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1 Introduction

Programmers do not write programs entirely from scratch. Rather, over time, a
program gradually evolves with more features possibly being added. In indus-
trial software development projects, this complexity (of software evolution) is
explicitly managed via checking in of program versions. Validation of such evolv-
ing programs (say, to address possible bugs introduced via program changes)
remains a huge problem in terms of program development. This adds to the
cost for software maintenance, which is much larger than the initial software
development cost. The cost of maintaining a software and managing its evolu-
tion is said to account for more than 90% of the total cost of a software project,
prompting certain authors to call it as the “legacy crisis” [1].

To tackle the ever-growing problem of software evolution and maintenance,
software testing methodologies have long been studied. Regression testing is a
well-known concept which is currently employed in any software development
project. In its simplest form, it involves re-testing a test-suite as a program
moves from one version to another. In the past, lot of research work has been
devoted to finding out which tests in a given test-suite do not need to be tested
for the new program version (e.g., see [2]). However, even among the tests which
are tested in both program versions (old and new) — how do we find the root
cause of a failed test case? Such failed test cases expose so-called “regression
bugs” — the test cases pass in the old version, but fail in the new version. For
any large software development project (particularly for commercial software
products which regularly add features based on customer needs thereby leading
to new program versions), finding root causes of regression bugs is a major
headache! In this paper, we employ dynamic analysis techniques to address this
issue.

Problem statement The problem we tackle can be summarized as follows.
Consider a program P accompanied by a test-suite T , such that P passes all
the tests in T . The test-suite could have been constructed automatically or
manually based on some coverage criteria (statement coverage, branch coverage
etc) of P and/or by following the evolution history of P . We call P as the old
version or the stable version since it passes all the tests, that is, the observable
output of P for all the tests in T is as expected by the programmer. Suppose P
changes to a program P ′ and certain tests in T now fail, that is, their output does
not meet the programmer’s expectations. Let t ∈ T be such a test. Our goal is
to produce a bug report Rep(t, P, P ′) such that Rep contains the explanation of
why t fails in P ′ while passing in P . Of course, our goal is to find a bug report
which is as concise as possible, while pinpointing the error cause statements
to the programmer. Recall that P is the old stable program version and P ′ is
the new buggy version. Typically any program debugging method highlights a
fragment of a given program as bug report. So, we can expect Rep(t, P, P ′) to
be a fragment of the buggy version P ′ and/or old version P .
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Try to use differencing methods? Program differencing methods (e.g.,
see [3]) have long been used for identifying semantic differences between pro-
gram versions by comparing their program dependence graphs. Since we are
investigating the behavior of a specific test-case in two program versions, we
cannot directly use these methods. Interestingly, our conversations with test-
ing/development teams on the field revealed that large software development
teams may try to perform differencing of traces (not programs) for finding root
causes of regression bugs. Given a test t which passes in program P and fails
in program P ′, one may compare the path traced by t in P vis-a-vis the path
traced by t in P ′. However, such a method is extremely syntactic. Since P
and P ′ constitute two different programs, structurally comparing two paths of
two different programs does not explicitly consider the semantics of the changes
between P and P ′.

Then, why not only look at the changes? Since by changing a stable
program P to a new program P ′ we cause certain test cases to fail, one possibility
is to focus on the changes alone. Indeed, this approach has been studied (e.g., see
[4]). The first step of such an approach will be to enumerate the changes between
P and P ′. Now, after the set of changes between P and P ′ are enumerated, by
searching for the “culprit” among them, we can only report back a subset of
the changes. However, the actual bug may be in P , but it could be manifested
by the change from P to P ′. A pointer which is mistakenly set to null in P
but never dereferenced is indicative of such a situation. The mistake may only
be observed in P ′ where the pointer is dereferenced. A good bug report should
pinpoint the control location where the pointer is mistakenly set to null, not the
control location where it is dereferenced.

What about trace comparison methods? In the last decade, trace com-
parison methods have been successfully used for localizing error causes in pro-
grams. Given a buggy program, the trace produced by a failed test-case (whose
behavior is unexpected) is compared with the trace produced by a successful
test-case (whose behavior is as expected). Techniques have been developed
to determine (a) which successful test-case to use (e.g., [5]), and (b) how to
compare and report the differences between two program executions (e.g., [6]).
While such an approach is promising, directly employing them to our prob-
lem (by comparing the traces of two test-cases in the buggy program version)
amounts to completely ignoring the program evolution. The successful test-case
(in a buggy program) is supposed to capture “bug-free” program behavior. In
our problem, we have a stable old program version representing bug-free behav-
ior, which should be analyzed/used within the debugging method.

