0, and the goal
is to compute the number of solutions satisfying all constraints; i.e., compute |KNAP(a1, b1) ∩
KNAP(a2, b2)∩· · ·∩KNAP(ak, bk)|. We obtain a deterministic algorithm for this problem that runs
in polynomial time for k = O(1):

Theorem 1.2 (multi-dimensional knapsack). Given knapsack instances KNAP(a1, b1), . . . ,KNAP(ak, bk)
of total weight at most W , there is a deterministic O((n/ε)O(k2) · logW ) algorithm that computes
an ε-relative error approximation to the number of solutions satisfying all the knapsack constraints.

Our solution has two components: we generalize our counting algorithm for a single knapsack
constraint to work with respect to non-uniform distributions representable by small-width branch-
ing programs. We then use Dyer’s elegant rounding results to reduce multidimensional knapsack
counting to counting a single knapsack under such distributions.

1Throughout this paper we assume integer addition to be of unit cost.
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Our techniques also apply to the problem of counting the solutions of integer-valued knap-
sack instances. Here the goal is to estimate the size of the set of solutions KNAP(a, b, u) = {x :∑

i≤n aixi ≤ b, 0 ≤ xi ≤ ui}. Note that the range sizes u1, . . . , un could be exponential in n. Dyer
[Dye03] gave an FPRAS for the integer-valued case as well. We obtain a FPTAS for the problem.

Theorem 1.3 (integer knapsack). Given a knapsack instance KNAP(a, b, u) with weight W =∑
i aiui + b, U = maxi ui and ε > 0, there is a deterministic O(n5(logU)2(logW )/ε2) algorithm

that computes an ε-relative error approximation for |KNAP(a, b, u)|.

We also obtain similar results for counting the number of integer-valued contingency tables.
Given row sums r = (r1, . . . , rm) ∈ Zm+ and column sums c = (c1, . . . , cn) ∈ Zn+, let CT (r, c) ⊆ Zm×n+

denote the set of integer-valued contingency tables with row and column sums given by r, c:

CT (r, c) = {X ∈ Zm×n+ :
∑
j

Xij = ri, i ∈ [m],
∑
i

Xij = cj , j ∈ [n] }.

Note that as in the case of knapsack, the magnitude of the row and column sums could be
exponential in n. Dyer [Dye03] gave an FPRAS for counting solutions to contingency tables (with
a constant number of rows) based on dynamic programming. We give a FPTAS for this problem:

Theorem 1.4 (contingency tables with few rows). Given row sums r = (r1, . . . , rm) ∈ Zm+
and column sums c = (c1, . . . , cn) ∈ Zn+ with R = maxi ri and ε > 0, there is a deterministic
(nO(m)(logR)/ε)m algorithm that computes a ε-relative error approximation for |CT (r, c)|.

All our counting results also give fast sampling algorithms. After a pre-processing phase, each
new random sample can be generated in near-linear time, which improves considerably on previous
sampling algorithms.

Finally, we can use ideas motivated by our algorithm for counting knapsack solutions to learn
functions of halfspaces with membership queries with respect to the uniform distribution on {0, 1}n:

Theorem 1.5. The concept class of arbitrary Boolean functions of k halfspaces can be PAC learned
with membership queries under the uniform distribution {0, 1}n to accuracy ε in time (n/ε)O(k).

Previous algorithms [KOS04] ran in time nO(k2/ε2) (without queries) or in time poly(n2
k
,W 2k , 1/ε)

(with queries) where W is a bound on the weight of all halfspaces (which could be exponential in
n). Thus, even for the special case of learning the intersection of two halfspaces, known algorithms
had either an exponential dependence on 1/ε or a polynomial dependence on W . Our algorithm is
similar to Angluin’s algorithm for learning finite automata [Ang87] (essentially we reconstruct the
underlying approximating branching program). The analysis however, is quite different, since we
learn functions that are not (exactly) computable by small-width ROBPs.

1.1 Outline of our Algorithms.

Approximation by Branching Programs. All of our results revolve around the ability of read-
once branching programs (ROBPs) to approximate various classes of Boolean functions. Informally,
ROBP of width W is a labeled, layered directed graph with at most W vertices per layer that
induces a Boolean function in the obvious manner: at layer i we read the i’th bit of input, follow
the appropriate transition, and output the label of the final vertex reached (see Definition 2.1).

It is easy to see that a knapsack constraint of weight W (recall W may be exponential in n) can
be computed exactly by a width-W ROBP which keeps track of partial sums. Meka and Zuckerman
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[MZ10] in their work on pseudorandom generators for halfspaces2 proved the existence of a small-
width ROBP that approximates the solutions to a single knapsack constraint with small additive
(as opposed to multiplicative) error. To give an algorithm for approximately counting knapsack
solutions, we show how to explicitly construct a small-width ROBP whose set of accepting strings
is a multiplicative approximation to the set of strings satisfying the knapsack constraint. Our
construction proceeds by sparsifying each layer in the exact ROBP for knapsack by retaining only
a few carefully chosen representative partial sums. This uses the insight from [MZ10] that in the
exact branching program for halfspaces, there is a natural ordering on the vertices in each layer
induced by the partial sums.

Building on these ideas, we give a query algorithm that can learn an unknown Boolean function
under the uniform distribution as long as it is approximated in a certain sense by a small-width
ROBP. Previous learning algorithms (e.g., Angluin’s algorithm for learning finite automata) re-
quired the function to be exactly computable by a small-width ROBP. Our notion of approxima-
tion is somewhat subtle: it is stronger than being approximated by an ROBP under the uniform
distribution, but weak enough that any function of few halfspaces has such approximations.

Small-Space Sources. Extending our knapsack algorithm to multiple knapsack constraints
is not immediate. The main obstacle is that the natural ROBP for the intersection of knapsack
constraints which keeps track of all partial sums does not have a total ordering on its vertices, and
our knapsack algorithm crucially uses such a total ordering. One can still construct a small width
ROBP that additively approximates the number of solutions to multidimensional knapsack (as in
[GOWZ10]), but even the existence of a small-width multiplicative approximation is unclear.

To circumvent this issue, we first generalize our algorithms to counting knapsack solutions with
respect to small-space sources which were introduced by Kamp et al. [KRVZ06] in the context
of randomness extraction. Informally, these are families of distributions on {0, 1}n that can be
generated by small-width branching programs (see Section 2 for the formal definition). We show
the following result for deterministically counting knapsack solutions under small space sources:

Theorem 1.6 (counting under small-space sources). Fix a knapsack instance of total weight W
and error parameter ε > 0. Let µ be a distribution on {0, 1}n with an explicitly given small space
generator of width at most S and define µ(KNAP(a, b)) as Prx∼µ[x ∈ KNAP(a, b)]. Then there is a
deterministic algorithm that runs in time O(n3S(S+logW ) log(n/ε)/ε) and computes an ε-relative
error approximation to µ(KNAP(a, b)).

Next, we use an elegant result of Dyer [Dye03], which given a instance of multidimensional
knapsack, constructs a small space source under which the set of solutions is polynomially dense.
It is easy to get an additive approximation for multidimensional knapsack using Theorem 1.6.
Dyer’s result lets us transform a low additive error guarantee into a multiplicative error guarantee
and prove Theorem 1.2.

Small-space distributions include several natural distributions such as all symmetric distribu-
tions and product distributions. Thus as a corollary to Theorem 1.6, we obtain FPTASes for several
interesting variants of knapsack for which no polynomial time algorithms – even randomized – were
known to the best of our knowledge. For instance we show:

Corollary 1.7. Given a knapsack instance (a, b) ∈ Zn×1+ of total weight W =
∑

i ai + b, ε > 0 and
r ∈ [n] we can in deterministic time O(n3r(r+logW )/ε) compute an ε-relative error approximation
for the number of solutions to the knapsack instance of Hamming weight exactly r.

