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Abstract

Despite progress in stereo reconstruction and structure from motion, 3D scene reconstruc-

tion from multiple images still faces many difficulties, especially in dealing with occlusions,

partial visibility, textureless regions, and specular reflections. Moreover, the problem of recov-

ering a spatially dense 3D representation from many views has not been adequately treated.

This document addresses the problems of achieving a dense reconstruction from a sequence

of images and analyzing and removing specular highlights. The first part describes an ap-

proach for automatically decomposing the scene into a set of spatio-temporal layers (namely

EPI-tubes) by analyzing the epipolar plane image (EPI) volume. The key to our approach is to

directly exploit the high degree of regularity found in the EPI volume. In contrast to past work

on EPI volumes that focused on a sparse set of feature tracks, we develop a complete and

dense segmentation of the EPI volume. Two different algorithms are presented to segment

the input EPI volume into its component EPI tubes. The second part describes a mathematical

characterization of specular reflections within the EPI framework and proposes a novel tech-

nique for decomposing a static scene into its diffuse (Lambertian) and specular components.

Furthermore, a taxonomy of specularities based on their photometric properties is presented

as a guide for designing further separation techniques. The validity of our approach is dem-

onstrated on a number of sequences of complex scenes with large amounts of occlusions
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and specularity. In particular, we demonstrate object removal and insertion, depth map esti-

mation, and detection and removal of specular highlights.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

Despite progress in stereo reconstruction and structure from motion, 3D scene re-

construction from multiple images still faces many difficulties, especially in dealing

with occlusions, partial visibility, and textureless regions. While the problem of mul-

ti-view scene reconstruction from feature correspondences has been extensively stud-

ied [11], despite recent progress (e.g., [14,20,22,28]), the problem of recovering a

spatially dense 3D representation from many views has not been completely solved.

In this document, we describe an approach for automatically decomposing the scene
into a set of 3D layers by analyzing the familiar epipolar plane image (EPI) volume.

The EPI volume is a dense horizontally rectified spatio-temporal volume that results

from a linearly translating camera.

Layers are a powerful way to describe the visual motion of objects in scenes. They

capture local coherence, and also make occlusion events explicit. In computer vision,

they were first proposed as a method for video compression, where each layer is sep-

arately coded and predicted using an affine motion model [31]. A more geometric in-

terpretation was introduced by Baker et al. [2], who combined the idea of layers with
a local plane-plus-parallax representation.

In computer graphics, the same concept under the name of sprites or layered im-

postors was proposed as a means of capturing local appearance and geometry to re-

use previously rendered imagery (image-based rendering) [15,24,29]. When combined

with the plane-plus-parallax representation, these sprites became sprites with depth

[23].

Unfortunately, fully automated 3D layer extraction from image sequences has

thus far remained an unsolved problem. Torr et al. [30] used a Bayesian approach
to perform layer segmentation, but the segmentation was only with respect to a sin-

gle reference frame, and hence did not capture all of the data contained in the origi-

nal sequence. Many authors (e.g., [16]) have commented on the large amount of

structure inherent in dense motion sequences (4D Lightfields in the most general rig-

id-scene setting), but as yet there are no algorithms that can successfully analyze this

data and break it up into a coherent set of layers.

1.1. Epipolar-plane-image analysis

There are two major parts in this document. In the first part, we develop some

novel algorithms to analyze a special kind of spatio-temporal volume (image se-

quence) to segment it into separate layers. The representation we work with is the

epipolar plane image volume (EPI volume) [4]. This volume is constructed by taking

a regularly spaced series of images from a camera moving on a linear rail pointing in
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a direction perpendicular to the motion (Fig. 1). This volume is equivalent to a sim-

ple (orthogonal) 3D slice through the general 4D lightfield of a scene [25]. In their

seminal work, Bolles et al. [4] showed how the volume could be analyzed by finding

paths and surfaces in this spatio-temporal volume. However, no full (dense) 3D re-

construction was ever demonstrated.
Our ultimate goal is to perform automated layer extraction from arbitrary collec-

tions of images. For the purposes of this paper, however, we restrict ourselves to spe-

cific camera motions that produce regularly sampled EPI volumes for two main
Fig. 1. EPI volumes, strips, and tubes. (A–D) Frames from an indoor sequence. The camera is translating

horizontally. (E) The EPI volume corresponding to the indoor sequence. (F) One EPI from that volume.

The streaks correspond to different objects in the scenes. The more horizontal the streak, the closer the

corresponding object. (G) The automatically extracted EPI-tube corresponding to one of the objects in

the scene, namely, the cat statue on the right. (H–K) Frames from another input sequence. (L) The

corresponding EPI volume; (M) the EPI corresponding to the 25th scanline in the EPI volume in (L). (N)

The automatically extracted EPI-tube corresponding to the dodecahedron in the scene.
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reasons. First, the special structure of the frame-to-frame pixel motion makes it

much easier to visualize the structure of this data set, and hence to explain the basic

algorithms. Second, it admits certain classes of algorithms (such as EPI analysis) that

are more difficult to formulate with a general collection of images.

The fundamental new primitives we propose are the EPI-strip and the EPI-tube.

1.1.1. EPI-strip

An EPI-strip is defined as a quadrilateral on the epipolar plane with two sides

aligned with the bottom and top edges of the epipolar plane (corresponding to the

first and last frames of the sequence, see Fig. 2).

1.1.2. EPI-tube

A collection of EPI-strips constitutes an EPI-tube, i.e., a volumetric primitive with
a special ruled surface boundary that represents a coherently moving set of pixels

(none of which occlude each other).

An EPI-tube consists, effectively, of a collection of EPI-trails, each of which rep-

resents the path of a scene point within the EPI volume. When the camera translates

linearly and at constant speed, these trails are straight lines in the EPI volume, and

their orientation corresponds to the disparity (or inverse depth) of the corresponding

scene point.

Figs. 1E and N show the EPI volumes for two of our input datasets. Figs. 1F and O
show two EPIs, each associated with a particular horizontal scanline of the corre-

sponding input dataset. Each EPI is automatically decomposed, by the algorithms de-

scribed in this document, into a set of EPI-strips. An example of automatic EPI-strip

extraction can be seen in Fig. 10B. Figs. 1G and P show two EPI-tubes, each segment-

ed out of its respective input EPI volume by our algorithm.

In this document, we describe two algorithms for extracting layers from EPI vol-

umes. The first algorithm extracts single EPI-trails and groups them by analyzing the

disparity hypotheses for the trails. The second algorithm extracts whole EPI-strips
by directly analyzing collections of EPIs that constitute the EPI volume. Both algo-

rithms operate in two phases. In the first phase, the EPI volume is segmented into a

collection of EPI-tubes that account for the appearance of all the pixels. In the sec-

ond phase, each EPI-tube is described by a simpler layer description, e.g., a single
Fig. 2. Definition of an EPI-strip. An EPI-strip is a quadrilateral on the epipolar plane with two sides

aligned with the bottom and top edges of the epipolar plane. Notice that portions of an EPI-strip may be

occluded by other EPI-strips or may lie outside the field of view of the available input images. See also

Figs. 1F and O.



A. Criminisi et al. / Computer Vision and Image Understanding 97 (2005) 51–85 55
a-matted image painted onto a 3D plane with optional per-pixel parallax (i.e., a

sprite with depth [2,23]).1

1.2. Characterization of specularities

In the past some work has also been done in using layers to model translucency

and reflections (e.g., [27]). In the second part of this paper we extend that work by: (i)

defining metrics to distinguish between traces of specular and diffuse features in the

EPI and study the factors on which they depend; (ii) showing the limits to which ge-

ometry alone can be used to separate the two layers and propose the use of photo-

metric together with geometric constraints; and (iii) building a taxonomy of specular

reflections which aids in the design of hybrid algorithms to separate the diffuse and

the specular layers of a scene. Finally, we demonstrate the effectiveness of our ap-
proach by automatically estimating diffuse and specular components on real scenes

with specularities.