Basic idea behind our approach Given a stable program version P , a
changed version P ′ and a test-case t which passes (fails) in P (P ′), we compare
the trace produced by t in P ′ with the trace produced by another test-case t′ in
P ′. We automatically generate a test case t′ satisfying the following properties:
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Figure 1: Pictorial description of basic debugging method

• t′ and t follow the same program path in P .

• t′ and t follow different program paths in P ′.

Such a test t′ can be found by computing path conditions of t in P and P ′.
Since t′ and t follow the same program path in P – the behavior of t, t′ are
supposed to be “similar” in P (the stable program version). However, since t, t′

follow different program paths in P ′ — their behaviors “differ” in P ′ (the buggy
new version). By computing and highlighting the differences in their behavior,
we highlight the possible causes of the error exposed by test-case t. A pictorial
description of the debugging method appears in Figure 1. As we will see in the
next section, this is only the core method and needs extensions.

We are motivated by the success of semantic trace comparison methods in
locating error causes in adopting this approach. Note that, we cannot compare
the traces of the failed test t in the two program versions since it amounts to
a syntactic comparison of paths in two different implementations. We cannot
compare the execution trace of t in the new program version P ′ with another
execution trace of P ′ by simply ignoring the old stable program version P .
Hence, we consider the evolution of P to P ′ in defining a test-case t′ 6= t, and
compare the execution trace of t in P ′ with the execution trace of t′ in P ′.

Contributions The main technical contribution of this paper is to provide an
automated and scalable solution to a problem faced by any program develop-
ment team on the field — locating causes of regression bugs in programs which
evolve from one version to another. Given a test case which fails, our DARWIN
tool works in two phases. In the first phase, DARWIN collects and suitably
compose the path conditions of the failed test case in two program versions to
generate an alternate test input. In the second phase, DARWIN compares the
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trace of the generated test input with the trace of the failed test input to pro-
duce a bug report. Trace comparison proceeds by employing string alignment
methods (which are widely used in computational biology for aligning DNA se-
quences) on the traces; the branches which cannot be aligned appear in the bug
report. Efficacy of our bug-report is demonstrated on

• programs from the well-known SIR benchmark suite [7], as well as

• a large real-life case study involving libPNG — a widely used open-source
library for the Portable Network Graphics (PNG) image format.

Thus, we propose a simple, scalable methodology for finding root-causes of
regression bugs. As a by-product of our approach, our proposal for using string
alignment algorithms for trace comparison based software debugging is also
novel, to the best of our knowledge. Moreover, the alternate test inputs we gen-
erate (for explaining failed regression tests) can be useful for future evolutions
of the program as well.

2 Overall Approach

In this section, we first present an overview of our approach via illustrative
examples. We then give an outline of the different steps in our method.

To start with, consider a program fragment with a integer input variable inp
– the program P in Figure 2. This is the old program version. Note that f, g
are functions invoked from P . The code for f,g is not essential to understanding
the example, and hence not given. Suppose the program P is slightly changed
to the program P ′ in Figure 2 thereby introducing a “bug”. Program P ′ is the
new program version. As a result of the above “bug”, certain test inputs which
passed in P may fail in P ′. One such test input is inp == 2 whose behavior
is changed from P to P ′. Now suppose the programmer faces this failing test
input and wants to find out the reason for failure. Our core method works as
follows.

• We run program P for test case inp == 2, and calculate the resultant
path condition f , a formula representing set of inputs which exercise the
same path as that of inp == 2 in program P . In our example, the path
condition f is inp 6= 1.

• We also run program P ′ for test case inp == 2, and calculate the resultant
path condition f ′, a formula representing set of inputs which exercise the
same path as that of inp == 2 in program P ′. In our example, the path
condition f ′ is ¬(inp 6= 1 ∧ inp 6= 2).

• We solve the formula f ∧¬f ′. Any solution to the formula is a test input
which follows the same path as that of the test case inp == 2 in the old
program P , but follows a different path than that of the test case inp ==
2 in the new program P ′. In our example f ∧ ¬f ′ is

inp 6= 1 ∧ (inp 6= 1 ∧ inp 6= 2)
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Figure 2: Two example programs P, P ′ and their input space partitioning. The
input 2 migrates across partitions in changing P → P ′. We choose an input 3 to
explain the behavior of the failing input 2 — since 2, 3 are in the same partition
in P , but different partitions in P ′.

A solution to this formula is any value of inp other than 1,2 — say inp
== 3.

• Finally, we compare the trace of the test case being debugged (inp ==
2) in program P ′, with the trace of the test case that was generated by
solving path conditions, namely (inp == 3). By comparing the trace of
inp == 2 with the trace of inp == 3 in program P ′ we find that they
differ in the evaluation of the branch inp !=1 && inp != 2. Hence this
branch is highlighted as the bug report — the reason for the test case inp
== 2 failing in program P ′.