2Halfspaces are equivalent to the characteristic functions of knapsack instances.
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1.2 Related Work

Very recently, Stefankovic, Vempala, and Vigoda [SVV10] gave a deterministic FPTAS for the
knapsack problem with a run-time of O(n3ε−1 log(n/ε)). Their algorithm is based on dynamic
programming. Our work was obtained independently of theirs.

As mentioned earlier, Morris and Sinclair [MS04] and Dyer [Dye03] were the first to give an
FPRAS for the knapsack problem, with Dyer’s more efficient algorithm taking timeO(n2.5

√
log(n/ε)+

n2ε−2). Dyer also gives a deterministic, polynomial-time algorithm that achieves a
√
n factor ap-

proximation for counting knapsack solutions.
The problem of approximately counting knapsack solutions is equivalent to the problem of

approximately counting the fraction of assignments that satisfy a linear threshold function or half-
space. Servedio [Ser07] gave a deterministic algorithm for solving the latter problem to within an
additive ε in time exponential in 1/ε2. Recently, Diakonikolas et al. [DGJ+09] gave a pseudoran-
dom generator for halfspaces with seed-length Õ(log n/ε2) and Meka and Zuckerman [MZ10] gave
a pseudorandom generator for halfspaces with seed-length O(log n log(1/ε)) (enumerating over all
seeds results in a deterministic, additive error approximation).

Many researchers in computational learning theory have studied the problem of learning func-
tions computable by read-once branching programs (for a discussion see Bshouty et al. [BTW98]).
Positive results were known only for restricted classes of ROBPs, such as width-2 ROBPs [EKR95,
BTW98] (these algorithms use queries and succeed in the distribution-free model of learning) and
do not apply in our setting. Our algorithms learn concept classes that are closely approximated by
small-width ROBPs (with respect to the uniform distribution on {0, 1}n).

2 Preliminaries

2.1 Read-Once Branching Programs

Definition 2.1 (ROBP). An (S, T )-branching program M is a layered multi-graph with a layer for
each 0 ≤ i ≤ T and at most S vertices (states) in each layer. The first layer has a single vertex
v0 and each vertex in the last layer is labeled with 0 (rejecting) or 1 (accepting). For 0 ≤ i ≤ T , a
vertex v in layer i has two outgoing edges labeled 0, 1 and ending at vertices in layer i+ 1.

Note that by definition, an (S, T )-branching program is read-once. We also use the following
notation. Let M be an (S, T )-branching program and v a vertex in layer i of M .

1. For a string z, M(v, z) denotes the state reached by starting from v and following edges
labeled with z.

2. For z ∈ {0, 1}n, let M(z) = 1 if M(v0, z) is an accepting state, and M(z) = 0 otherwise.

3. AM (v) = {z : M(v, z) is accepting in M} and PM (v) is the probability that M(v, z) is an
accepting state for z chosen uniformly at random.

4. L(M, i) denotes the vertices in layer i of M .

5. For a set U , x ∈u U denotes a uniformly random element of U .

2.2 Small-Space Sources

Small-space sources were introduced by Kamp et al. [KRVZ06] in their work on randomness ex-
tractors, as a generalization of many commonly studied distributions such as bit-fixing sources,
Markov-chain sources.
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Definition 2.2 (small-space sources, Kamp et al.). A width w small-space source is described by
a (w, n)-branching program D with an additional probability distribution pv on the outgoing edges
associated with vertices v ∈ D. Samples from the source are generated by taking a random walk on
D according to pv’s and outputting the labels of the edges traversed.

We will often abuse notation and denote the distribution generated by a small-space source and
the source itself by D. Also, we will assume that the distribution D is given to us explicitly as a
small-space source. Several natural distributions such as all symmetric distributions and product
distributions can be generated by a small-space source. The following claims are straightforward:

Claim 2.3. Given a ROBP M of width at most W and a small-space source D of width at most
S, Prx←D[M(x) = 1] can be computed exactly via dynamic programming in time O(n · S ·W ).

Claim 2.4. Given a (W,n)-ROBP M , the uniform distribution over M ’s accepting inputs, {x :
M(x) = 1} is a width W small-space source.

3 A FPTAS for Counting Knapsack Solutions

As described in the introduction, we construct a small-width branching program that approximates
the feasible solutions to the given knapsack instance. We start with the exact branching program
for knapsack which has width W , and where each state in layer j corresponds to a possible value of
the partial sum vj =

∑
i≤j aixi. We will approximate this program with a small width branching

program whose state space is a carefully chosen subset of the original state space. We then count
the number of accepting solutions to the constructed small-width branching program exactly via
dynamic programming.

Our goal is to partition the states in layer i into intervals I1 = {v1 = 0, . . . , v2 − 1}, I2 =
{v2, . . . , v3 − 1}, It = {vt, . . . , vt+1 = W} and have only one state for each interval. The intervals
should be such that the number of accepting suffixes for all the partial sums in an interval is roughly
the same. We then rearrange the incoming edges from layer i − 1 appropriately. We refer to this
process as rounding layer i. A problem with this approach is that counting the number of suffixes
which accept from a given partial sum is another instance of knapsack.

We handle this by building the small width branching program backward starting from the last
layer. When we round the layer i, the layers i+ 1, . . . , n have already been rounded. Thus given a
partial sum in layer i, we know the number of accepting suffixes in our branching program exactly
and use these counts to partition layer i. We then show by induction that the resulting branching
program gives a good approximation to the set of feasible knapsack solutions.

We now give a formal description of this process.

3.1 Constructing an Approximating Branching Program

Let M denote the exact branching program for
∑

i≤n aixi ≤ b, which consists of n + 1 layers
numbered from 0 to n. We denote the set of states in layer i by L(M, i). Layer 0 has a single start
state s. For i ≤ n, L(M, i) has a state for each partial sum

∑
j≤i ajxj . Given a vertex v in layer

i− 1 and xi ∈ {0, 1}, the xi’th neighbor of v M(v, xi) = v + aixi.
We construct a series of branching programs Mn = M,Mn−1, . . . ,M0. We obtain M i from

M i+1 by rounding the states in L(M i+1, i+1). More precisely, we set L(M i, i+1) = {v1, . . . , v`} ⊆
L(M i+1, i+ 1) where the vjs are defined as follows: Let v1 = 0. Given vj , let

vj+1 = min v such that v > vj and 0 < PM i+1(v) ≤ PM i+1(vj)/(1 + ε) (3.1)
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Intuitively, state vj represents the interval Ij = {vj , . . . , vj+1−1}. When the acceptance probability
drops by a factor of (1 + ε), we start a new interval. Since PM i(v1) ≤ 1 and PM i(v`−1) ≥ 2−n, we
have ` ≤ O(nε ). Next we redirect the edges from level i to level i+ 1. If there is an edge labeled z
entering a vertex v ∈ Ij , then we redirect the edge to vertex vj . Note that rounding layer n to get
Mn−1 is trivial, we keep just one accept state and one reject state, corresponding to partial sums
of 0 and b+ 1 respectively.

Our branching programs have the following monotonicity property which is easily verified by
induction. We omit the proof.

Lemma 3.1. Let v, v′ ∈ L(M i, j) and v ≤ v′. For any suffix z, M i(v, z) ≤ M i(v′, z). Hence
PM i(v) ≥ PM i(v′).

This property allows us to construct M i from M i+1 efficiently. The key idea is that in Equa-
tion A.1, due to the ordering of the probabilities PM ( ), we can find vj by binary search as opposed
to sequential search, reducing the running time to O(logW ) as opposed to O(W ).

Lemma 3.2. Each vertex vj ∈ L(M i, i+ 1) can be computed in time O(log(n/ε) logW ).

Proof. The prove is by induction: we maintain the invariant that for every i, we have the vertices
vj of L(M i, i+ 1) stored in a binary tree and also know their acceptance probabilities PM i( ).