The remainder of the paper consists of the following. Section 2 describes the EPI-

tube representation and derives a set of constraints associated with them. Section 3

describes the algorithms for layer extraction from EPI volumes. Results on layer ex-

traction and basic manipulation on real data sets are presented in Section 4. Sections

5 and 6 present an analysis of the geometric and photometric characteristics of spec-

ular reflections within the EPI framework. An algorithm which implements the sep-
aration of a sequence of images into its diffuse and specular components is described

in Section 7. Finally, Section 8 summarizes the conclusions of the paper and discuss-

es our plans for future work.
2. EPI-tubes and layers: representations and constraints

In this section we describe some of the fundamental characteristics of EPI-tubes.
Each EPI-tube is a coherent portion of the EPI volume, i.e., the local orientation

of the trails within that volume varies smoothly and the trails within the tube do not

intersect each other. The intersections between EPI-trails correspond to occlusion

events in the EPI volume, i.e., when one point becomes hidden behind another. This

also means that EPI-tubes do not necessarily correspond to objects. A self-occluding

object may be represented by multiple EPI-tubes.

More precisely, for a camera moving along the X direction with constant speed B,

points move only along the horizontal scanline. The x position of a scene point at
time t is given by

xt ¼ x0 þ t d; ð1Þ
1 Alternative representations of layers such as texture-mapped polyhedral surfaces are also possible, but

will not be explored here.
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where xt denotes the x position of the point at time t, x0 denotes its initial position at

time 0, and d = B f/Z denotes the disparity [20]. Note that the trails of the points

close to the camera (larger disparities) are more slanted in the EPI (Fig. 1).

EPI-tubes occlude each other in the usual occlusion-depth ordering. The EPI-

tubes corresponding to occluding objects are more slanted (more horizontal) than
the ones related to occluded objects. This can be seen in Fig. 1B. Thus, each EPI-

tube has one or more visible regions or volumes where it is not occluded by closer

tubes, and zero or more invisible regions, where its pixels are occluded by nearer ob-

jects.

Under ideal conditions (Lambertian reflection model, constant exposure, no sig-

nificant foreshortening or aliasing as the camera moves), an EPI-tube can also be de-

scribed by the color at any of its cross-sections and the rate of motion of each pixel

(which corresponds directly to the disparity). This is similar to the layered sprite rep-
resentation proposed in [2], but we do not use a plane-plus-parallax representation

for the layer geometry, but rather encode it as a disparity (depth) map.

The initial goal of our algorithm is to label each pixel in our EPI volume with a

distinct EPI-tube index, i.e., to perform a complete discrete labeling of the EPI vol-

ume. Each EPI-tube can then be interpreted as a layered sprite.

The various observations made above can be summarized by the following set of

constraints, which will be exploited by our algorithms:

� Visually distinct and visible image features give rise to visually distinct EPI-trails,

i.e., a sharp intensity or color gradient along an epipolar line in the image results

in a visible sharp line in the epipolar plane image.

� A homogeneous color region in the image will result in an EPI-tube of homoge-

neous color.

� For opaque Lambertian surfaces, the color along the EPI-trail is nearly constant.

� Neighboring EPI-trails that belong to the same EPI-tube/strip will have similar

orientations (disparities).
� EPI-trail intersections (visible as Y junctions in EPIs) indicate occlusions and

hence EPI-strip/tube boundaries.

� No crossings or Y junctions should occur inside an EPI-strip/tube.

� More slanted EPI-tubes/strips (corresponding to closer objects and larger dispar-

ity) occlude less slanted EPI-tubes/strips (corresponding to objects farther behind

and smaller disparity). Exceptions are when non rigid effects, such as specular

highlights, occur.

These constraints associated with EPI-tubes and EPI-strips can be used for ex-

tracting them from the input data. Our algorithms operate by analyzing all the EPIs

of the EPI volume in parallel. Thus, it is worth highlighting constraints associated

with corresponding EPI-strips (that belong to the same EPI-tube) from adjacent epi-

polar planes:

� The neighboring strips belonging to the same tube will have similar colors and dis-

parities (i.e., similar fate).
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� Object boundaries are a subset of the tube boundaries. Hence, the continuity of

the boundary shape of an object will result in continuity of strip boundaries in ad-

jacent epipolar image planes.
3. Segmenting the input sequence into EPI-tubes

In the next two sections we describe two different algorithms for extracting EPI-

tubes from EPI volumes. The first algorithm analyzes the problem in disparity space

[3,8,18,33] while the second one directly analyzes the color data contained in the EPI

volume. Both algorithms have been applied to multiple data sets and the results are

shown in the respective sections.

3.1. Disparity space image processing

One approach to extracting EPI-tubes from the EPI volume would be to look for

easily detectable EPI-trails and to merge adjacent trails into tubes. Each EPI-trail

corresponds to a particular disparity hypothesis (x0,y0,d), where (x0,d) determine

the trail�s xt = f(t;x0,d) coordinate according to (1), and y0 determines the trail�s y

coordinate. The set of all such possible hypotheses forms the disparity space, which
is an old concept dating back to early cooperative stereo correspondence algorithms

[8,18]. More recently, the pixel dissimilarity function sampled on a regular (x0,y0,d)

grid has been called the disparity space image (DSI) [3,33]. Finding correspondences

then consists of finding the true surfaces hidden in this disparity-space volume.

The EPI volume and the disparity space volume have interesting duality proper-

ties (see [4] for some nice illustrations and examples). EPI-trails, which are lines in

the EPI volume, are equivalent to points in DSI (Fig. 3). Conversely, a point in

an EPI volume, which corresponds to a pixel observed in a particular image, has
a linear trail of possible hypotheses associated with it in a DSI.2 A generalization

of this concept to the full space of 3D rays (the 4D Lightfield) is presented in

[9,16]. Disparity space can also be defined as an arbitrary collineation of 3-space

[7,28] or even a regular 3D grid [22]. This is useful when dealing with an arbitrary

collection of images, but we will not need this concept here.

The DSI is built by shearing the EPI volume at a large number of possible dispar-

ities and computing the intensity variances along the vertical direction. The sheared

EPI volume can be computed as

Isðx0; y; t; dÞ ¼ Iðx0 þ t d; y; tÞ ð2Þ
and its mean and variance can be computed as
2 Note that the y coordinate is left unchanged when going between the two spaces, so the duality is

between the (x, t) and (x0,d) spaces.



Fig. 3. Duality between epipolar plane image (EPI) and disparity space image (DSI): lines in one space

map to points in the other and vice-versa. Top row: The red line in the EPI maps to the red point in the

DSI and the blue line in the EPI maps to the blue line in the DSI. Furthermore, the EPI-strip (grey

quadrilateral) in the EPI maps to a line segment in the DSI (shown in grey). Bottom row: Dually, the green

point in the EPI maps to the green line in the DSI, and the pencil of lines through a voxel in the EPI maps

to a line in the DSI. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this paper.)
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lðx0; y; dÞ ¼
P

t I sðx0; y; t; dÞvsðx0; y; t; dÞP
tvsðx0; y; t; dÞ

ð3Þ

and

r2ðx0; y; dÞ ¼
P

t½Isðx0; y; t; dÞ � lðx0; y; dÞ�2vsðx0; y; t; dÞP
tvsðx0; y; t; dÞ

; ð4Þ

where vs(x0,y, t,d) is a sheared version of the visibility mask v(x,y, t) that we will de-

fine later on (for now, consider it to be 1).3 Fig. 4 shows some samples of disparity
space images l(x0,y,d) and r(x0,y,d).

Next, we label voxels in the DSI that have a variance lower than the other voxels

they might potentially occlude. If the voxel is indeed an occluding voxel, then the oc-

cluded voxels should get a photoconsistency measure (variance) that is contaminated

by the occluding voxel. Ignoring noise and assuming that the color/intensity of the

occluding and occluded voxels are different, we would thus expect the variance asso-

ciated with an occluding voxel to be smaller than those being occluded.