The above example clarifies the idea behind our method. We are assuming
that P and P ′ have the same input space, and we consider the partitioning
of program inputs based on paths —- two inputs are in the same partition iff
they follow the same path. Then, as P changes to P ′ certain inputs migrate
from one partition to another. Figure 2 illustrates this paritioning and partition
migration. If we consider the change P → P ′ the behavior of the failing input
inp == 2 is explained by comparing its trace with the trace of inp == 3, an
input in a different partition in the new program P ′. Furthermore, inp == 3
and inp ==2 lie in the same partition in the old program P .

Sometimes, given two program versions P, P ′ and a test input t which passes
(fails) in P (P ′) — we may not find a meaningful alternate input by solving
f ∧¬f ′. Consider the example programs in Figure 3 and their associated input
space partitioning. In this case there are at least two inputs which migrate
across partitions in changing the program from P to P ′. Suppose we have the
task of explaining the behavior of inp == 1.

The path condition f of inp == 1 in P is inp = 1 while the path condition
f ′ of inp == 1 in P ′ is inp 6= 2. So, in this case f ∧ ¬f ′ is

inp = 1 ∧ ¬(inp 6= 2)
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Figure 3: Two example programs P, P ′ and their input space partitioning. The
input 1 is an example input which migrates partitions. How to find an input to
explain its behavior?

which is unsatisfiable! The reason is simple, there is no input which shares the
same partition as that of inp == 1 in the old program!

The solution to the above dilemma lies in conducting our debugging in the
old program version. If we find that f∧¬f ′ is unsatisfiable, we can solve f ′∧¬f .
This yields an input t′ which takes a different path than that of the failing input
t in the old program version. We can now compare the traces of t and t′ in the
old program version to find the error root cause.

In our example Figure 3, f ′ ∧ ¬f is

inp 6= 2 ∧ ¬(inp = 1)

This yields solutions which are different from 1 and 2, say inp == 3. We can now
compare the trace of inp == 3 with the trace of inp == 1 in the old program.
This highlights the branch inp == 1 in the old program, as bug report.

The reader may think the above situation as odd — when a test case fails in a
new program, we may return a fragment of the old program as bug report! But,
indeed this is our thesis — the bug report returned by our debugging method will
help the application programmer comprehend the change from the old program
to the new program, rather than helping him/her comprehend the new program.
Of course, given a branch in the old program as bug report, it can be related
to a branch in the new program by dependence preserving program alignment
methods (e.g. the work of [8] uses such program alignment as the very first step
of their test generation method). Note that we do not espouse program change
comprehension via a full-scale static alignment of program versions. Only after
a bug report is generated via our dynamic analysis, if the bug report refers to
the old program — one can relate the bug report to the new program via such
program alignment.

In summary, the outline of our method is as follows. Given an old program
version P , a new program version P ′, a test input t which passes in P and fails
in P ′ — our method proceeds as follows.
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1. Compute f , the path condition of t in P .

2. Compute f ′, the path condition of t′ in P ′.

3. Check whether f∧¬f ′ is satifiable. If yes, it yields a test input t′. Compare
the trace of t′ in P ′ with the trace of t in P ′. Return bug report.

4. If f ∧¬f ′ is unsatisfiable, find a solution to f ′ ∧¬f . This produces a test
input t′. Compare the trace of t′ in P with the trace of t in P . Return
bug report.

It is noteworthy that (f ∧ ¬f ′) ∨ (f ′ ∧ ¬f) should be satisfiable, and hence
we should get an alternate input from the steps given in the preceding. If
(f ∧ ¬f ′) ∨ (f ′ ∧ ¬f) is unsatisfiable, the formula (f ⇔ f ′) is valid — which
means that the input t does not migrate from one partition to another of the
input space while going from old program version to new program version.

3 Detailed Methodology

In this section, we elaborate on our method. As explained in the preceding, our
method has two phases. In the first phase, path conditions are computed and
solved to get an alternate program input. In the second phase, comparing the
traces of two inputs yields a bug report. We now describe the two phases in
further details.

3.1 Generation of alternate input

In the first step of our method, we need to execute the test case under exam-
ination t in both the program versions. Here we actually perform a concolic
(concrete + symbolic) execution of t on each of the program versions. In other
words, during the concrete execution of t along a program path π, we also accu-
mulate a symbolic formula capturing the set of inputs which exercise the path
π. This symbolic formula is the path condition of path π, the condition under
which path π is executed. It is worth mentioning that our path conditions are
calculated on the program binary, rather than the source code.