Suppose we have the above setup for l > i and have computed v1, . . . , vj ∈ L(M i, i+ 1). Recall
that vj+1 is the smallest value of v > vj satisfying PM i+1(v) < PM i+1(vj)/(1 + ε). Given a vertex
v ∈ L(M i+1, i + 1), if vb = M i+1(v, b) for b ∈ {0, 1}, then PM i+1(v) = (PM i+1(v0) + PM i+1(v1))/2.
So PM i+1(v) can be computed in time O(log(n/ε)) using the values of PM i+1(w) stored in a binary
tree for w ∈ L(mi+1, i+ 2).

Lemma 3.1 shows that Pm(v) decreases as v increases. So we can do binary search on PM i+1(v).
Since v ∈ {0, . . . ,W}, this will require O(log(W )) computations of PM i+1(v). Once we have com-
puted L(M i, i+1) we store these vertices and their probabilities of acceptance in a binary tree.

Thus, we can construct M0 from M in time O(n2 log(W ) log(n/ε)/ε). We now address the
approximation guarantee. We start by showing that the set of strings accepted grows as we proceed
from M to M0.

Lemma 3.3. For v ∈M i, we have AM i+1(v) ⊆ AM i(v). Thus PM i(v) ≥ PM (v).

Proof. Note that the claim is only interesting for v ∈ L(M i, j) where j ≤ i, since for j ≥ i + 1,
both M i and M i+1 make identical transitions from v, and so AM i(v) = AM i+1(v).

Let j = i. Let vb = M i(v, b) for b ∈ {0, 1}. Since M i is obtained from M i+1 by rounding layer
i + 1, there are vertices v′b = M i+1(v, b) for b ∈ {0, 1} in L(M i+1, i + 1) such that v′b ≥ vb, hence
AM i+1(M i+1(v, b)) = AM i+1(v′b) ⊆ AM i+1(vb) = AM i(M i(v, b)). Thus the set of accepting suffixes
can only increase for either choice of b, and the claim is proved.

The claim for j < i follows since M i and M i+1 are identical up to layer i, and for every
v ∈ L(M i, i) we have AM i+1(v) ⊆ AM i(v).

Next we show that the set of accepting strings does not grow by too much.

Lemma 3.4. For any vertex v ∈M i, we have PM i(v) ≤ PM (v)(1 + ε)n−i.

Proof. It is sufficient to show that for every i < n and v ∈ M i, PM i(v) ≤ PM i+1(v)(1 + ε). Let
v ∈ L(M i, j). The above is trivial when j ≥ i + 1, since AM i(v) = AM i+1(v) for such vertices v.
Indeed, it suffices to consider the case when j = i, since for j < i, M i and M are identical up
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to layer i. Hence we can express both PM i+1(v) and PM i(v) as the same convex combination of
acceptance probabilities of vertices in layer i.

Let j = i. Fix a vertex v ∈ L(M i, i). Let vb = M i(v, b) for b ∈ {0, 1} be the vertices reached
in L(M i, i + 1). Since M i is obtained from M i+1 by rounding the ith layer, there are vertices
v′b = M i+1(v, b) for b ∈ {0, 1} in L(M i+1, i+ 1) such that PM i+1(vb) ≤ (1 + ε)PM i+1(v′b). Thus

PM i(v) =
1

2
(PM i(v0) + PM i(v1)) ≤ (1 + ε)

PM i+1(v′0) + PM i+1(v′1)

2
= (1 + ε)PM i+1(v).

We can now finish the proof of Theorem 1.1.

Proof of Theorem 1.1. We set ε = Ω( δn) so that (1 + ε)n ≤ (1 + δ). Using Lemma 3.2, we can
construct M0 and compute PM0(s) where s is the start state in the desired time bound. Applying
Lemma 3.3 and Lemma 3.4 we get PM (s) ≤ PM0(s) ≤ (1 + δ)PM (s). The number of knapsack
solutions is precisely 2nPM (s). Hence we output 2nPM0(s).

We note that our algorithm also gives an efficient sampling scheme, since sampling from the set
of accepting strings of a small-width branching program is easy.

Theorem 3.5. There is a randomized algorithm which produces a uniformly random string from
the set of solutions to a knapsack instance KNAP(a, b). The algorithm takes a processing time of
O(n3 log(W ) log n) and then produces a uniformly random sample form the solution space in time
O(n log(1/η)) with probability 1− η.

Note that when the algorithm fails, it does not output a solution. Any solutions it outputs are
guaranteed to be distributed uniformly.

Proof. We set δ = 0.1 and construct M0 which requires time O(n3 log(W ) log(n)). It is easy to see
that M i(v, z) ≤M(v, z) for any vertex v ∈M i and i ≤ n, hence AM (v) ⊆ AM i(v) and in particular
AM (s) ⊆ AM0(s). By Lemma 3.3, |AM0(s)| ≤ 1.1|AM (s)|.

Further it is easy to sample from AM0(s) in time O(n). Recall we have PM0(v) computed for
each state v. We start at s. From a current vertex v, we move to vb = M0(v, b) for b ∈ {0, 1} with

probability
PM0 (vb)

PM0 (v0)+PM0 (v1)
. This produces z ∈u AM0(s). We check that z is also a solution to

the original knapsack in time O(n), this happens with probability at least 0.8. By repeating this
O(log(η−1) times, the failure probability becomes less than η.

4 Monotone ROBPs, Small-Space Sources, and Counting Solu-
tions to Multidimensional Knapsack

In this section, we consider more general models of computation and wider classes of distributions.
We solve the approximate counting problem for the more general class of monotone read-once
branching programs as defined in the work of Meka and Zuckerman [MZ10]. Further, we show how
to deterministically approximate the acceptance probability under the natural and broader class of
small-space sources introduced by Kamp et al. [KRVZ06].

Monotone ROBPs were introduced by Meka and Zuckerman [MZ10] in their work on pseudo-
random generators for halfspaces. In addition to halfspaces, the class of monotone ROBPs includes
read-once DNFs and read-once polynomial threshold functions (read-once PTFs).
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Definition 4.1 (Monotone ROBP). A (W,n)-branching program M is said to be monotone if
for all i ≤ n, there exists a total ordering ≺ on the vertices in L(M, i) such that if u ≺ v, then
AM (u) ⊆ AM (v).

It is easy to see that the branching program for knapsack satisfies the above condition. Given
partial sums vj , vk we say vj ≺ vk if vj > vk, since a larger partial sum means that fewer suffix
strings will be accepted. We say u � v if u ≺ v or u = v.

Since we deal with monotone ROBPs that potentially have width exponential in n, we require
that M is described implicitly in the following sense:

1. Ordering: given two states u, v we can efficiently check if u ≺ v and if so find a w that is
half-way between u, v, i.e., | |{x : u ≺ x ≺ w}| − |{x : w ≺ x ≺ v}| | ≤ 1.

2. Transitions: Given any vertex of M we can compute the two neighbors of the vertex.

We assume that the above two operations are of unit cost.
Our counting result for monotone ROBPs is obtained by proving the following structural result

for monotone ROBPs that we believe is of independent interest:

Theorem 4.2 (Main). Given a (W,n)-monotone ROBP M , δ > 0, and a small-space distribution
D over {0, 1}n of width at most S, there exists an (O(n2S/δ), n)-monotone ROBP M0 such that
for all z, M(z) ≤M0(z) and

Pr
x←D

[M(z) = 1] ≤ Pr
x←D

[M0(z) = 1] ≤ (1 + δ) Pr
x←D

[M(z) = 1].

Moreover, given an implicit description of M and an explicit description of D, M0 can be con-
structed in deterministic time O(n3S(S + log(W )) log(n/δ)/δ).

We prove Theorem 4.2 in Section 4.2. As discussed in the introduction, this theorem has
many interesting consequences. We first derive these consequences before proving the theorem.
Theorem 1.6 follows easily from the observation that a weight W halfspace is a (W,n)-monotone
ROBP. Corollary 1.7 follows since the uniform distribution over strings of weight exactly r can be
generated by a small space source of width at most r + 1. Further we can approximately count
knapsack solutions with respect to all symmetric distributions, and all product distributions, since
each of these can be generated by a small space source.

