
Aglets: a good idea for
Spidering ?

Nick Craswell
Jason Haines

Brendan Humphreys
Chris Johnson

Paul Thistlewaite
[ANU]

1. Introduction
Many individuals and businesses now rely on the Web for promulgating and finding information,
and in particular, rely on centralised search databases. The extent to which these databases reflect
the "contents" of the Web in an accurate and timely manner is now under considerable doubt, and in
any event, it is apparent that the methods used by the search engines for finding new and modified
Web documents are not scaling well. To ameliorate these problems, we have been exploring the use
of a "data push" model for notifying Web changes, to replace the current "data pull" model, which
uses aglets (aka servlets or peerlets) to distribute the indexing task.

Aglets are objects with a thread of control, that can migrate autonomously between processors in a
distributed environment. As currently proposed and implemented, aglets have very few of the
properties of Persistence. But as they inhabit a similar conceptual space, their properties and
applications present some interest to the persistence community. Aglets have unique identities,
locally persistent data and methods (in the sense that the aglet can be deactivated onto disk and
reactivated), and self-migration in a distributed environment, but they do not facilitate a universal
name space. They appear to be modelled on a belief that the processors in the network, while
needing to be sufficiently transparent to allow some cooperative processing, will remain sufficiently
opaque to thwart a realisation of the Persistence Ideals.

2. Web Spidering
There are three ways of finding relevant information on the World Wide Web. One is to browse
through document hyperlinks, manually or using an electronic agent. Another is to use a manually
categorized URL list (a web directory). Finally, the most important method for information location
on the web is indexing.

A central web index such as AltaVista or HotBot must gather information from the web and then
make it available to enquirers. A major component is a web spider, which is responsible for finding
and downloading current copies of the web documents to be indexed. Both the degree of coverage
of an index and how up-to-date it is are determined by the architecture and efficiency of the
spidering software.



2.1 Coming to Know of Changes

One way of viewing a spider is that it is responsible for finding new work for the indexer. When it
finds new documents or finds that documents currently indexed have changed, the content of those
documents must be downloaded by the indexer and incorporated in the index. Similarly if
documents currently indexed no longer exist, the indexer must be informed so that the index can be
updated.

The spider is a program running on the indexer’s processor. It finds new work in two main ways.
Firstly it recursively follows hyperlinks in known documents to find unknown documents. In the
initial stages of spidering, seed URLs are given to the spider and the hyperlink structure is used to
populate the index. In later stages, when documents are added or modified, the hyperlinks within
these documents can be followed in a similar fashion. Secondly, the spider tracks changes and
deletions in documents already indexed, by requesting header information and checking document
time-stamps.

Almost all current web spiders work exclusively using HTTP, although protocols for more efficient
spidering have been proposed (such as in Harvest). The spider acts as a client conditionally
requesting pages from the web information servers in the space of interest. Using HTTP for
retrieving documents and following their hyperlink structure is quite efficient, because that is what
the protocol was designed for. However, tracking changes and deletions through HTTP is less
efficient, because it is based on a "data-pull" communication model and because each request is in
terms of a single document. If there is new work for an indexer to do, the only way to find out
through HTTP is to send a request for information on each document indexed. For large web
indexes this means up to 50 million requests before all documents have been checked, only a very
small fraction of which will result in new work.

One way of addressing this inefficiency is to reduce the number of HTTP requests a spider must
send to find new work. A notable proposal is for a sitelist.txt standard, where it becomes each
web server’s responsibility to provide a single text file listing all files and their time-stamps.
However, in such a system the amount of communication is still great regardless of the amount of
new work, if any.

2.2 Data Pull vs Data Push

An more efficient method in terms of communication is to abandon the "data-pull" model and rely
on the web server to "push" notification of new work back to the indexer. Instead of 50 million
largely useless requests or one large request per site, a small notification message is sent at an
appropriate time, describing in a concise fashion all new work. Novel server push methods have
already been proposed using, for example, a request for email notification whenever a stated
document changes.

A "data-push" model for finding new indexing work requires a certain amount of computation and
state storage on the web server end. This makes it an ideal application for aglet technology, because
not only can this remote computation take place, but the techniques used are determined by the
indexer, so new technologies or indexing priorities can be reflected in new versions of the aglet
software.

An aglet would be dispatched by the spider/indexer to a web server, acting as its agent, working on
behalf of the spider to access and perhaps predigest local information changes at the server, then



sending them to the indexer.

2.3 Search industry state of play

Due to the very large volume of documents available on the web, large web search services are
expensive to run, both in terms of the cost of spidering and the cost of index building and searching.
Because of this, only a small number of larger web indexes exist, and these are all commercial
services (AltaVista, Excite, HotBot, Lycos and InfoSeek). 

Even these services are forced to compromise for efficiency, only partially covering each site and
polling documents infrequently. In fact in some services it is possible for an index to be more than
three months out of date with respect to changes in a particular document.

If the cost of spidering is reduced, the overall cost of running a search service also decreases and
the coverage of search services may increase. For this reason there is much industry enthusiasm for
finding new ways of efficiently detecting change in remote documents. The solution suggested
here, a "data-push" model employing aglets, would offer indexers not only very efficient change
notification, but could be used in the transmission of the documents themselves, by compressing,
pre-indexing or even sending only changed portions of documents.

3. Aglets
3.1 What is an Aglet?

An aglet is a Java-based mobile software agent. The term software agent has been given many
definitions; here we refer to a piece of software that can halt its execution on one host, transfer to
another host, and then continue execution from where it left off on the remote host.

The aglet framework was created by a team lead by Danny B. Lange at the IBM Tokyo Research
Laboratory in Japan.