In our current implementation, we add some slack in the comparison, i.e., we la-
bel a voxel (xk,yk,dk) in the DSI as a good candidate of an EPI-tube if for all

(xj,yj,dj) 2 S(xk,yk,dk) we have r(xk,yk,dk) < r(xj,yj,dj) + e (currently, e = 1), where

S(xk,yk,dk) is the shadow cast by (xk,yk,dk) in the DSI (Fig. 4D).4
3 To perform the shearing, we shift the original images horizontally by fractional pixel amounts using

linear interpolation.
4 The triangle in the opposite direction from the shadow region is the free space region [4], in which no

further matches should in principle be allowed. However, we do not currently use this constraints, since

errors early on in the matching can preclude valid later matches.



Fig. 4. Sample disparity space images (scanline y = 45 of sequence in Figs. 1H–M): (A) EPI I(x, t), (B)

mean l(x0,d), (C) standard-deviation r(x0,d), (D) line-masked std-dev, (F) shadow region (in blue) for one

point in the DSI; (F–H) corresponding images after 2nd iteration. The lines in red indicate the extracted

EPI-tube components. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this paper.)
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Once we have identified a good set of candidate voxels, we find connected re-

gions of such voxels while filling across small gaps. Currently, this is implemented

using morphological dilation and erosion operators within the 3D disparity space.

Next, we pick a set of layers that do not occlude one another. This is accomplished

by casting shadow masks as each layer is being picked from the DSI in front to

back order.

Once these layers are chosen, the corresponding voxels in the original EPI vol-

ume are then masked out by setting the corresponding v(x,y, t) entries to 0. The
DSI is recomputed, and the entire cycle is repeated to extract another set of layers

(or to add to current ones). In extracting layers subsequent to the first set, any ad-

ditional hypothesized layer is tested by reconstructing the EPI with the current set

of layers, and computing the error introduced by this additional layer. If the

average error introduced exceeds a threshold (currently set at 5 intensity levels),

then the hypothesized layer is discarded. Fig. 4 shows the temporal evolution of

the DSIs.

The termination condition is that either all the voxels in the EPI volume have been
labeled or there are no voxels that satisfy the photoconsistency condition within the

threshold. To ensure that all pixels are accounted for, all voxels that were not labeled

are assigned the smallest disparity computed for the dataset (another variant would

be to set their d ‹ 0, i.e., to put them on the plane at infinity). A better alternative,

which we have not yet implemented, would be to find connected components of

unassigned voxels in the EPI volume and to label them with the smallest nearby

disparity.
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Our algorithm thus shares a lot of ideas with previous voxel carving algorithms

[14,22,28]. However, there are several important differences:

� It commits on a group (EPI-tube) basis, not voxel by voxel.

� Each candidate is extracted by comparing its degree of photoconsistency with
those it occludes should it be chosen, rather than some absolute threshold.

� Multiple passes are made through the data, extracting the most certain data first,

rather than relying on a single threshold for photoconsistency.

Unfortunately, the algorithm described above sometimes suffers the same prob-

lem as with voxel carving: it tends to pick the frontmost EPI-tubes that are photo-

consistent. This has the effect of breaking up large textureless regions into multiple

EPI-tubes.
Our improved algorithm handles this problem by first finding all the strong lines

(EPI-trails) in the EPI (Section 3.2). It then masks out areas in DSI that are not near

these points or the lines connecting such points (on the theory that surfaces connect-

ing strong features are good candidates for disparity). The last column of Fig. 4

shows such line-masked variance images. Shown in red are the current EPI-tube pix-

els in the DSI.

3.2. Direct extraction of EPI-strips

A second approach to extracting EPI-tubes is to directly analyze the color infor-

mation contained in the EPI volume.

As noted earlier, for the case of cameras moving linearly at uniform speed, the

boundaries of an EPI-strip are straight lines in the epipolar plane. As it is evident

from Fig. 2, each EPI can be thought of as a collection of EPI-strips. Each EPI-strip

can be parameterized as two lines or four points (the intersections of the two lines

with the top and bottom edges of the epipolar plane).
Based on the observations in Section 2, we have designed the following algorithm

to automatically extract EPI-tubes (also shown as a block diagram in Fig. 5):

3.2.1. Stage I: EPI-strip hypothesis generation

In this stage, we create a set of EPI-strip hypotheses for each epipolar plane

image.
Fig. 5. Block diagram of the direct EPI-strip extraction algorithm.



Fig. 6. Candidate EPI-strip boundaries: one EPI with extracted candidate trails superimposed (in yellow).

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this paper.)
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1. For each EPI extract a set of straight lines corresponding to visible streaks (see

Fig. 6, for an example). We use the Canny edge operator to extract edges and then

fit straight lines to them. Each line is a potential strip boundary.

2. For each EPI, augment the set of lines with those of its neighboring epipolar

planes, by taking the union of the straight lines from the two adjacent planes

above and below. This is done in order to overcome possible omissions in Step 1.
3. Sort the straight lines according to their orientation (from most slanted to most

vertical, i.e., from highest disparity to lowest).

4. Assuming there are N lines for a given epipolar image plane, create an N · N

upper triangular matrix whose rows and columns are both indexed by the lines.

Each element of this matrix correspond to a potential EPI-strip (Fig. 8).

3.2.2. Stage II: EPI-strip extraction

In this stage, we extract EPI-strips separately but simultaneously from each of the

EPIs. One EPI-strip is extracted from each EPI at a time using the steps described

below. This process is repeated until all the EPI-strips have been extracted from

all the EPIs.

1. Cost computation. For each EPI, we compute a cost measure for each element of

the matrix as follows:

For each potential strip (a matrix element), rectify (shear) the epipolar plane im-
age so that the selected strip appears vertical in the EPI (Fig. 7). The purpose of

this step is to avoid problems due to temporal aliasing and other artifacts.5 The

required geometric transformation is defined by the two boundaries of the strip.

The resulting transformation is a geometric bilinear warp, which corresponds to

linearly interpolating the disparities of the two boundary pixels (which, in turn,

corresponds to assuming a piecewise-planar geometry.)

Given the rectified EPI-strip, the cost associated with it consists of two parts: (i) a

lack of photo consistency, which measures the variance (4) of the color informa-
tion for a pixel across all the views, and (ii) a crossing cost, which penalizes for

having non-vertical streaks in the rectified image. This could be because another
5 Making a strip vertical is equivalent to warping all the input images in order to align the chosen strip

over the sequence.



Fig. 8. Cost matrices. Two examples of cost matrices for two different EPIs. The element (i, j) of the matrix

indicates the goodness of the EPI-strip defined by the ith and the jth straight line. Notice that the

dimensions of the cost matrix varies for each scanline, depending on the number of extracted straight lines.

Fig. 7. EPI-strip rectification. The EPI-strip marked in green (dashed line) has been rectified to make its

internal streaks vertical. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this paper.)
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EPI-strip crosses the current one. The crossing cost is measured in terms of the
total squared vertical color gradient (indicating horizontal edges) computed with-

in the hypothesized EPI-strip.

During the first iteration, all the EPI-strips are treated equally. During sub-

sequent iterations (after some strips have been removed), the cost computa-

tion is modified as explained in Step 4. Fig. 8 shows the cost matrix

associated with a couple of example EPIs. The cost of each EPI-strip is re-

flected in the brightness of the associated matrix element (low/dark costs

are good potential strips).
2. Cost relaxation. For a given EPI-strip, consider EPI-strips on neighboring epipo-

lar planes near the given strip. Here, distance is defined in terms of the Euclidean

distances between the four corresponding vertices of the EPI-strip quadrilateral.

From this set, pick the nearest one to the given EPI-strip and modify the cost

of the current strip with a weighted linear combination of the two costs. This is

done for all the strips in all the epipolar image planes.

3. EPI-strip selection. For each epipolar image plane, traverse the upper-triangular

matrix row-by-row from top to bottom (i.e., from most slanted boundaries to
the most vertical ones). For each row find the element with the minimum cost

in that row. If that element cost is also the minimum for its entire column and

is below a predefined admissibility threshold, the element is chosen, and the cor-
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responding strip is identified as a valid EPI-strip. This means that the two bound-

aries of the selected strip are best paired with each other compared to all other

possible pairings of either boundary. Also the resulting strip satisfies our afore-

mentioned criteria for being a good strip.