4.1 A FPTAS for Multidimensional Knapsack

Combining Theorem 4.2 work with a result due to Dyer [Dye03], we obtain a deterministic approx-
imate counting algorithm for multi-dimensional knapsack with a constant number of constraints,
matching Dyer’s FPRAS up to polynomial factors. We use the following elegant rounding result
due to Dyer:

Theorem 4.3 (Dyer, [Dye03]). Given knapsack instances KNAP(a1, b1), . . . ,KNAP(ak, bk), we can
deterministically in time O(n3(logW )) construct a new set of knapsack instances KNAP(a′1, b

′
1), . . . ,

KNAP(a′k, b
′
k) each with a total weight of at most O(n3) such that KNAP(ai, bi) ⊆ KNAP(a′i, b

′
i), ∀1 ≤

i ≤ k, and
| ∩i KNAP(a′i, b

′
i) | ≤ (n+ 1)k| ∩i KNAP(ai, bi) |.

9



Proof of Theorem 1.2. We first use Dyer’s algorithm to obtain low-weight knapsack instances
KNAP(a′1, b

′
1), · · · ,KNAP(a′k, b

′
k) as in Theorem 4.3. Let D be the uniform distribution over the set

U = ∩iKNAP(a′i, b
′
i) and observe that by Corollary 2.4 D can be generated by an explicit O(n3k)

space source. For i ∈ [k], let M i be a (W,n)-ROBP exactly computing the indicator function for
KNAP(ai, bi). Let δ = O(ε/k(n + 1)k) to be chosen later. Now, for every i ∈ [k], by Theorem 4.2
we can explicitly in time nO(k)(logW )/δ construct a (nO(k)/δ, n)-ROBP M i

up such that,

Pr
x←D

[M i
up(x) 6= M i(x)] ≤ δ.

Let M be the (nO(k2)/δk, n)-ROBP computing the intersection of M i
up for i ∈ [k], i.e., M(x) =

∧iM i
up(x). Then, by a union bound,

Pr
x←D

[M(x) 6= ∧iM i(x)] ≤ kδ.

On the other hand, by Theorem 4.3,

Pr
x←D

[∧iM i(x) = 1] ≥ 1/(n+ 1)k.

Therefore, from the above two equations and setting δ = ε/2k(n+ 1)k, we get that

Pr
x←D

[M(x) = 1] ≤ Pr
x←D

[∧iM i(x) = 1] ≤ (1 + ε) Pr
x←D

[M(x) = 1].

Thus, p = Prx∈u{0,1}n [x ∈ U ] ·Prx←D[M(x) = 1] is an ε-relative error approximation to the fraction
of solutions to all constraints Prx∈u{0,1}n [∧iM i(x) = 1] = Prx∈u{0,1}n [x ∈ U ] · Prx←D[∧iM i(x) = 1].

The theorem now follows since we can compute p in time (n/δ)O(k2) using Claim 2.3, as D is a
small-space source of width at most O(n3k) and M has width at most (n/δ)O(k2).

4.2 Proof of Theorem 4.2

We start with some notation. Let D denote the small space generator of width at most S. For
A ⊆ {0, 1}n we use D(A) to denote the measure of A under D. Let U1, . . . , Un be the vertices in
D with U i being the i’th layer of D. For a vertex u ∈ U i, let Du be the distribution over {0, 1}n−i
induced by taking a random walk in D starting from u. Given a vertex v ∈ L(M, i) and u ∈ U i, let
PM,u(v) denote the probability of accepting if we start from v and make transitions in M according
to a suffix sampled from distribution Du.

As we did for knapsack, we start from the exact branching program M and construct a sequence
of programs Mn = M, . . . ,M0, where M i is obtained from M i+1 by rounding the (i + 1)st layer.
We do the rounding in such a way that the acceptance probabilities are well approximated under
each of the possible distributions on suffixes Du. The program M0 will be a small width program.

Let L(M i+1, i + 1) = {v1 ≺ v2 · · · ≺ vW }. Fix a vertex u ∈ U i+1. We define a set Bi+1(u) =
{vu(j)} ⊆ L(M i+1, i+ 1) of breakpoints for u as follows. We start with vu(1) = vW and given vu(j)
define vu(j+1) by

vu(j+1) = max v s.t.v ≺ vu(j) and 0 < PM i+1,u(v) < PM i+1,u(vu(j))/(1 + ε) (4.1)

Let Bi+1 = ∪u∈U i+1Bi+1(u) = {b1 ≺ · · · ≺ bN} be the union of breakpoints for all u. We set
L(M i, i+ 1) = Bi+1. The vertices in all other layers stay the same as in M i+1, as do all the edges
except those from layer i to i+ 1. We round these edges upward as follows: let v ∈ L(M i+1, i) and
M i+1(v, b) = v′ ∈ L(M i+1, i + 1). Find two consecutive vertices bk, bk+1 ∈ L(M i, i + 1) such that
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bk ≺ v′ � bk+1. We set M i(v, b) = bk+1. Note that this only increases the number of accepting
suffixes for v.

This completes the construction of the M is. We now analyze the running time of our algorithm.
We start with the following claims whose proofs are similar to that of Lemmas 3.1, 3.3 and are
omitted.

Lemma 4.4. The branching program M i is monotone where the ordering of vertices in each layer
is the same as M .

Lemma 4.5. For v ∈M i, we have AM i+1(v) ⊆ AM i(v). Thus PM,u(v) ≤ PM i,u(v) for all u ∈ U i.

We next analyze the complexity of constructing M0 from M .

Lemma 4.6. The branching program M0 can be constructed in time O(n2S(S+log(W )) log(nS/ε)/ε).

Proof. Observe that for every i and u ∈ U i, |Bi(u)| ≤ 2n
ε and hence |Bi| ≤ 2nS

ε . Let us analyze the
complexity of constructing M i from M i+1. We will assume inductively that the set Bi+2 is known
and stored in a binary tree along with the values PM i+1,u(b), for every b ∈ Bi+2 and u ∈ U i+2.
Hence, given v ∈ L(M, i + 1), we can find bk, bk+1 ∈ Bi+2 such that bk ≺ v � bk+1 in time
log(nS/ε). This ensures that if we are given a vertex v′ ∈ L(M i+1, i + 1) and u ∈ U i+1, we can
compute PM i+1,u(v′) in time log(nS/ε). To see this, note that

PM i+1,u(v′) =
∑

z∈{0,1}

pu(z)PM i+1,uz(M i+1(v′, z))

where uz ∈ U i+2 denotes the vertex reached in D when taking the edge labeled z from u. To
compute M i+1(v′, z) we first compute v = M(v′, z) using the fact that M is described implicitly.
We then find bk ≺ v � bk+1 in Bi+2 and set M i+1(v′, z) = bk+1. Since we have the values of
PM i+1,uz(b) precomputed, we can use them to compute PM i+1,u(v′). The time required is dominated
by the O(log(nS/ε)) time needed to find bk+1.

Now, for each u ∈ U i+1, by using binary search on the set of vertices as in Lemma 3.2, each
new breakpoint in Bi+1(u) can be found in time O(log(W ) log(nS/ε)). Thus finding the set Bi+1

takes time O(nS log(W ) log(nS/ε)/ε).
Once we find the set Bi+1, we store it as a binary tree. We compute and store the values of

PM i,u(b) = PM i+1,u(b) for each b ∈ Bi+1 and u ∈ U i+1 in time O(nS2 log(nS/ε)/ε).
Thus overall, the time required to construct M0 from M is O(n2S(S+log(W )) log(nS/ε)/ε).

We next show that the number of accepting solutions does not increase by too much.

Lemma 4.7. For v ∈ L(M i, j) and u ∈ U j, we have PM i,u(v) ≤ PM,u(v)(1 + ε)n−i.

Proof. It suffices to show that PM i,u(v) ≤ PM i+1,u(v)(1 + ε). This claim is trivial for j ≥ i + 1
since for such vertices, PM i,u(v) = PM i+1,u(v). As in Lemma 3.4, the crux of the argument is when
j = i. Since M i+1 and M i are identical up to layer i, the claim for j < i will follow.