3.2 Comparing Aglets to Applets

The concept of network-mobile code is most widely demonstrated through web-based Java applets.
The client pulls down an applet class file as part of a HTML page. Aglets can be similarly shipped
across a network. However, unlike current applets, an aglet’s state is preserved in the transfer.
Further, aglets have a degree of autonomy; they can control their own migration, deciding when and
where to go on a network.

A Java aglet is similar to an applet in that it requires a cogniscant environment in which to run. An
applet is executed on a Java application built in to the client browser. Aglets similarly require an
aglet host application (known as the Aglet Workbench) to be running on a node before they can
visit.

The host application provides a ‘‘sandbox’’ environment for the aglet, enforcing security policies
and limiting access to host services.

3.3 The Aglet programming model



Aglets are designed around an event-driven callback programming model that has similarities with
the Java Applet programming model. An aglet can experience any of the following events in its life:

Creation: An aglet is instantiated, and its main thread begins executing.

Disposal: An aglet is destroyed, all information is lost.

Cloning: The aglet is replicated, with current state but new identity.

Dispatch: The aglet and state is sent to a remote host.

Retract: A previously dispatched aglet is pulled back from a remote host.

Deactivation: Aglet and its state are transfered to persistent storage.

Activation: Aglet and its state are transfered from persistent storage.

Before any of these events occur, an aglet is notified of the upcoming event through a call to the
appropriate callback method. For example, when an aglet is created, the OnCreation() method is
invoked. A programmer can override this method with one that initialises the state of the newly
formed aglet.

3.4 How Aglets move between hosts

Aglets are moved from host to host using the JDK’s Object Serialisation feature. The aglet object,
all serialisable objects reachable from it, and the aglet’s heap are converted into a byte stream and
sent across the network. The receiving host can then reconstruct the aglet and its heap.

Java does not allow access to execution stacks of the virtual machine, and so not all state is
preserved in the transition. However, state can be effectively restored if the aglet is programmed
like a finite state machine. Before dispatch, the current ‘‘state’’ can be recorded in variables on the
heap, so then when execution begins at the receiving node, the state variables on the heap can be
consulted to determine what to do next.

3.5 The Aglet environment

An aglet can communicate with its host environment via an AgletContext object. This object
provides access to host services and resources, such as the local filesystem.

An aglet can communicate with another (local or remote) aglet by obtaining an AgletProxy object
for that aglet. The AgletProxy acts as an intermediary between the aglets, protecting each from
making malicous calls to the others public callback functions. The Agletproxy allows an aglet to
request an action of another aglet, such as dispatch(), or clone(). The receiving aglet can choose
to carry out the request, ignore it, or take some other action. AgletProxies also allow simple object
based message passing between aglets.

3.6 Issues

Security is an important issue in mobile agent technologies, since such technology potentially
provides an easy method to propagate malicious code. Conversely, aglets themselves may carry



sensitive information, and so aglets must be protected from their host environments. The current
aglets framework goes some way to addressing these needs by providing a mulitlayered approach to
security. The first layer is provided by the Java Virtual Machine itself. Incoming aglet code is
subject to byte code verification before execution. The second layer of security is provided by the
security manager, which allows customisable security policies for local and remote aglets in regard
to host resources. The final layer is Java’s new Security API, which provides services such as
encryption, authentification, and digital signatures. The framework is still vulnerable to denial of
service style attacks.

IBM is keen to see the aglet model adopted as an open network standard for mobile agents. To this
extent they have submitted the aglet framework and transport specifications to the OMG as
proposal for the OMG’s Mobile Agent Facility.

4. Aglets and Spiders

Aglets suggest themselves as an important part of the solution to the problem of the scalability of
web spidering for a number of reasons:

support of a "data push" model should decrease the network traffic and wall time required to
locate changes in the web 
the possibility exists for performance-related contracts to be agreed between data suppliers
and indexers to ensure that document changes are reflected in indexes in a timely, or at least
predicatable, manner (opportunities for contractual consideration exist on both sides - the data
provider pays in local computational power, and the indexing site guarantees index presence) 
the functionality of the aglet code is under the control of the indexing site, and so can be
updated to reflect its requirements, and its core knowledge of the indexing task 
the binding of an aglet into a local site requires the consent of that site, but in this application
such consent is likely (unlike, say, aglets produced by individual persons and dispatched for
personal business) 
the spidering problem is fundamentally a graph-traversal problem - the web can be seen as a
graph with many alternative arcs (paths) between nodes with different cost-related weights.
The ability of aglets to clone, to have an initial intinerary, and to react to local conditions,
permits numerous alternative traversal strategies to be explored. 

5. References

1. Lange, Danny B. Chang, Daniel T. IBM Aglets Workbench White Paper
http://www.trl.ibm.co.jp/aglets/whitepaper.html 

2. Lange, Danny B. Java Aglet Application Programming Interface (J-AAPI) White Paper
http://www.trl.ibm.co.jp/aglets/JAAPI-whitepaper.html 

3. Venners, Bill Under the Hood: The architecture of aglets
http://www.javaworld.com/javaworld/jw-04-1997/jw-04-hood.html 

4. ALTAVISTA. http://altavista.digital.com 
5. Shocked by search engine indexing

http://www5.zdnet.com/anchordesk/talkback/talkback_11638.html 
6. AltaVista CTO Responds http://www5.zdnet.com/anchordesk/talkback/talkback_13066.html 
7. BOWMAN, C. M., DANZIG, P. B., HARDY, D. R., MANBER, U., SCHWARTZ, M. F.,

AND WESSELS, D. P. Harvest: A scalable, customizable discovery and access system.
Technical Report CU-CS-732-94, University of Colorado, Boulder, Colorado, Mar. 1995. 

8. The Web Robots Pages http://info.webcrawler.com/mak/projects/robots/robots.html 