One issue that arises in the accumulation of path conditions is their solv-
ability by constraint solvers. For example, for a program branch if (x * y >
0), we will accumulate the constraint x*y > 0 into the path condition. This
may be problematic if our constraint solver is a linear programming solver. In
general, we have to assume that the path condition calculated for a path π is
an under-approximation of the actual path condition. Usually such an under-
approximation is achieved by instantiating some of the variables in the actual
path condition. For example, to keep the path condition as a linear formula, we
may under-approximate the condition x * y > 0 by instantiating either x or y
with its value from concrete program execution.

Recall that, we need to solve the formula f ∧ ¬f ′ for getting an alternate
program input, where f (f ′) is the path condition of the test input t being
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examined in the old (new) program version. As mentioned earlier, the computed
f, f ′ will be an under-approximation of the actual path conditions in old/new
program versions. Let fcomputed (f ′

computed) be the computed path conditions
in the old (new) program versions. Thus

fcomputed ⇒ f f ′
computed ⇒ f ′

As a result, we have:

(fcomputed ∧ ¬f ′
computed) 6⇒ (f ∧ ¬f ′)

Thus, we cannot ensure that fcomputed∧¬f ′
computed is an under-approximation

of f ∧¬f ′. Hence, after solving fcomputed∧¬f ′
computed if we find a solution t′ we

also perform a validation on t′. The validation will ensure our required proper-
ties, namely: t, t′ follow same (different) program paths in old (new) program
version. Such a validation can be performed simply by concrete execution of
test inputs t, t′ in the old and new program versions.

Similarly, if we need to solve the formula f ′ ∧ ¬f (that is if the formula
f ∧ ¬f ′ is found to be unsatisfiable), we perform a validation of the test input
obtained by solving f ′ ∧ ¬f .

3.2 Comparison of traces in buggy program version

In the second phase of our method, we compare the traces of two program
inputs. The two test inputs whose traces are generated are (a) the test input
under examination t, and (b) the alternate test input t′ generated in the first
phase.

Comparison of program traces have been widely studied in software debug-
ging, and various distance metrics have been proposed. Usually, these metrics
choose an important characteristic, compute this characteristic for the two traces
and report their difference as the bug report. Commonly studied characteristics
(for purposes of debugging via trace comparison) include:

• set of executed statements in a trace,

• set of executed basic blocks in a trace,

• set of executed acyclic paths in a trace,

• sequence of executed branches in a trace,

and so on. A sequence-based difference metric (which captures sequence of
event occurrences in an execution trace) may distinguish execution traces with
relatively greater accuracy. In our work, we adopt a difference metric focusing
on sequence of executed branches in a trace, but apply it for traces at the
assembly code (instruction) level. We note that program instrumentation at
the instruction level is well-understood and several mature tools exist (e.g., [9]).
After collecting and comparing the traces at the instruction level, we report
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1. while (lin[i] != ENDSTR) {
2. m= ...
3. if (m >= 0) {
4. ...
5. lastm = m;
6. }
7. if ((m == -1) || (m == i)){
8. ...
9. i = i + 1;
10. }
11. else
12. i = m;
13. }
14. ...
15. }

Figure 4: An example program fragment from SIR suite [7].

back the instructions appearing in the “difference” between the two traces at
the source-code level for the convenience of the programmer.

We thus represent each trace as a string of instructions executed. In practice,
we need not record every instruction executed; storing the branch instruction
instances (and their outcomes as captured by the immediate next instruction)
suffices. Given test inputs t and t′, a comparison of the traces for these two
inputs is roughly trying to find branches which are executed with similar history
in both the traces, but are evaluated differently. In order to find branches
with similar history in both the traces, we employ string alignment algorithms
widely employed on DNA/protein sequences in computational biology (e.g., see
[10]). These methods produce an alignment between two strings essentially by
computing their “minimum edit distance”.

To illustrate the workings of our trace comparison method, consider the
program fragment in Figure 4. This program is taken from a faulty version
of the replace program from Software-artifact infrastructure repository (SIR)
[7], simplified here for illustration. This piece of code changes all substrings
s1 in string lin matching a pattern to another substring s2. Here variable i
represents the index to the first un-processed character in string lin, variable
m represents the index to the end of a matched substring s1 in string lin, and
variable lastm records variable m in the last loop iteration. The bug in the code
lies in the fact that the branch condition in line 3 should be if (m >= 0) &&
(lastm != m). At the ith iteration, if variable m is not changed at line 2, line
3 is wrongly evaluated to true, and substring s2 is wrongly returned as output,
deemed by programmer as an observable “error”.