Fix v ∈ L(M i, i) and u ∈ U i. Let u0, u1 denote the neighbors of u in D. Then we have

PM i,u(v) = pu(0)PM i,u0(M i(v, 0)) + pu(1)PM i,u1(M i(v, 1)). (4.2)

We first bound PM i,u0(M i(v, 0)). Let b1, b4 be the breakpoints inBi+1(u0) such that b1 ≺M i+1(v, 0) �
b4 and let b2, b3 be the breakpoints in Bi+1 such that b2 ≺M i+1(v, 0) � b3. Note that M i(v, 0) = b3,
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by the construction of M i. Since Bi+1(u0) ⊆ Bi+1, we get b1 � b2 ≺M i+1(v, 0) � b3 � b4. By the
definition of breakpoints, we have

PM i+1,u0(b4) ≤ (1 + ε)PM i+1,u0(M i+1(v, 0))

and by the monotonicity of M i+1

PM i+1,u0(b3) ≤ PM i+1,u0(b4).

which together show that

PM i+1,u0(b3) ≤ (1 + ε)PM i+1,u0(M i+1(v, 0)).

Since b3 ∈ L(M i, i+ 1), we have PM i,u0(b3) = PM i+1,u0(b3). Thus

PM i,u0(M i(v, 0)) ≤ (1 + ε)PM i+1,u0(M i+1(v, 0)).

Similarly, we can show

PM i,u1(M i(v, 1)) ≤ (1 + ε)PM i+1,u1(M i+1(v, 1)).

Plugging these into Equation 4.2 gives

PM i,u(v) ≤ (1 + ε)(pu(0)PM i+1,u0(M i+1(v, 0)) + pu(1)PM i+1,u1(M i+1(v, 1))) = (1 + ε)PM i+1,u(v)

which is what we set out to prove.

We can now prove Theorem 4.2.

Proof. Choose ε = Ω(δ/n) so that (1 + ε)n ≤ (1 + δ). We construct the program M0 from M and
output PM0,u(s) where s is the start state of M and u is the start state of S. By Lemma 4.6, this
takes time O(n3S(S + log(W )) log(nS/δ)/δ). Applying Lemmas 4.7 and 4.5, we conclude that

PM,u(s) ≤ PM0,u(s) ≤ PM,u(s)(1 + δ).

Note that PM,u(s) and PM0,u(s) are respectively the probabilities that M and M0 accept a string
sampled from the distribution D. This completes the proof.

5 Counting for General Integer Knapsack and Contingency Tables

Our algorithms for counting also extend to general integer knapsack and contingency tables. Con-
ceptually the algorithms are similar to those for {0, 1}-knapsack and multidimensional knapsack.
However, the details are a little intricate involving a combination of our ideas and Dyer’s ideas. We
defer the proofs to the appendix.

6 Learning Functions of Halfspaces via ROBPs

We now present our learning algorithm and prove Theorem 1.5. We start with some notation.
A halfspace h : {0, 1}n → {0, 1} is a Boolean function defined by f(x) = 1 if

∑
i aixi ≤ b and

0 otherwise, where a ∈ Rn and b ∈ R. Let f : {0, 1}n → {0, 1} and let µi denote the uniform
distribution over {0, 1}i. For each prefix x ∈ {0, 1}i, we define the function fx : {0, 1}n−i → {0, 1}
by fx(z) = f(x ◦ z) where ◦ denotes concatenation. For two functions f, g : {0, 1}n → {0, 1},
we define d(f, g) = Prx←µn [f(x) 6= g(x)]. Thus given two prefixes x, y ∈ {0, 1}i, d(fx, fy) =
Prz←µn−i [f(x ◦ z) 6= f(y ◦ z)].
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Definition 6.1 (Almost ROBPs). We call a function f : {0, 1}n → {0, 1} a (ε,W, n)-almost ROBP
if there exist sets Sl ⊆ {0, 1}l, l ∈ {1, . . . , n} with |Sl| ≤ W such that for every y ∈ {0, 1}l there
exists an x ∈ Sl such that d(fx, fy) ≤ ε. We call sets S1, . . . , Sl (ε,W )-representatives.

It is interesting to contrast the notion of an almost-ROBP (aROBP for short) with having a
good approximation by an ROBP under the uniform distribution. It is easy to show that there
exists a function f which is δ-close to a width 2 ROBP, but which is not an (ε,W, n)-aROBP for
W, ε−1 = poly(n, δ−1), by corrupting the parity function randomly on some δ fraction of inputs.
In the other direction, it is not obvious that an (ε,W, n)-aROBP can be well-approximated by a
small width ROBP under the uniform distribution. But this is in fact true, and the proof is via
our learning algorithm, which we present below.

The algorithm learns an aROBP f , given query access to f , by constructing a ROBP M that
approximates f . The ROBP M has n layers numbered 0 through n. The set of vertices in layer i is
denoted by L(M, i). Each vertex x ∈ L(M, i) corresponds to a string x ∈ {0, 1}i. L(M, 0) consist
of a single start state, identified with the null string ϕ. By abuse of notation, we will think of M
both as a branching program and a Boolean function.

Main Algorithm. Input n, ε,W .

Let L(M, 0) contain the null string, while L(M, i) are empty sets for i ∈ {1, . . . , n}.
For i = 1, . . . , n:

For each x ∈ L(M, i− 1) and b ∈ {0, 1},
Check if there is y ∈ L(M, i) such that d(fx◦b, fy) ≤ 3ε.

If so, add an edge labeled b from x to y.
If not, add x ◦ b to L(M, i), add an edge labeled b from x to x ◦ b.

If |L(M, i)| > W , then output FAIL and halt.

In line 4 of our algorithm, to check if there is a vertex y that is ε-close to x ◦ b, we pick L
random suffixes z ∈ {0, 1}n−i and check if f(x ◦ b ◦ z) = f(y ◦ z). By the Chernoff bound, if
L = O(log(nW 2/δ)/ε), then the probability that our estimate of d(fx◦b, fy) is off by more than
an additive ε is at most δ/2nW 2. Since each layer has at most W vertices in total, we estimate
at most 2nW 2 such quantities. Hence the probability that the error is more than ε in any of our
estimates is at most δ.

Theorem 6.2. For ε, δ > 0, given oracle access to a (ε,W, n)-almost ROBP f , the above algorithm
runs in time O(nW log(nW/δ)/ε) and constructs a (W,n)-ROBP M such that d(M,f) ≤ 4nε with
probability at least 1− δ.

We assume that all our estimates are within ε, which happens with probability 1 − δ. The
theorem follows from two claims.

Claim 6.3. The algorithm never outputs FAIL.

Proof. Let S1, . . . , Sn be (ε,W )-representatives for f . For each x ∈ Si, consider the balls B(x) =
{y ∈ {0, 1}i : d(fy, fx) ≤ ε} for any x ∈ Si. By definition, they cover all of {0, 1}n−i. We claim
that L(M, i) cannot have two distinct vertices y, y′ ∈ {0, 1}i in layer i that belong to the same ball
B(x). For, if y, y′ lie in the same ball, d(fy, fy′) ≤ 2ε. Since the sampling error is at most ε, our
estimate for d(fy, fy′) would be at most 3ε, thus we would not add both of them to L(M, i). Hence
|L(M, i) ≤ |Si| ≤W .

Claim 6.4. We have Prµ[M(x) 6= f(x)] ≤ 4nε.
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Proof. By induction on n− i, we will show that for every x ∈ L(M, i) , d(Mx, fx) ≤ 4(n− i)ε. This
implies that when i = 0, d(M,f) ≤ 4nε as desired.