4. Matrix adjustment and cost recomputation. After a strip is extracted, the costs of
all the elements of the matrix are recomputed. This is done by removing the

regions of the EPI that are contained within the selected strips from further con-

sideration and marking them as such (Fig. 9). When the cost is recomputed, EPI-

strips that completely overlap these regions are set to a maximum cost that results

in them being removed from further analysis. The algorithm moves back to the

cost-relaxation step above, and the entire process is repeated until no candidate

elements are left or none of the remaining ones pass the admissibility cost thresh-

old.

3.2.3. Stage III: Clean up

At the end of Stage II, there may still be regions of an epipolar plane that do not

belong to any of the strips that have been extracted. To fill in these ‘‘holes,’’ addi-

tional EPI-strips are estimated using the following method. Since pixels belonging

to an EPI-strip have disparities associated with them, we can detect the pixels in

the holes by checking for the lack of any disparity assignment. Each connected com-
ponent of such pixels is marked a new EPI-strip.

The next task is to assign disparities to the boundaries of these new EPI-strips.

There are two possible cases: interior ones that are enclosed by (possibly multiple)
Fig. 9. Strip removal. After extracting an EPI-strip, the corresponding region of the EPI is blanked out

and removed from further consideration. (A) Original EPI. (B) The most horizontal EPI-strip

(corresponding to front-most object) has been detected and removed from further consideration. (C)

The second front-most EPI-strip has been removed. This process of detecting and removing good EPI-

strips continues until the current EPI has been completely explained by a set of EPI-strips.

Fig. 10. EPI segmentation into EPI-strips. (A) The EPI corresponding to the 48th scanline of the input

sequence in Figs. 1H–M. (B) The EPI has been automatically segmented into different EPI-strips (color-

coded, different color for different EPI-strip).
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existing EPI-strips, and those adjacent to image borders, which are enclosed by one

or more EPI-strips on one side and the image border on the other side. In either case,

there may be multiple existing EPI-strips that bound these new strips. For each side

of the new strip, we select the bounding strip with the smallest disparity (farthest in

the background) as the boundary of the new strip. The disparities of the interior pix-
els of the new strip are linearly interpolated from these boundaries. For those bor-

dering the image, the entire strip is assigned the same disparity as the boundary

on the other side.

Currently, the algorithm produces a separate set of strips for each epipolar plane

and computes their disparities. We are working on merging the recovered strips into

EPI-tubes.
4. Layer extraction and manipulation

Once the EPI volume has been segmented into a good set of EPI-tubes, we can

convert each EPI-tube into a separate plane-plus-parallax layer (or sprite with depth)

[2,23]. To do this, we must first choose a reference frame for each layer. In our cur-

rent implementation, we simply use the first frame in the sequence. A better choice

would be to choose the frame where the majority of the layer surface is best sampled,

i.e., where it is most parallel to the image plane.
Once a reference plane has been chosen, we need to compute the per-pixel colors,

opacities, and disparities. With our disparity space image analysis algorithm (Section

3.1), this information is already present during the EPI-tube construction. At the end

of the DSI analysis, each layer is represented by a collection of DSI voxels. For each

voxel, the reference color will have been pulled from the mean image l(x0,y,d) and
the disparity is simply the d value. It is then a simple matter to paint these values into

the a-matted color (‘‘texture’’) image (we use binary opacities for now) and the per-

pixel disparity image. For ease of implementation, we currently set the plane equa-
tion for each sprite to be the plane at infinity, which means that the inverse depth

disparity computed during DSI analysis encodes the correct out-of-plane parallax

(after appropriate scaling).

For the EPI-strip extraction algorithm (Section 3.2), since the strips have not yet

been merged into tubes, we do not generate sprites. However, we can estimate the

per-pixel color and disparity for every strip. The disparity can be easily obtained

by linearly interpolating the disparities at the two strip boundaries, and the colors

are computed using the median value estimated during the visibility-masked shearing
used to compute the original strip cost metric.

4.1. Layer extraction, depth recovery, and object removal

We have run both our algorithms on two different real image sequences. In both

cases, the images were acquired by a camera translating sideways (along the scanline

direction) moving at a constant speed. We also collected a dense set of viewpoints,

keeping the interframe disparities to a few pixels or less.
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Results of applying both our algorithms to the input datasets are shown in Figs. 1

and 11. The first row of Fig. 11 shows three frames of the original input sequence.

The most visible occlusion event in this sequence is the occlusion of the background

by the multi-colored dodecahedron in the foreground.
Fig. 11. Experimental results: layer extraction, depth recovery, and object removal. (A) Three frames of

the original sequence, (B–D) the corresponding frames of the synthesized sequences obtained using the

DSI algorithm, (E) the disparity map for the same scene recovered by the EPI-strip algorithm

(corresponding to the three frames in (A)) (F–G) synthesized frames for the background and foreground

portions of the scene, respectively, computed using the EPI-strip algorithm.
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The DSI algorithm recovered 9 layered sprites (or EPI-tubes) from this sequence.

Most of these belonged to the background, while one belonged to the dodecahedron.

We used these sprites to re-synthesize the frames of the input sequence. The next

three rows (Figs. 11B–D) show the results of the DSI algorithm on this sequence.

Fig. 11B shows all the objects in the synthesized scene, whereas Figs. 11B and C
show only the objects in the background and foreground, respectively. Note that al-

though the synthesized sequence is noisy in places, on the whole the segmentation

and reconstruction is accurate. In particular, note that the boundary of the fore-

ground object is sharp and does not have the fattened edges that are often typical

of stereo reconstruction results.

As noted earlier, our current implementation of the EPI-strip extraction algo-

rithm produces EPI-strips for each epipolar plane but does not merge them into

tubes. In Fig. 11E we show the disparities estimated by our algorithm. The disparity
map looks consistent with the scene layout. Once again, note the sharp discontinu-

ities in the disparity map at the boundary of the dodecahedron in the foreground.

Figs. 11F and G show the synthesized frames for the background and foreground,

respectively.

Notice that our color estimation process has correctly filled in the areas occluded

by the dodecahedron (the green tea box in Fig. 11F). The spatio-temporal layer

(EPI-tube) that has been computed for the dodecahedron may be seen in Figs.

11G and 12.

4.2. Object insertion and occlusion handling

The EPI-analysis described above provides us with a complete understanding

of the dense 3D geometry of the viewed scene together with a layer-based repre-

sentation of it. At this point it is quite straightforward to manipulate the extract-

ed EPI-tubes, remove them, duplicate them or insert new objects in the scene, in

a coherent 3D fashion. The inserted object may be extracted from a different in-
put video or generated with CAD-like tools. Examples of object insertion are

shown in Fig. 13.
Fig. 12. Extracted EPI-tubes. Two views of the automatically extracted EPI-tube corresponding to the

dodecahedron in the input sequence in Figs. 1H–M. Another example, for a different input dataset, may be

seen in Fig. 1G.



Fig. 13. Object insertion. (A–C) Frames from the augmented ‘‘dodecahedron sequence.’’ One more

dodecahedron has been inserted behind the original, at a lower level. (D) An image of a 3D model of a toy

airplane, to be inserted into the ‘‘dodecahedron sequence.’’ (E and F) A complete 3D model of the

‘‘dodecahedron sequence’’ has been obtained from the EPI analysis and the 3D model of the airplane in

(D) has been inserted behind the dodecahedron (the front-most layer). Notice that, thanks to the geometric

understanding that arises from the automatic EPI segmentation, occlusions are handled correctly.
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5. Geometry of specular reflections

In the prior sections, it has been assumed that the scene is Lambertian. In general,

however, this hypothesis may be too restrictive. How do we deal with non-rigid ef-

fects such as specular reflections? To answer this question, first of all we need to

characterize the motion and appearance of specularities.

This section addresses the problem of characterizing the geometric behaviour of

specularities and Section 6 deals with their photometric behaviour.