An execution trace exhibiting the above-mentioned observable error will ex-
ecute 〈1, 2, 3, 4, 5, 7, 8, 9〉 in the ith loop iteration. An execution trace not ex-
hibiting the error (i.e., a successful execution trace) will execute 〈1, 2, 3, 7, 8, 9〉
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Figure 5: Conceptual view of aligning two execution traces. The traces in this
example are from the program fragment in Figure 4.

in the ith loop iteration. Now, let us consider the alignment of these two ex-
ecution traces — for simplicity we only show the alignment of their ith loop
iterations.

Our string alignment method computes the smallest edit distance between
the two traces — the minimum cost edits with which one string can be trans-
formed to another. The edit operations are insert/delete/change of one symbol,
and the cost of each of these operations need to be suitably defined. Conceptu-
ally this is achieved by constructing a two-dimensional grid. The rows (columns)
of the grid are the symbols recorded in the first (second) execution trace. Find-
ing the best alignment between the traces now involves finding the lowest cost
path from the top-left corner of the grid to the bottom right corner of the grid.
In each cell of the grid, we have choice of taking a horizontal, vertical or diagonal
path. Horizontal (vertical) path means insertion (deletion) of a symbol in the
first execution trace, while a diagonal path means comparing the corresponding
symbols in the two traces. If we have to insert/delete a symbol we incur some
penalty (say α > 0). Moreover, if we compare two symbols of the two traces and
record a mismatch we also incur some penalty (say β where typically β > α).
Of course, if we compare two symbols of the two traces and record a match,
zero penalty is incurred. A least-cost alignment then corresponds to finding the
path with minimum penalty from the top left corner to bottom right corner of
the grid.

Note that the string alignment methods from computational biology (which
we use in our work) often use complicated cost functions to capture the penalties
of inserting/deleting/changing a symbol. However, for our trace comparison
we always use the following: (i) cost of inserting a symbol = cost of deleting
a symbol = α (a positive constant), and (ii) cost of changing a symbol = β
(another positive constant greater than α).

Figure 5 shows the two-dimensional grid for the two traces 〈1, 2, 3, 7, 8, 9〉 and
〈1, 2, 3, 4, 5, 7, 8, 9〉 taken from the program in Figure 4.1 A least-cost alignment

1We are explaining our example by presenting the traces at the level of statements. How-
ever, in our implementation they will be captured at the level of instructions.
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found for these two traces (assuming α = 1, β = 2) is shown in the figure via
arrows. This corresponds to the following (expected) alignment.

1 2 3 _ _ 7 8 9
1 2 3 4 5 7 8 9

Having found the alignment between two traces, our bug report construction
simply records the aligned branches in the two traces which have been evaluated
differently. The sequence of these branches are presented to the programmer
as bug report. In the preceding example, only the branch 3 will appear in the
bug-report, thereby highlighting the error root-cause.

We have now explained our trace alignment and bug report construction
method. The trace alignment can be computed by dynamic programming meth-
ods operating on the above-mentioned two-dimensional grid – where for each cell
[i,j] of the grid we keep track of the lowest cost path from the top left corner
(cell [0,0]) to cell [i,j]. However, a straightforward application of dynamic
programming will involve space proportional to the product of the lengths of
two traces being compared. In practice, this can lead to huge blow-up. For this
reason, we have integrated existing linear-space string alignment methods [10]
into our trace comparison. Given two traces of length m, n respectively, we will
never construct the entire two-dimensional grid. Instead we find the least-cost
path from cell [0,0] (top left corner) up to the middle row, that is, row m/2.
In a similar way, we find the least cost path from cells in the middle row to cell
[m,n] (bottom right corner). This gives us the cell in the middle row through
which the least-cost path from cell [0,0] to cell [m,n] passes. We can now
compute the least cost alignment in a divide-and-conquer fashion by finding
least cost paths on smaller sub-grids.

3.3 Handling common programming errors

We now explain the suitability of our debugging methodology for different com-
mon kind of programming errors — branch errors, assignment errors and code-
missing errors.

Branch errors We believe that our methodology is naturally suited for local-
izing branch errors — errors in branch conditions. This is because our method
aligns a trace containing an observable error (say due to a branch condition)
with another trace without the observable error in question. So, if the error is
in the condition of a branch b, typically b will be evaluated differently (from the
erroneous trace) in the trace without the observable error. The examples given
in Section 2 illustrate this point.

Assignment errors Another important class of programming errors are called
assignment errors — errors in an assignment statement. Since our bug report
construction aligns/compares two traces based on their branch evaluations, how
will such assignment errors get reflected in our bug report? As our trace align-
ment/comparison is control flow based, possible assignment errors need to be
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reflected via changed control flow. Inspired by the work on “co-operative bug
isolation” [11, 12], we use an instrumenting compiler to insert extra code that
checks various predicates at different program points. In other words, we intro-
duce additional branches at different program point to make assignment errors
observable via change in control flow. We introduce branches with branch con-
ditions checking

• function return values at each function return site, and

• binary constraints describing relationship of a program variable x with
other variables of the same type, at each assignment to x. Thus, if x, y
are of the same type — we introduce branches to check x > y, x == y
and so on.