For i = n there is nothing to prove. Suppose the statement is true for all vertices in L(M, i+1).
Consider a vertex x ∈ L(M, i). Let y0, y1 ∈ L(M, i + 1) be it’s neighbors in M . Then, by our
assumption on sampling errors, for b ∈ {0, 1}, d(fx◦b, fyb) ≤ 4ε. By the induction hypothesis, we
know that d(fyb ,Myb) ≤ 4(n− i− 1)ε. Putting these together, we get

d(fx,Mx) =
1

2

∑
b∈{0,1}

d(fx◦b,Myb)

≤ 1

2

∑
b∈{0,1}

(d(fx◦b, fyb) + d(fyb ,Myb)) (by triangle inequality)

≤ 4ε+ 4(n− i− 1)ε = 4ε(n− i).

Theorem 6.2 now follows as the probability of sampling error is at most δ. Our main learning
result for halfspaces, Theorem 1.5 follows by combining Theorem 6.2 and the following easy claims.
The first claim is implicit in [MZ10] who prove a stronger result about sandwiching halfspaces
between ROBPs. We present a more direct proof below.

Claim 6.5. Every halfspace is an (ε, 1/ε, n)-almost ROBP.

Proof. Fix a halfspace f ≡ 1{
∑

i aixi ≤ b}. Fix i ≤ n. We show that there exist representatives
Si, |Si| ≤ 1/ε for prefixes of length i. Let g(v) = Prµ[

∑
j≤i aixi ≤ v]. Observe that g(v) is a

non-decreasing function of v. Now, starting from v1 = 0 we inductively define vj+1 = min v > vj
such that g(v) ≥ g(vj) + ε. This gives at most k ≤ 1/ε values vj . Now for each j, we choose xj to
be some x ∈ {0, 1}i such that

∑
l≤i alxl = vj . It is easy to see that Si = {x1, . . . , xk} forms a set

of representatives for prefixes of length i.

Claim 6.6. Let f1, . . . , fk : {0, 1}n → {0, 1} be (ε,W, n)-aROBPs and g : {0, 1}k → {0, 1}. Then
h : {0, 1}n → {0, 1} defined by h(x) = g(f1(x), . . . , fk(x)) is an (2kε,W k, n)-aROBP.

Proof. For j ≤ k, let S1
j , . . . , S

n
j be (ε,W )-representatives for fj . Fix i ≤ n and form a set of

prefixes T i ⊆ {0, 1}i as follows: for every x1 ∈ Si1, . . . , xk ∈ Sik if U(x1, . . . , xk) = {z ∈ {0, 1}i :

d(f jxj , z) ≤ ε,∀j ≤ k} is not empty, add a single element of U to T i.
By construction, |T i| ≤ W k. Further, for every y ∈ {0, 1}i, there exist x1 ∈ Si1, . . . , xk ∈ Sik

such that y ∈ U(x1, . . . , xk). Let u be the element of U(x1, . . . , xk) added to T . Then, by a union
bound, d(hy, hu) ≤

∑
j d(f jy , f

j
u) ≤ 2kε.

We observe that combing the above arguments with those of Theorem 4.2, we get similar results
for learning under any explicitly given small-space source. In particular we can learn functions of
halfspaces under p-biased and symmetric distributions.
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A A FPTAS for General Integer Knapsack

In this section, we prove Theorem 1.3. As in the case of {0, 1}-knapsack we start with the exact
branching program M for KNAP(a, b, u), where each state in L(M, j) corresponds to a partial sum
vj =

∑
i≤j aixi and has (uj+1 + 1) outgoing edges corresponding to the possible values of variable

xj+1. We then approximate this program with a small width branching program. However the
program M can both large width and large degree. To handle this, we observe that the branching
program M is an interval ROBP in the sense defined below, which allows us to shrink the state
space, and obtain succinct descriptions of the edges of the new branching program we construct.

Definition A.1 (Interval ROBPs). For u = (u1, . . . , un) ∈ Zn+, S, T ∈ Z+, an (S, u, T )-interval
ROBP M is a layered multi-graph with a layer for each 0 ≤ i ≤ T , at most S states in each
layer. The first layer has a single (start) vertex, each vertex in the last layer is labeled accepting
or rejecting and there exists a total order ≺ on the vertices of layer i for 0 ≤ i ≤ T . A vertex v
in layer i− 1 has exactly ui + 1 edges labeled {0, 1, . . . , ui} that respect the ordering ≺: If M(v, k)
denotes the k’th neighbor of v for k ≤ ui, then M(v, ui) �M(v, ui − 1) � · · · �M(v, 0).

An interval ROBP defines a function M : [0, u1]× [0, u2]× · · · × [0, un]→ {0, 1} where on input
x, we begin at the start vertex and output the label of the final vertex reached when traversing M
according to x.

Given an (S, u, T )-interval ROBP M , and a vertex v ∈ L(M, i − 1), the edges out of v can
be described succinctly by a subset of at most S edges irrespective of how large ui is. If we set
E(v, w) = {0 ≤ k ≤ ui : M(v, k) = w} be the set of edges from v to w, then E(v, w) is an interval,
meaning E(v, w) = {lv,w, . . . , rv,w} for some lv,w, rv,w ∈ Z+. Thus, to describe E(v, w) we only need
to know lv,w and rv,w. This allows us to succinctly describe the interval ROBP M0 approximating
KNAP(a, b, u) by storing just the end points of the edge sets E(v, w) for v, w ∈M0.

Let M denote the exact branching program for
∑

i≤n aixi ≤ b with edges between layers i− 1
and i labeled by xi ∈ {0, . . . , ui} and for v ∈ L(M, i−1), 0 ≤ xi ≤ ui we have M(v, xi) = v+aixi ∈
L(M, i). Given a vertex v ∈ L(M, j) we use PM (v) to denote the probability that M(v, z) accepts,
for z chosen randomly form {0, . . . , uj+1}× · · ·× {0, . . . , un}. It is clear from the definition that M
is an interval ROBP with the ordering on L(M, i) given by u ≺ v if u > v.

We construct a series of interval ROBPs Mn = M,Mn−1, . . . ,M0. We obtain M i from M i+1

by rounding the states in L(M i+1, i + 1). More precisely, we set L(M i, i + 1) = {v1, . . . , v`} ⊆
L(M i+1, i+ 1) where the vjs are defined as follows: Let v1 = 0. Given vj , let

vj+1 = min v such that v > vj and 0 < PM i+1(v) < PM i+1(vj)/(1 + η). (A.1)

Let I1 = {v1, . . . , v2−1}, . . . , I` = {v`, . . .}, where ` ≤ n(logU)/η as PM i(v1) ≤ 1 and PM i(v`) ≥
U−n. Next we redirect the transitions going from level i to level i+ 1. If we have an edge labeled
z ∈ {0, . . . , ui+1} entering a vertex v ∈ Ij , then we redirect the edge to vertex vj . The redirection
will be done implicitly in the sense that for any vertex v in level i and a vertex vj , we only compute
and store the end points of the interval E(v, vj) = {0 ≤ k ≤ ui+1 : M i(v, k) = vj}.

Our branching programs have the following approximating properties analogous to Lemmas 3.1,
3.3, 3.4. The proofs are similar and are omitted.

Lemma A.2. For any v ∈ L(M i, j) and 0 ≤ k ≤ l ≤ uj+1, M i(v, k) ≤ M i(v, l). Let v, v′ ∈
L(M i, j) and v ≤ v′. For any suffix z, M i(v, z) ≤M i(v′, z).

Lemma A.3. For v ∈ M i, we have AM i+1(v) ⊆ AM i(v). Further, for any v ∈ L(M i, j) where
j ≤ i, we have PM (v) ≤ PM i(v) ≤ PM (v)(1 + η)n−i.
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We next show that M0 can be constructed efficiently.

Lemma A.4. Each vertex vj ∈ L(M i, i+ 1) can be computed in time O(n(logU)(logW )/η).

Proof. The proof is by induction: we maintain the invariant that for every i, we know the vertices
vj of L(M i, i+ 1) and their acceptance probabilities PM i( ).