Shiny objects have specular reflections that move in a non-rigid manner when the

camera moves. Therefore, specularities must be treated with particular attention.
This section presents a mathematical characterization of specular reflections both

in terms of their geometry and their appearance within the EPI framework. As we

demonstrate in Section 7, this study may be applied to the automatic detection

and removal of specular highlights from static scenes. In [17] do obtain some very

interesting results on detecting and removing specular highlights from static scenes,

but their work lacks the systematic geometric and photometric characterization of

specularities addressed in the present work.

Section 5.1 analyzes the simpler case of a 2D reflector, while Section 5.2 deals with
the complete 3D case. Section 6 presents the photometric constraints which charac-

terize specular highlights and finally, Section 7 proposes a novel technique for sepa-

rating diffuse and specular components in static scenes.

5.1. Specular motion in 2D

In general, in the case of flat specular surfaces, the reflected scene point (virtual

feature) lies at a single point behind the surface. However, for curved surfaces, the
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position of the virtual feature is viewpoint dependent (Fig. 14) [21]. The locus of the

virtual feature is a catacaustic [10], referred to in this document as just a caustic. Fig.

14A illustrates the caustic curve formed for a circular reflector in 2D and some scene

point. Note that any point of the locus of virtual features (caustic) is only visible

along the tangent ray to the caustic curve. Also, any two views of a scene containing
specularities are insufficient to unambiguously estimate the depth of virtual features

(Fig. 14B) necessitating the use of more than two images.

This section analyzes the geometry of reflections for curved surfaces, starting from

the simplest case, that of a circular reflector, and then moving to a more general case

in Section 5.1.2.

5.1.1. A circular reflector

For purposes of demonstration we assume the specular curve (in 2D) to be circu-
lar. The caustic is defined by the geometry of the specular curve and the scene point

being reflected. Thus, we can compute the caustic curve in closed form [5,6].

Now, given a camera position, we can derive the point on the caustic where the

virtual feature becomes visible. Its image is simply a projection of the caustic point

onto the image plane. We derive the image location of a virtual feature as a function

of camera pose, specular surface geometry and the scene point.

To compute the EPI trace of the specularities, we assume that the camera motion

is linear in the plane parallel to the imaging plane. As stated previously, the linear
camera motion implies that the EPI trace of any static scene point must lie along

straight lines within the EPI-slice. However, reflected points move along their caus-

tic. Thus, their EPI traces would be expected to be curved.

We define the deviation of an EPI trace from a straight line as disparity deviation

(DD). Disparity deviation depends entirely on the movement of the virtual feature

and distance of the viewer from the scene. Motion along the caustic in turn depends

on the curvature of the surface, surface orientation, and the distance of the reflected

point from the surface. The greater this distance, the greater the motion along the
caustic surface.
Fig. 14. Reflections on curved surfaces, the 2D case. (A) The geometry of reflection on curved specular

surfaces. The position of the virtual feature at two viewpoints lies on the caustic curve at two distinct

points. Any point on the caustic is visible only along the tangent to the caustic at that point. (B) Two-view

stereo algorithms applied to reflective surfaces would estimate an erroneous depth for the virtual feature,

due to lack of sufficient information.
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Fig. 15 shows sample EPI curves for two specular curved surfaces. Surprisingly,

the curve with higher curvature (Fig. 15B) shows little disparity deviation. In fact,

although high curvatures lead to faster angular motion along the caustic, this motion

is contained within a very small area. Lower curvatures, on the other hand, can pro-

duce noticeable disparity deviation in the EPI. For a given curvature, disparity de-
viation is accentuated at grazing angles of reflections (as we show below). We now

expand the surface to a local cubic approximation, and study the stability of the dis-

parity (trace in the EPI) as a function of curvature and surface orientation.

5.1.2. Infinitesimal motion

Having observed the qualitative behavior of a specularity�s trace in the EPI, can

we say something more exact about its behavior. In other words, is there a closed

form equation that relates local surface curvature, curvature variation, orientation,
and the locations of the scene point and camera to the disparity deviation (curvature

in the EPI trace)?

Fig. 16 shows a diagram of the 2D case. The scene point being reflected is at S, the

camera is at C, and the reflected surface point O is at the origin, with the surface

pointing along the x axis. The incident angle to the surface is h, while the surface it-
self has a curvature j = 1/q.
Fig. 15. Plots of specular surfaces, associated caustic curves, and EPI traces. Please note that

correspondence between points on the actual surface, caustic curve, and EPI trace, is color-coded. (A)

A high curvature surface, such as a soda can, for which the caustic curve is also small and has high

curvature. (B) The corresponding EPI trace is almost linear since the virtual feature undergoes minimal

motion. (C) An extreme case: the camera observes reflection on an almost flat surface (such as a monitor

screen) at an oblique angle. The corresponding caustic has least curvature. Thus for small viewpoint

changes, the virtual feature moves significantly. (D) The corresponding EPI trace is noticeably bent having

strong disparity deviations.



Fig. 16. 2D analysis of specular reflection for generic reflecting geometry. (A) Reflection of point S

(source) by the reflecting curved surface at point O as seen by camera C; (B) Projection of the reflected

image into the camera C with image plane u moving along the t axis.
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Consider an infinitesimal change of angle a = \OSN in the direction of the light

ray leaving S. This corresponds to a motion along the surface from O to N of length

xa

xa ¼ dS ½sin h� sinðh� aÞ�; ð5Þ
where, dS is the distance from S to O. At the new reflection point N, the surface nor-
mal has changed by an angle b

b ¼ jxa þ 1
2
_jx2a þ Oðx3aÞ: ð6Þ

(Note that we explicitly model the change in surface curvature _j, as this will be im-

portant in determining the reflection�s stability.) Thus, while the incidence angle is

h � a, the emittance angle is h � a � 2b.
This emittance angle determines the angle \OVN = a + 2b, where V is the virtual

image point, formed by the intersection of the reflected ray at the origin and the re-

flected ray at the new point N. We obtain:

xa ¼ dV ½sin h� sinðh� a� 2bÞ�; ð7Þ
where, dV is the distance from V to O.

Equating (5) and (7) we obtain

dV ¼ dS
sin h� sinðh� aÞ

sin h� sinðh� a� 2bÞ : ð8Þ

The limit of the above expression as a fi 0 gives us the location of the virtual image
V. (Note that if the image is stable, as is the case for a planar reflector b ¼ j ¼ _j ¼ 0,

dV = dS is the same for all values of a.)
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Applying L�Hospital�s rule to the limit of (8) and simplifying, we get

lim
a!0

dV ¼ dS

1þ 2dSj cos h
: ð9Þ

How does this virtual depth vary in practice? In the limiting case as dS fi 1 or

j fi 1 (q fi 0), i.e., as the scene point distance becomes large relative to the radius

of curvature, we get

dV ¼ q
2
sec h: ð10Þ

This result is quite intuitive: the virtual image sits at the focal point behind (or in

front of) the reflector for head-on viewing condition, and further away for tilted sur-

faces.

The behavior in the general case when the source is closer to the surface is plotted

in Fig. 17A. The virtual depth slowly decreases for a convex reflector as the curva-

ture increases. For a concave reflector, the virtual depth decreases, moving rapidly

towards negative infinity as the radius of curvature approaches the object distance

(as the object approaches the focal point), and then jumps back to positive virtual
depths. The actual distance seen by the camera is dV + dC, so that impossible appar-

ent depths only occur when dV < �dC.