Code-missing errors Code-missing errors correspond to chunks of code be-
ing left out during change of a program. Such code will be missing in the new
program version, but is present in the old program version. Whether the miss-
ing code chunk contains assignments (which, if they were present would have
affected control flow via instrumented branches) or branches (which directly af-
fect control flow) — the old program version P can be expected to have more
paths than the new program version P ′. Given a failing test input t, and f (f ′)
being the path condition of t in P (P ′) — we can thus expect f ′ ∧¬f to yield a
solution. This will be a test input t′ following the path of t in P ′, but following
a different path than t in P (where the code missing in P ′ is present, leading
to more branches and more paths). Thus, the traces of t′ and t in P will be
aligned and compared to yield a bug report. No additional change is needed in
our methodology to handle code missing errors.

4 Implementation

We now describe our implementation setup for our debugging methodology. We
call the integrated toolkit implementing our methodology as DARWIN — since
it explains /debugs software evolution. The overall architecture of our DARWIN
toolkit is summarized in Figure 6.

Within the DARWIN toolkit, we use a concolic (concrete + symbolic) exe-
cution engine for computing the path condition of a given program execution.
Our concolic execution engine is essentially a tool for directed test generation
[13] — starting with a random test, it performs concolic (concrete + symbolic)
execution of the test. Thus, during concrete execution of the random test, it
also performs symbolic execution to compute the path condition. In fact, our
concolic execution engine systematically explores various program paths thereby
exposing test cases which fail. In this work, we do not use the path exploration
in our concolic execution tool — the tool is only used to compute the path con-
dition for a given execution. Our concolic execution engine works on Windows
x86 binaries, so our path conditions are computed at the level of binaries, rather
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Figure 6: Architecture of our DARWIN toolkit. It takes an old program version
P , a new program version P ′ and a test input t which passes in P but fails in
P ′. The output is a bug report explaining the behavior of test t. The entire
flow is automated.

than source code. In particular, the variables appearing in the path condition
correspond to the different bytes of the program input.

Given program versions P , P ′ and a test input t which passes (fails) in P
(P ′) — we compute the path condition f (f ′) of t in P (P ′). The formula
f ∧ ¬f ′ is then solved by the publicly available Z3 constraint solver [14]. Z3 is
an automated satisfiability checker for typed first-order logic with several builtin
theories for bitvectors, arrays etc. The Z3 checker serves as a decision procedure
for quantifier-free formula. Indeed this is the case for us, since our formulas
do not have universal quantification and any variable is implicitly existentially
quantified. Since f, f ′ are path conditions, they are conjunctions of primitive
constraints, that is say

f ′ = (ψ1 ∧ ψ2 ∧ . . . ∧ ψm)

where ψi are primitive constraints. Then

f ∧ ¬f ′ = (f ∧ ¬ψ1) ∨ (f ∧ ¬ψ2) ∨ . . . ∨ (f ∧ ¬ψm)

Each f ∧ ¬ψi is a conjunction. A solution to any f ∧ ¬ψi is a solution for
f ∧ ¬f ′. We solve each (f ∧ ¬ψi) separately using Z3, and Z3 emits a solution
if the formula is satisfiable. Thus we obtain at most m solutions to the formula
f ∧¬f ′. Each of these solutions are test inputs which now undergo validation —
we check whether it follows same (different) path as that of t in P (P ′). Recall
that the validation is required since our concolic execution engine may perform
under-approximations while computing path conditions.
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At this stage, we elaborate a low-level issue which makes a significant dif-
ference in our experiments. While solving f ∧¬ψi, we do not submit the entire
formula f ∧ ¬ψi to the Z3 solver. Recall that f , being a path condition, is a
conjunction of primitive constraints. We first find the variables V ari appearing
in ψi. We then perform a least fixed-point computation to find those variables
appearing in f which are (directly/indirectly) “affected” by V ari — they ap-
pear with V ari, or some variable affected by V ari in a primitive constraint.
Of course all variables in V ari are affected by V ari by default. Now, only the
primitive constraints of f which contain variables “affected” by V ari need to
be considered while solving f ∧ ¬ψi. As an example suppose f is

x > y ∧ y > 10 ∧ z > w ∧ w > 0

and ψi is x > 100. While solving f ∧ ¬ψi we can then only solve for

x > y ∧ y > 10 ∧ ¬(x > 100)

to get the new solutions for x, y from Z3. The solutions for the other variables
(in this case z, w) are unchanged — these are obtained from the failing test
input which generated the path condition f in the first place. The optimization
mentioned here substantially cuts down the size of formulae submitted to Z3,
and the solution space that needs to be explored by Z3. More importantly, it
makes minimal changes to the failed test input to generate the alternate test
inputs.