Suppose we have the above setup for l > i and have computed v1, . . . , vj ∈ L(M i, i + 1).
Recall that vj+1 is the smallest value of v > vj satisfying PM i+1(v) < PM i+1(vj)/(1 + η). We next
show that for a given v ∈ L(M i+1, i + 1), PM i+1(v) can be computed in time O(n(logU)/η). Let
L(M i+1, i+ 2) = {w1 < w2 < · · · } then, E(v, wl) = {0 ≤ k ≤ ui+2 : wl ≤ v + ai+2k < wl+1} and

PM i+1(v) =
∑

w∈L(M i+1,i+2)

|E(v, w)|
ui+2 + 1

PM i+1(w).

Thus, we can compute PM i+1(v) in time O(n(logU)/η) as |L(M i+1, i+ 2)| ≤ n(log u)/η.
We can now do binary search on PM i+1(v). Since we start with integers in the range {0, . . . ,W},

this will require O(log(W )) computations of PM i+1(v). Once we have computed L(M i, i + 1) we
store these vertices and their probabilities of acceptance.

Thus we can construct M0 from M in time O(n3(logU)2(logW )/η2).
We can now finish the proof of our counting result for general integer knapsack.

Proof of Theorem 1.3. We set η = δ/2n and use the above arguments to construct the branching
program M0 and compute the value of PM0(s) where s is the start state. We now apply Lemma A.3
to conclude that

PM (s) ≤ PM0(s) ≤ PM (s)(1 + η)n ≤ (1 + δ)PM (s)

where the last inequality holds for small enough δ. Finally, note that the number of knapsack
solutions is precisely PM (s)

∏
i(ui + 1). Hence we output PM0(s)

∏
i(ui + 1).

B A Deterministic Algorithm for Counting Contingency Tables

We now address the question of counting contingency tables. Our algorithm is fairly intricate and
involves a combination of Dyer’s FPRAS for counting contingency tables and our algorithms for
counting general integer knapsack solutions and counting knapsack solutions under small space
sources. Here is a high-level outline of the algorithm:

• We first give an algorithm for counting integer knapsack solutions under “interval small-
space sources” which are integer-valued distributions that generalize small-space sources in
the same vein as interval ROBPs of Definition A.1 generalize ROBPs. However, we specialize
our analysis to the specific case of contingency tables for clarity.

• We then observe that Dyer’s approach for counting contingency tables (implicitly) gives an
explicit “interval small-space source” D whose support contains all feasible contingency tables
and the set of feasible contingency tables has non-negligible density under D. We then
combine the above two observations as in the proof of Theorem 1.2.
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We first set up some notation. Following Dyer, we will solve the following formulation of
counting contingency tables. Given r = (r1, . . . , rm) ∈ Zm+ , c = (c1, . . . , cn) ∈ Zn+, estimate
|CT ′(r, c)|, where

CT ′(r, c) = {X ∈ Zm×n+ :
n∑
j=1

Xij ≤ ri, i ∈ [m],
m∑
i=1

Xij = cj , j ∈ [n]}.

This is equivalent to the original problem as stated in the introduction, since for r ∈ Zm+ and
c′ = (c1, . . . , cn+1) ∈ Zn+1

+ , |CT (r, c′)| = |CT ′(r, c)|, where c = (c1, . . . , cn). For X ∈ Zm×n+ , let Xi

denote the i’th row and Xj denote the j’th column of X. Let R = max(ri, cj : i ∈ [m], j ∈ [n]). For
j ∈ [n], let B(j) = {x ∈ Zm+ :

∑
i xi = cj} and let B = {X : Xj ∈ T (j), j ∈ [n]}. Further, define

h : Zm+ → {0, . . . , 2n2}m = T by hi(x) ≡ (h(x))i ≡ b2n2xi/ric and let

S = {X ∈ B :
n∑
j=1

h(Xj) ≤ 2n21}.

We now state a sequence of lemmas that we need for our proof. The first is due to Dyer [Dye03].
At a high level, it lets us use the uniform distribution over S in the role of a small-space source.

Lemma B.1 (Dyer). CT ′(r, c) ⊆ S and |S| ≤ nm|CT ′(r, c)|. Further, we can estimate |S| deter-
ministically in time nO(m).

Given this lemma, it suffices to additively approximate the number of valid contingency tables
under S, which we do by constructing suitable ROBPs. The next lemma gives us explicit small-
width interval ROBPs Mi that approximate the i’th row constraint under the uniform distribution
over S.

Lemma B.2. For every i ∈ [m], we can in time nO(m)(log3R)/η2 compute an (nO(m)(logR)/η, c, n)-
interval ROBP Mi explicitly such that for every x ∈ Zn+,

∑
j xj ≤ ri implies Mi(x) = 1, and

Pr
X∈uS

[Mi(X
i) = 1] ≤ (1 + η)n Pr

X∈uS
[
∑
j

Xij ≤ ri ]. (B.1)

Next we show how to efficiently compute the probability of all the Mis accepting simultaneously
under S.

Lemma B.3. We can in time (nO(m)(logR)/η)m compute PrX∈uS [∧mi=1Mi(X
i) = 1 ].

We first prove Theorem 1.4 assuming these lemmas.

Proof of Theorem 1.4. Set η = ε/mnm+1 in Lemma B.2 to obtain interval ROBPs M1, . . . ,Mm

satisfying Equation B.1. Then, X ∈ S implies Mi(X
i) = 1 for i ∈ [m] and by a union bound,

Pr
X∈uS

[∧mi=1Mi(X
i) 6= 1{X ∈ CT ′(r, c)} ] ≤ ε

nm
.

On the other hand, by Lemma B.1,

Pr
X∈uS

[X ∈ CT ′(r, c) ] ≥ 1

nm
.

Combining the above two equations we get that

Pr
X∈uS

[X ∈ CT ′(r, c) ] ≤ Pr
X∈uS

[∧mi=1Mi(X
i) = 1 ] ≤ (1 + ε) Pr

X∈uS
[X ∈ CT ′(r, c) ].

Thus, p = |S|PrX∈uS [∧mi=1Mi(X
i) = 1 ] is a ε-relative error approximation for |CT ′(r, c)| =

|S|PrX∈uS [X ∈ CT ′(r, c)]. The theorem now follows as by Lemmas B.1, B.3, we can compute
p deterministically in time (nO(m)(logR)/ε)m.
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B.1 Proof of Lemma B.2

We show how to construct M1; the constructions of M2, . . . ,Mm are similar. As in Section A we
start with an interval ROBP M that exactly computes the function M(x) = 1{

∑
j xj ≤ r1} and

compute a sequence of interval ROBPs Mn = M ≤ Mn−1 ≤ · · · ≤ M0, where M i is obtained
by rounding M i+1. The final ROBP M0 will have width at most nO(m)(logR)/η. Throughout
this section, without explicitly saying so, we shall assume that all interval ROBPs are stored and
computed succinctly as was done in Section A.

We now describe how to getM i fromM i+1. For u ∈ T , and l ∈ [n], let D(u, l) be the distribution

of (Xl+1, . . . , Xn) ∈ Zm×(n−l)+ for X ∈u S conditioned on
∑

k≤l h(Xk) = u. Further, let D1(u, l)
denote the distribution of the first row of Y for Y ← D(u, l).

For a vertex v in layer l of M j , j ≤ n and u ∈ T , let

PM i+1,u(v) = Pr
x←D1(u,l)

[starting from v, x leads to an accepting state in M i+1].