These results are consistent with the shapes of the caustics presented previously

for the circular reflector. What is more interesting, however, is the stability of the vir-

tual depth as a function of curvature and slant. In other words, as we vary our view-

point, how does vD change? The answer to this can be approached by differentiating

(8) w.r.t. a and setting a = 0, yielding

odV

oa

����
a¼0

¼ �d2
V dS _jð1þ cos 2hÞ þ 4j sin hþ 2dSj

2 sin 2h
� �

: ð11Þ

This tells us how the virtual image point V moves as we vary a, e.g., how V moves to

V0 in Fig. 16A when we replace a with �a (the dashed curve indicates the caustic sur-

face). Note that the first term is due to the change in curvature _j and becomes neg-

ligible for highly slanted surfaces, while the other two terms are due to the surface

foreshortening sinh and sin2h.
Fig. 17. (A) Plot of virtual depth dV as a function of curvature j for dS = 1 and h = 0� and 60�. (B)
Disparity deviation for f = 100 as a function of j for dS = 1, dC = 4, and h = 30�, 45�, 60�, and 75�. The
horizontal axis in both cases is actually 2/p tan�1j, so that the full range j = (�1, 0,1) can be visualized.
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Now, how does the disparity (curvature in the EPI) change as we vary the camera

position? In other words, what is the disparity deviation of a specular feature? From

Fig. 16B, we see that the disparity D is given by

D ¼ d
t
¼ f

dV þ dC
; ð12Þ

which is the usual equation relating disparity to inverse depth.To see how D varies

with t, we apply the chain rule to obtain

oD
ot

¼ � f

ðdV þ dCÞ2
odV

oa
oa
ot

: ð13Þ

The first partial derivative is given by (11). The second can be computed from the

relationship t = (dV + dC) sin(a + 2b). For small a and b

ot
oa

¼ ðdV þ dCÞ cosðaþ 2bÞ oðaþ 2bÞ
oa

� ðdV þ dCÞð1þ 2dSj cos hÞ

¼ ðdV þ dCÞ
dS

dV
; ð14Þ

using the approximation

b � jxa � ajdS cos h:

Putting all of these together, we get

_D ¼ oD
ot

¼ fd3
V

ðdV þ dCÞ3
_jð1þ cos 2hÞ þ 4

j
dS

sin hþ 2j2 sin 2h

� �
: ð15Þ

Notice that there is no disparity deviation for planar reflection, i.e., _D ¼ 0 when

j ¼ _j ¼ 0, as expected.

We can now examine each component in (15). The first ratio (dV/(dC + dV)) be-
comes large when dC � �dV, i.e., when the virtual image appears very close to the

camera, which is also when the disparity itself becomes very large. The term that de-

pends on the curvature variation _j is most significant for frontal surfaces, and de-

creases for slanted surfaces. It is most significant for undulating surfaces, like the

inflection points in a wavy fun-house mirror where things go from ‘‘thin’’ to

‘‘fat.’’ At such inflection points, the apparent location of the virtual image can move

very rapidly.

The term j/dS might at first appear to blow up for dS fi 0, but since dV is propor-
tional to dS, this behavior is annihilated. However, for moderate values of dS, we can

get a strong disparity deviation for slanted surfaces. The last term is strongest at a

45� surface slant. It would appear that this term would blow up for large j, but since
dV is inversely proportionally to j in these cases, it does not.

To summarize, the two factors that influence the disparity deviation the most are

(1) when dC + dV � 0, which is when disparities are very large to start with (because

the camera is near the reflector�s focal point) and (2) fast undulations in the surface.

Ignoring undulations, Fig. 17B shows how _D varies as a function of j for a variety of
slants, with dS = 1 and dC = 4. Therefore, under many real-world conditions, we ex-



Fig. 18. (A) Analytic setup showing the location of the scene point in relation to the specular surface and

camera path. (B) Section of the 3D caustic surface associated with (A). The thin curve on this surface is the

locus of virtual features as a function of camera motion. It is clearly seen that the locus of virtual features

is neither stationary nor planar. (C) The corresponding EPI-curve clearly exhibits significant epipolar

deviations.
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pect the disparity deviation to be small enough that treating virtual features as if they

were real features should work in practice.

5.2. Specular motion in 3D

We now discuss the effect of specularities in 3D again using the caustic surface to

perform our analysis. We present our results for a spherical reflector although the

results can be extended to arbitrary surface geometries.

The framework to analyze specularities in 3D is similar to that in 2D. However, in

order to simplify the resulting equations, we alter the coordinate frame as well as rel-

ative positioning of the scene feature.

Consider a spherical specular surface whose center lies at the origin. The scene
point being reflected is located along the positive Z-axis at a distance dS from the

origin. We again derive the caustic surface using the Jacobian technique [6,26]. To

study the motion of specularities, we assume the camera to move in the X,Y-plane,

parallel to the Y-axis at a distance dC from the origin6 (Fig. 18A). Since the reflector

surface is symmetric, the caustic is defined by a profile curve in 2D rotated about the

Z-axis [26].

We need to derive the image location of a virtual feature as a function of camera

pose. We note that the position of the virtual feature locus is essential defined by the
caustic surface. Thus, for any camera path, the locus of observed virtual features is a

curve in 3D which lies on the caustic surface. For any camera position, the virtual

feature not only lies on the caustic surface but is also restricted to the plane defined

by the Z-axis and the camera position. The virtual feature therefore is a point on the

caustic profile in this plane. Given the camera pose and caustic surface, determining

the position of the virtual feature is now reduced to a 2D problem for which an an-

alytic solution exists.
6 Note, this camera path is not critical to the results we derive.
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We know the pose of the camera and hence, can poject any scene point to derive

its image location. Thus, the image of the virtual feature is a simple projection of the

above derived virtual feature, onto the image plane.

5.2.1. Epipolar deviations for a spherical reflector

Under linear camera motion, the images of a rigid scene point must all lie on the

same epipolar line (or plane). However, the motion of a virtual feature on the caustic

surface (Fig. 18B) violates this constraint. As seen in Fig. 18C, the image of the vir-

tual feature does not lie on a single scan-line. We refer to this phenomenon as epi-

polar deviation (ED). The question then arises: how fast does the virtual feature

leave any epipolar plane?

In general, epipolar deviations depend on three primary factors: surface curva-

ture, orientation of surface, and distance of the camera from the reflecting surface.
We only consider scene points distant from the surface as they usually produce

the largest caustic surfaces. We now analyze each factor for its contribution to

ED. This study helps determine situations when ED effects can be neglected and

when they provide significant cues to the presence of highlights and specularities.

5.2.1.1. Surface curvature.We know that for planar mirrors, the virtual feature is sta-

tionary at a single point behind the surface. Similarly, high curvature surfaces such

as sharp corners, have very localized tiny caustic surfaces. Between these two ex-
treme curvatures, surfaces exhibit higher epipolar deviations as seen in Fig. 19A.

5.2.1.2. Surface orientation. The angle of incidence of an observed reflection is also

critical to epipolar deviation. The more oblique the incidence, the greater the motion

of the virtual feature along the caustic surface, causing larger ED. From Fig. 19B we

can see how ED drops to zero at an angle which corresponds to the plane in which

the caustic curve is planar. Beyond this point, the virtual feature locus is again non-

planar and causes epipolar deviations. As one moves to near-normal reflections, we
see that the feature locus is restricted to the cusp region of the caustic. This implies

very small feature motion, in turn reducing ED.

5.2.1.3. Camera distance. As camera distance from the scene increases, disparity be-

tween scene points decreases. Thus, decreasing disparities, imply lower virtual fea-

ture motions, in turn decreasing epipolar deviation (Fig. 19C).

To empirically validate these analytical results, we took a series of pictures of

some mirrored ball at different distances and orientation, and manually plotted
the specularity trajectories (measured to the nearest pixel). As seen in Figs. 19D–

F, the results of our experiments are in agreement with our theoretical prediction.