Given the solutions of f ∧ ¬f ′ we validate them, that is, we check whether
the traces for these inputs follow the same (different) path as the failing input
in the old (new) program version. Let the set of validated solutions of f ∧ ¬f ′

(which give us alternate test inputs to work with) be Inputsf,f ′

validate. We then
generate the execution traces of each of these test inputs in the buggy program
version P ′. Each such trace is aligned and compared with the execution trace
of the failing test t in P ′. This yields a bug report which is used to localize the
root cause of the error in program version P ′ which is manifested by failing test
t. The bug report contains a sequence of branches. We then choose an input
t′ ∈ Inputsf,f ′

validate whose bug report contains the least number of branches, that
is, the execution trace of t′ differs in the evaluation of least number of branches
w.r.t execution trace of t. The bug report corresponding to t′ is returned.

In case we find f ∧¬f ′ to be unsatisfiable or none of the solutions of f ∧¬f ′

can be validated, we solve f ′∧¬f in a similar fashion. Again, this can yield many
solutions which we then validate. For the validated solutions, we align/compare
their traces in the old program version P with the trace of t in P . This yields
several bug reports, from among which we again choose one which contains the
least number of branches.

By following the steps mentioned in the preceding (solving either f ∧¬f ′ or
f ′ ∧¬f), we obtain a sequence of branches at the assembly level as bug report.
Using standard compiler level debug information, these are reverse translated
back to the source code level — thereby allowing use of the bug report by the
application programmer. It is worthwhile to mention that given the old/new
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Benchmark Versions Description LOC

replace v1-v10 Pattern matching and substitution 564

tcas v1-v10 Collision avoidance system 174

libPNG v1.07 An open-source library for
reading/writing PNG images 32904

Table 1: Description of programs used in our experiments.

program versions and the test input whose behavior needs to be explained, our
bug report construction is fully automated.

5 Experimental Results

We evaluated our fault localization technique on two aspects, namely, the accu-
racy of localization and the overall time taken to generate the bug report. We
present the results of our evaluation.

5.1 Benchmarks and setup

We employed our fault localization tool DARWIN on some of the C benchmarks
from the Software-artifact Infrastructure Repository (SIR). We could not use
several SIR benchmarks because of the limitations of our compiler (Microsoft
Visual Studio C/C++ compiler 15.00) and the limitations of the concolic execu-
tion engine we used. In particular, certain SIR benchmarks such as flex, grep do
not compile for Windows and our concolic execution engine works on Windows
x86 binaries. Hence we could not involve these programs in our experiments.

Moreover, the concolic execution engine we use only works for programs
whose input is a stream of bytes (typically as a file). Hence it cannot work with
programs taking structured input, and is most suited for media applications
(as evidenced by our experiments). The restrictions imposed by our concolic
execution engine are only limitations of a tool we use inside our DARWIN
toolkit. These are not inherent restrictions of DARWIN’s architecture.

For each benchmark in SIR, there are several accompanying buggy program
versions. These defects have been manually injected by the benchmark writers
— relaxing/tightening of branch conditions, wrong values in assignment state-
ments and code missing errors. The SIR benchmarks used in our experiments
are described in Figure 1.

Since each SIR benchmark has a golden program, several buggy versions
and a test-suite, we can employ our debugging method as follows on each buggy
version. We take the golden program as the original stable program P and the
buggy version as the “new” program P ′. Furthermore, we find a failing test-
case from the test-suite accompanying the benchmark — a test which produces
different output in P and P ′. We then use our method to explain this failing
test case, and see whether the bug-report produced by our method pinpoints
the line containing the actual error (the change between P and P ′).
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To get a feel for the use of our method in debugging large programs with
real faults (unlike seeded faults in SIR), we also tried our hand on the libPNG
open source library2, a library for reading and writing PNG images. We used a
previous version of the library (1.07) as the buggy version. This version contains
a known security vulnerability, which was subsequently identified and fixed in
later releases. An PNG image that exploits this vulnerability is also available
online. As the reference implementation or stable version, we used the version
in which the vulnerability was fixed (1.2.21). Assuming this vulnerability was a
regression bug, we used our tool to see if the vulnerability could be accurately
localized.

For our experiments, we generated alternate inputs by composing path con-
ditions and aligned/compared the execution traces of these alternate inputs with
the execution trace of the failing test input. Recall from Section 3 that the trace
alignment is parameterized by two penalty functions α, β giving the penalty for
(i) a missing/additional symbol and (ii) a symbol mismatch respectively. Our
penalty functions are in fact constants, with α = 1 and β = 2.