Let L(M i+1, i+ 1) = {v1 ≺ v2 ≺ · · · }. Fix u ∈ T and define a set B(u) = {vu(j)} ⊆ L(M i+1, i+ 1)
of breakpoints for u as follows. Start with vu(1) = vR and given vu(j) define vu(j+1) by

vu(j+1) = max v such that v ≺ vu(j) and 0 < PM i+1,u(v) < PM i+1,u(vu(j))/(1 + η). (B.2)

We set L(M i, i + 1) = ∪u∈TB(u) to be the union of the breakpoints for all u. Let L(M i, i + 1) =
{b1 ≺ · · · ≺ bN}. Note that N < (2n2)m(n logR)/η. The vertices in all other layers stay the same
as in M i+1, as do all the edges except those from layer i to i + 1. We round these edge upward
as before: let v ∈ L(M i+1, i) and for an edge label b, M i+1(v, b) = v′ ∈ L(M i+1, i + 1). Find two
consecutive vertices bk, bk+1 ∈ L(M i, i + 1) such that bk ≺ v′ � bk+1. We set M i(v, b) = bk+1.
Since the analysis of M0 is similar to the analysis of Lemmas 4.5, 4.7 and A.3, we only analyze the
complexity of constructing M0 which is a little trickier. We need the following preliminary lemmas
which are implicit in Dyer’s FPRAS for contingency tables.

Lemma B.4 (Implicit in Dyer). For j ∈ [n], and intervals I1, . . . , Im ⊆ [0, R], we can estimate
Pry∈uT (j)[∧mk=1 ∈ (yk ∈ Ik) ] in time O(m2m).

Proof. Follows from an argument similar that of Lemma 4 in Dyer.

Lemma B.5 (Implicit in Dyer). For u, z ∈ T and l ∈ [n], (Xl+1, . . . , Xn) ← D(u, l), we can
estimate Pr[h(Xl+1) = z] in time O((2n)4m+1).

Proof. For t ∈ T , let δj(t) = |{x ∈ T (j) : h(x) = t}| and

f(k, t) = | { (yk+1, . . . , yn) ∈ T (k + 1)× · · · × T (n) :

n∑
i=k+1

h(yi) ≤ 2n21− t } |.

Then, δj(t) can be computed in time O(m2m) by the above lemma. Further, f(n, t) = δn(t) and
for k < n, s ∈ T ,

f(k, s) =
∑
t∈T

δk+1(t)f(k + 1, t+ s).

Therefore, we can compute f(k, t) for all k ∈ [n], t ∈ T in time n4m+1(m2m) = O((2n)4m+1). The
lemma now follows as

Pr[h(Xl+1) = z] =
f(l + 1, u+ z)

f(l, u)
.
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We next show how to compute the transition probabilities PM i,u(v) efficiently.

Lemma B.6. For i ∈ [n], u ∈ T and we can compute L(M i, i+1) and PM i,u(v) for v ∈ L(M i, i+1)

in time nO(m)(logR)3/η.

Proof. The proof is by induction on n− i. For i = n there’s nothing to show and suppose that for
each vertex w ∈ L(M i, i+ 1) and u ∈ T , we know the values of PM i,u(w). Fix a v ∈ L(M i, i), and
let X = (Xi+1, . . . , Xn)← D(u, i).

Now, from the definition of D(u, i), given h(Xi+1) = z, (Xi+2, . . . , Xn) is independent of Xi+1

and moreover, the distribution of (Xi+2, . . . , Xn) is precisely D(u+ z, i+ 2). Therefore,

PM i,u(v) =
∑

w∈L(M i,i+1)

∑
z∈T

Pr
X

[X1(i+1) ∈ E(v, w) ∧ h(Xi+1) = z ] · PM i,(u+z)(w), (B.3)

where E(v, w) = {y ∈ Z+ : M i(v, y) = w}. Now, by the construction of M i, |L(M i, i + 1)| <
(2n2)m(n logR)/η = nO(m)(logR)/η and by the induction hypothesis, we know the values of
PM i,(u+z)(w) for all w ∈ L(M i, i + 1). Thus to it is enough to show that we can compute
Prx[xi+1 ∈ E(v, w) ∧ h1(xi+1) = z] efficiently for every w.

Fix a w = wj ∈ L(M i, i + 1). Then, E(v, wj) = {y1 ∈ Z+ : wj−1 ≤ v + y1 < wj} is
an interval whose boundaries we know and let I1 = E(v, wj) ∩ {y : h1(y) = z1}. Then, for
q = Pr[X1(i+1) ∈ E(v, wj) ∧ h(Xi+1) = z ],

q = Pr[h(Xi+1) = z] · Pr[X1(i+1) ∈ E(v, wj) |h(Xi+1) = z]

= Pr[h(Xi+1) = z ] · Pr
y∈uT (i+1)

[ y1 ∈ E(v, wj) |h(y) = z ]

(as conditioned on h(Xi+1) = z, Xi+1 is independent of (Xi+2, . . . , Xn)) (B.4)

= Pr[h(Xi+1) = z ] ·
Pry∈uT (i+1)[ y1 ∈ E(v, wj) ∧ h(y) = z ]

Pry∈uT (i+1)[h(y) = z ]

= Pr[h(Xi+1) = z ] ·
Pry∈uT (i+1)[ y1 ∈ I1 ∧mk=2 h(yk) = zk ]

Pry∈uT (i+1)[h(y) = z]
. (B.5)

Now, as {yk : h(yk) = zk} = {yk ∈ Z+ : rkzk/(2n
2) ≤ yk ≤ rk(zk + 1)/(2n2)}, it follows from

Lemma B.4 that we can compute the second term above in time nO(m). Further, we can compute
the first term efficiently by Lemma B.5. Thus, q can be computed in time nO(m).

Thus, for each v ∈ L(M i, i), u ∈ T , we can compute PM i,u(v) in time nO(m)(logR)/η and hence

for a fixed u ∈ T , each new breakpoint in B(u) can be found in time nO(m)(logR)2/η using binary
search as in Lemma 3.2. Further, as |L(M i−1, i)| ≤ nO(m)(logR)/η and we can compute L(M i−1, i)
in time nO(m)(logR)3/η2 as claimed.

Lemma B.2 now follows from the above lemma and a straightforward extension of the arguments
of Lemmas 4.4, 4.5, 4.7. We omit these details.

B.2 Proof of Lemma B.3

The proof is similar to that of Lemma B.6: we show by induction that for i ∈ [n], vk ∈ L(Mk, i), 1 ≤
k ≤ m and u ∈ T and X ← D(u, i), we can compute

P (v1, . . . , vm, u) = Probability X leads to an accepting when starting from vk in Mk, ∀k ∈ [m].
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For i = n, there’s nothing to show and suppose the statement is true for j ≥ i + 1. Fix
v1 ∈ L(Mk, 1), . . . , vm ∈ L(Mk, i) and u ∈ T . For wk ∈ L(Mk, i + 1) ≡ Lk, let Ek(vk, wk) = {y ∈
Z+ : Mk(vk, y) = wk}. Then, similar to Equation B.3, for X = (Xi+1, . . . , Xn)← D(u, i),

P (v1, . . . , vm, u) =
∑

(w1,...,wm):wk∈Lk

∑
z∈T

Pr[∧k(Xk(i+1) ∈ E(vk, wk))∧h(Xi+1) = z ]·P (w1, . . . , wm, u+z).

(B.6)
We next show that for fixed w1 ∈ L1, . . . , wm ∈ Lm, z ∈ T , we can compute q = Pr[∧k(Xk(i+1) ∈
E(vk, wk)) ∧ h(Xi+1) = z ] in time nO(m). Let Ik = {y : y ∈ E(vk, wk)} ∩ {y : hk(y) = zk}. Then,
similar to Equation B.4, we have

q = Pr[h(Xi+1) = z] · Pr[∧k (Xk(i+1) ∈ E(vk, wk)) |h(Xi+1) = z ]

= Pr[h(Xi+1) = z] · Pr
y∈uT (i+1)

[∧k (yk ∈ E(vk, wk)) |h(y) = z ]

= Pr[h(Xi+1) = z] ·
Pry∈uT (i+1)[∧k (yk ∈ Ik) ]

Pry∈uT (i+1)[h(y) = z]
.

Combining the above equation with Lemmas B.4, B.5, we can compute q in time nO(m). Therefore,
by Equation B.6, we can compute P (v1, . . . , vm, u) in time (nO(m)(logR)/η)m. Lemma B.3 now
follows by induction.
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