In general, specular reflections or virtual features do not adhere to epipolar geom-

etry. In our geometric analysis, we assume large camera field of view and range of

motion, and on occasion, large scene distances. However, in typical real situations,

both the camera�s range of motion and field of view are limited; as a result, the spec-

ular features appear to adhere closely to epipolar constraints. This makes it hard to

disambiguate between specular and diffuse EPI-strips solely on the basis of geome-



Fig. 19. Epipolar deviations as a function of the three most significant factors. (A) Surface curvature:

initially there is a rise in epipolar deviation with respect to increasing radii of curvatures, however, beyond

some point ED starts dropping towards zero as the surface flattens. (B) Surface orientation: the epipolar

deviation initially dips to zero before rising again and then further reducing back towards zero. This is

because, at some surface orientation, the sphere reflects all rays from the scene point in the horizontal

plane in which the camera lies. The EPI trace is then restricted to a single epipolar line. (C) Camera

distance from scene: this is the most intuitive observation also stemming from stereo parallax, that

disparity drops inversely with distance from scene. In the context of virtual feature loci, the dropping

disparity reduces effects of the moving virtual feature, in turn reducing epipolar deviation. See the text for

more detailed explanations. (D–F) are the corresponding results of experiments using real objects. (D) We

used reflective balls with radii ranging from 1.95 to 0.3 in.; each was placed about 3 feet away from the

camera. (E) The ball of radius 1.95 in. was placed 3 feet away from the camera. The height of the ball was

changed up to 14 in. (F) The same ball was used, with the distance of the camera to the ball varied from 1.5

to 5 feet. Notice the similar trends between the theoretical and experimental plots.
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try. As a result, in order for any diffuse-specular separation technique to be effective,
photometric characteristics have to be considered as well.

It is clear from the geometric analysis that specular reflections need not adhere to

epipolar geometry. Thus, the trace of virtual features across an image under camera

motion need not lie in the epipolar plane. Moreover, even if the virtual feature were

constrained to the epipolar plane, its trace in the EPI need not be a straight line. In

contrast, Lambertian or real scene points always trace out straight lines in the EPI.

Since the traces of specular points (virtual features) can be straight lines as well as

curves in the EPI volume, an algorithm that seeks out such ‘‘curved tubes’’ may not
be successful. This ambiguity between specular features and Lambertian scene points

in the EPI makes geometric constraints necessary but not sufficient. This deficiency

of geometry is however, complimented by photometric constraints.

In the next section, we present photometric analysis of specularities under linear

camera motion. Results presented in this section motivate the need for hybrid algo-
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rithms that use geometric as well as photometric constraints in separating the diffuse

layer from the specular layer.

A question that still remains is: ‘‘Why do we use EPI analysis to study specular-

ities, if they do not adhere to epipolar geometry?’’. Given the finite resolution of

cameras and sufficient distance of the camera from the scene; epipolar deviation
(ED) error is quite limited. The only case in which it is impossible to use EPI analysis

when the specular point jumps epipolar/scan-lines between consecutive frames. This

in turn corresponds to a large ED. When temporal sampling is high enough and ED

low enough (typical scenarios), the specular region lies on a single scan-line long en-

ough to be segmented using photometric and geometric constraints.
6. Photometry of specular reflections

We now present a photometric analysis of specularities under linear camera mo-

tion. Within the framework of EPIs, we develop a taxonomy of specularities and mo-

tivate the need for hybrid algorithms that use geometric and photometric constraints

to separate the diffuse and specular components.

6.1. Taxonomy of specularities

To handle specularities in image sequences, it is instructive to first identify what

we consider different kinds of observed specularities and their associated photometric

behavior. This classification helps in the design and use of ‘‘case specific’’ layer sep-

aration algorithms.

We categorize the type of observed specularities based on whether the reflecting

and reflected surfaces (which we term reflector and source, respectively) are textured

(Fig. 20). Furthermore, we differentiate between area and point sources, since this

has an impact on how separation can be accomplished.
We describe the reflection phenomenon in each of the cases in some detail and ex-

plain what separates them from one another. In the analysis to follow we do not as-

sume any attenuation of light as it reaches the viewer. Thus, the result of reflection is

simply the addition of light energy such that the reflected component adds to the un-

derlying diffuse component.

6.1.1. Textured reflector—textured source

The EPI-strip associated with this type of specularity is characterized by a blend-
ing between the reflector and source textures leading to a criss-cross pattern. With

textured surfaces it is difficult to extract individual EPI-strips having the same albedo

within the EPI. One has to process each column with the EPI-strip individually. This

is equivalent to analyzing every scene point over time.

As the camera moves, a scene point reflects different parts of the surrounding

scene. The diffuse component of the surface is bounded by the minimum observed

color intensity along any column. In such cases approaches such as those proposed

by [27,32] are better suited for separation.



Fig. 20. Taxonomy of specularities with example snapshots of sequences. Below each image is the EPI

associated with the marked scan-line. Note that all of the EPIs were sheared for visual clarity.
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6.1.2. Textured reflector—textureless area source

In this case, the underlying specular surface is assumed to be textured while the

reflected region has almost no texture. Most of the EPI-strip is brightened by a uni-
form color associated with the source. This may cause ambiguity in separation. We

discuss more on EPI ambiguities in the next section.

However, when the EPI-strip is correctly rectified, every column within the EPI-

strip corresponds to the effects of reflection of the un-textured source on a single

scene point. Each column, when projected in RGB space, would form a dichromatic

plane. However, all the columns would form planes which all meet along the same

color vector corresponding to the source. Thus, a simple dichromatic model [12]

could by used to disambiguate between the two layers.

6.1.3. Textured reflector—textureless point source

In principle, this is similar to the previous case, except that the source is highly

localized (Fig. 20). As a result, separation can be accomplished by analyzing con-
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stant color sub-strips of the EPI-strip, e.g., using the dichromatic reflectance model

[12].

6.1.4. Textureless reflector—textured source

In this case, we assume the underlying specular surface to be textureless. The re-
flected scene may be richly textured, and the result can be seen in Fig. 20. We also

assume that the entire EPI-strip (corresponding to the specular surface) were extract-

ed as a whole. This happens when either there exist multiple scene illuminants or un-

der inter-reflections [13,19]. Extraction of the underlying diffuse component, could

then be obtained using a method similar to the multi-chromatic reflection model [1].

6.1.5. Textureless reflector—textureless area source

In this scenario, both the underlying specular surface as well as the reflected scene
have no texture. Again, we differentiate between an area being reflected to point re-

flection. If the reflected region has considerable size with respect to the enclosing sur-

face texture�s EPI-strip, ambiguities arise as described earlier. A more detailed

explanation of this ambiguity is given in the following section.

6.1.6. Textureless reflector—textureless point source

Once again, this is similar in nature to the above case, except the reflected scene is

assumed to be very localized or a point. The difference follows from the fact that this
thin trace within the EPI is easier to extract as part of a larger EPI-strip. Thus, aiding

its being separated as a specularity (Fig. 20). Possible separation techniques include

dichromatic reflectance model [12].

6.2. EPI-strips and their inherent ambiguity

There exists an inherent ambiguity in EPI analysis for specularities and diffuse re-

gions when considering individual EPIs. Fig. 21A illustrates such an EPI. One EPI-
Fig. 21. EPI-strip ambiguity. (A) A typical EPI in which a smaller EPI-strip (dark/brown region) is

enclosed with another EPI-strip (light/yellow region). In the absence of prior scene knowledge this EPI

may be interpreted in many ways. (B) One interpretation could be that each thin strip of alternating colors,

represents a ‘‘region’’ in the scene. Thus, each (d1,d2,d3) is understood to be an unique Lambertian region.

(C) Another interpretation could be that the larger EPI-strip (d) includes the lighter EPI-strip (s) within it.

This situation can happen only if s is a specularity: geometrically it appears to be behind d, but

photometrically it appears to occlude d. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this paper.)
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strip (darker) is completely enclosed by another EPI-strip (lighter). Individual layers

can now be extracted in several ways leading to valid and unique interpretations.

Fig. 21B is one interpretation where each EPI-strip was extracted separately rep-

resenting three unique diffuse layers (d1, . . .,d3). The varying tilts of their bordering

edges in the EPI lead to slanted segments in the scene of varying depths. In contrast,
another equally valid extraction includes the inner EPI-strip (Fig. 21C). If this inner

strip conforms to the photometric constraints discussed earlier, we interpret it as a

specularity s over the otherwise diffuse region d.

Such ambiguities arise in purely Lambertian scenes as well as those containing re-

flections. In principle, one can reduce the ambiguities by analyzing multiple EPIs all

at once. However, this still does not guarantee an ambiguity-free scenario.

6.3. Surface curvature and specularities

As stated in Section 2 within an EPI, closer scene surfaces have a more horizontal

orientation than those farther away. For convex surfaces, the locus of virtual fea-

tures resides behind the surface. Therefore, the corresponding EPI-strip of specular
Fig. 22. Estimating diffuse and specular components for each EPI-strip. (A) Some frames from the

original input sequence showing some shiny objects, e.g., the central maroon box. (B) One of the input

frames with a superimposed scanline. (C) The EPI corresponding to the selected scanline. (D) An EPI-strip

selected on the EPI in (C). Notice the typical highlight pattern seen on convex specular surfaces.

Chromatically, the highlight region seems to occlude the underlying texture of the surface. However, the

orientation of the highlight is more vertical implying a farther depth. This confirms the bright pattern to be

caused by a specularity. (E) Rectification of the marked EPI-strip. The diffuse component is now made

vertical, while the specular component is oriented beyond 90�. See also Fig. 7 for the rectification of a

purely Lambertian EPI-strip. (F) Using photometric analysis along with geometric reasoning, the

highlight is extracted and the diffuse component of the selected EPI-strip fully recovered. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of

this paper.)
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reflection has a more vertical orientation than that of the underlying diffuse compo-

nent (Figs. 22A and B). However, photometrically, this region of the EPI-strip tends

to occlude the underlying diffuse component. In contrast, a true occlusion event

within an EPI is characterised by the occluding stip having a more horizontal orien-

tation than the underlying surface. Thus, using geometric and photometric tech-
niques, one can dis-ambiguate between occludions and specular reflections.

In contrast, concave surfaces typically form the virtual feature in front of the sur-

face. The EPI-strip of the specular component is therefore more horizontal but re-

stricted to the concave region alone (such as dimples on a regular surface). This is

a much harder case to deal with and is beyond the scope of our current work.
7. A technique for removing specular highlights

We now describe a technique for removing the specular components from an im-

age sequence and estimating the underlying diffuse colors associated with the specu-

lar regions.

The proposed algorithm first extracts EPI-strips from each EPI (Section 3.2) and

then analyzes each individual EPI-strip and decomposes it into its specular and dif-

fuse components. EPI-strips are analyzed for specularities using a variant of [27].

Our technique is more general in that it is designed to work with textured reflectors
and all three types of sources shown in the first row of Fig. 20 and is not constrained

to planar surfaces.

7.1. Specularity extraction

Once the EPI volume has been segmented into a collection of EPI-strips, each

EPI-strip is rectified so that trails within it are vertical (Fig. 22).

The scenario assumed here is that of a textured reflector with an arbitrary source.
Many highlight regions tend to be saturated in parts. To simplify our process, we

look for specularities in EPI-strips containing pixel intensities above a pre-defined

minimum value.

In any column of the rectified EPI-strip, the pixel with lowest intensity gives us an

upper bound on the diffuse component of that scene point. For every column, we es-

timate this upper bound and assume the scene point to have the associated color

(Fig. 22F). The residual is then the specularity. To validate this step, we group all

pixels that are strongly specular and observe their relative orientation within the
EPI-strip. If they have a more vertical orientation, then they must be specularities.

Note that this is only true for convex surfaces. In our current implementation, we

do not consider the effect of concave reflectors.

7.2. Experimental results

To validate our technique, we took an image sequence of a real scene that con-

tains both specular and Lambertian objects. The camera was mounted on a linear



Fig. 23. Automatic separation of diffuse and specular components. (A) A subset of input images of a real

scene (already seen in Fig. 22A and repeated here for clarity). (B) The automatically estimated specular

component. The specular component is removed from the input sequence thanks to a combined use of

geometric and photometric constraints on the behavior of specular highlights. The two strong highlight

regions on the maroon box (together with many smaller regions) are correctly detected. (C) The

automatically estimated diffuse component. The diffuse component is almost devoid of specular effects.

Some artifacts show up in this sequence because of incorrect EPI-strip selection.
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translation stage about three feet away from the scene. A set of 50 images was cap-

tured at uniform intervals as the camera was translated from left to right. A subset of

the acquired images can be seen in Fig. 23A.

This sequence of images were then stacked together to form a spatio-temporal

volume on which the EPI segmentation described in Section 3.2 was performed.

As seen from Fig. 23B, the specular regions were effectively segmented out from
the image sequence. Furthermore, the underlying diffuse component of the scene

was recovered successfully in Fig. 23C.

However, inaccurate EPI-strip extraction and interpolation issues while creating

the rectified EPI-strip result in some visible artifacts (black spots and residual specu-

larities in Fig. 23C). The same separation result is also shown for a selected scanline

in the spatio-temporal volume defined by the input sequence in Fig. 24.

Since we employ a relatively simple technique to detect and separate layers, the

results are somewhat sensitive to the EPI-strip segmentation process.
8. Discussion and conclusions

In this document, we have described a new approach for automatically recovering
3D layers from extended multiview sequences by analyzing the data in the entire epi-



Fig. 24. Specular/diffuse separation in the spatio-temporal volume. (A) The spatio-temporal volume

defined by the input sequence in Fig. 22. (B) One EPI from the volume. (C) The detected specularity in the

selected EPI. (D) The recovered diffuse component for the selected EPI. The specular streak has been

removed and the colour information filled in correctly.
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polar plane image volume. Our approach is based on decomposing the EPI volume

into a set of EPI-tubes, each of which represents a coherent subvolume correspond-

ing to a coherent portion of the 3D space. The EPI-tubes are the basis for a complete

3D layered sprite representation and for novel techniques to separate diffuse and
specular components in static scenes.

We have described two algorithms for extracting EPI-tubes from EPI volumes,

and shown their application to real image data sets.

To extend these techniques to non-Lambertian scenes, first of all, we need to char-

acterize the motion and appearance of non-rigid effects such as specular reflections.

We performed a geometric analysis of the behavior of specularities in typical scenes,

studied their image traces under linear camera motion and introduced the disparity

deviation and epipolar deviation metrics to characterize specular motion. We showed
that these deviations depend on surface curvature as well as orientation of the spec-

ular surface. There is an expectation that reflections from curved surfaces would al-

ways produce curved EPI traces. Surprisingly, both flat and highly curved surfaces

do not produce significant deviations. Instead, it is the mildly curved surfaces that
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produce the largest deviations. In addition, the closer the object (to the observer), the

larger the deviations tend to be.

Such findings point to the possibility of ambiguity in differentiating diffuse from

specular components using geometric constraints alone. As a result, geometric anal-

ysis must be supplemented with photometric considerations. We have developed a
taxonomy of specular reflections to aid in the design of hybrid algorithms that use

both geometric and photometric constraints.

Finally, we have presented an application of the EPI analysis for detecting and

removing specular highlights from static scenes. Results on real image sequences, us-

ing our hybrid algorithm to separate the specular and diffuse component into differ-

ent layers, show the capabilities of our techniques.

8.1. Future work

Encouraging results have been achieved for specific camera motions (rectilinear

with constant velocity in this case) but many of our algorithms extend naturally to

the general viewpoint case (e.g., EPI volume shearing is equivalent to a plane-sweep

algorithm). In future work, we plan to develop a set of robust algorithms to handle

the general viewpoint case. Thus, this work lays the foundations theory for multi-im-

age layer extraction, without yet producing an implementation that handles this gen-

eral case. In the longer term, we would also like to handle dynamic scenes, deforming
objects, and the recovery of soft boundaries for layers that better describe the colour

mixing that occurs at object boundaries.

Furthermore, we would like to move away from the ‘‘local’’ edge based approach

to selecting EPI-strips, to a more global approach. One possibility is that of using

‘‘generalized cylinders’’ to track the contours of image regions across time. This

has the advantage of enforcing coherency across scan-lines, while at the same time

segmenting the various EPI-tubes. This would of course require a robust image seg-

mentation step.
The final goal of our work is to be able to realistically re-render video sequences

from novel viewpoints. To accurately render scenes, we must understand not only

their geometry but also their surface properties. By separating the specular compo-

nent from the diffuse, we can model each independently and achieve better realism as

well as high compression rates.
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