5.2 Accuracy of fault localization

We measured the accuracy of fault localization by classifying the bug reports
we generated into one of the following four classes.

• Class 1: Localized bug to the same line as the actual root cause.

• Class 1a: Localized bug to a line which is syntactically identical to the
actual root cause.

• Class 2: Localized bug to the same function as the actual root cause.

• Class 3: Localized bug to either a caller or callee of the function containing
the actual root cause.

• Class 4: Could not localize bug to either class 1, 1a, 2, or 3.

Class 1 corresponds to the case where the bug report goes spot on, and
locates the line containing error root-cause. Class 1a is a special case of class
1, which we highlight for explaining the issues in bug report comprehension.
Class 1a considers the fact that there might be code that is repeated, such as a
branch test being repeated several times in a program. When we compute the
path condition, such a branch test will be logically represented only once in the
path condition. Thus, even if we can localize the error to an erroneous branch
— this branch may appear several times in different lines of the program. Class
1a captures this situation.

Class 2 corresponds to the case where we localize the error to the same
function, but not to the erroneous line. Class 3 corresponds to the case where
we cannot localize the error to the same function, but to a caller or callee. Finally
class 4 corresponds to the case where none of the above-mentioned classes apply.
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Benchmark Version Class of # inputs
localization generated

replace

v1 1 21
v2 2 24
v3 3 3
v4 3 5
v5 1 13
v6 1 24
v7 1 4
v8 3 5
v9 1 7
v10 1 5

tcas

v1 1 1
v2 4 0
v3 1 3
v4 1 3
v5 1 4
v6 2 1
v7 3 1
v8 3 1
v9 4 0
v10 3 1

libPNG v1.07 1a 4

Table 2: The accuracy of fault localization for programs in our benchmark suite.

Benchmark replace tcas libPNG

Concolic execution 18.07 14.58 24.13

Constraint solving 12.54 2.99 2.35

Trace new inputs 160.34 12.69 81.31

Branch alignment 7.83 0.52 1.65

Total 198.79 30.79 109.44

Table 3: Time taken to localize faults. The times are reported in seconds and
represent average across all version of the benchmark.
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It is worth mentioning that our criterion for judging the accuracy of bug
reports is considerably more stringent than the bug report scoring criteria [15,
16, 5] which has been used in literature. Such bug report scoring criteria capture
the portion of the program that needs to be examined by following dependence
chains from the statements in the bug report until we hit the error root-cause.
On the other hand, we have categorized our bug reports with a closer look at
the effort put in by the programmer in comprehending the bug report. We do
not require/expect the programmer to manually perform any semantic analysis
of the bug report (such as following program dependency chains and identifying
the error root cause when it is hit) — any semantic analysis is integrated into
the bug report construction itself. In fact, classes 1 and 1a in our categorization
involve close to zero manual effort by the programmer in using the bug report
— a syntactic search on the lines in the bug report suffices. Classes 2,3 involve
more programmer effort in using the bug report — the functions containing the
lines in the bug report are highlighted which the programmer looks into.

Overall accuracy Table 2 shows the results of our evaluation. For each
buggy version of a golden program, the table shows the category to which the
bug reports belongs, and the number of alternate inputs generated. We find
that our approach was able to accurately localize a large fraction of the bugs
in the benchmark programs. There are only two cases marked as category 4
bug report in Table 2. In both of these cases, our tool did not produce any
bug report at all, since no alternate inputs were found! While impossible in
principle, this scenario arises in practice because of the under-approximations
made by our concolic execution engine in computing path conditions.

In old or new program? Recall that our debugging method tries to return
fragment of the new program version, failing which it tries to return a fragment
of the old program version. Out of 21 buggy versions across tcas/replace/libPNG
on which we ran experiments, the breakdown is as follows.

• In 17 programs, a fragment of the new program version was returned as
bug report.

• In 2 programs, a fragment of the old program version was returned as bug
report.

• In 2 programs, no bug report could be constructed due to the absence
of alternate inputs (resulting from underapproximations inside concolic
execution engine).

Working of the tool We now illustrate the working of our approach in more
detail using a concrete example. In Figure 7, we show a buggy code snippet
from the replace benchmark version v1. The bug is an off-by-one error in
the array reference at line 9. When passed as the first parameter, the string

2http://www.libpng.org/
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1 void dodash(char delim, char* src, int * i,

2 char * dest, int *j, int maxset) {

3 int k;

4 bool junk;

5 char escjunk;

6 while ((src[*i] != delim) && (src[*i] != ENDSTR)) {

7 /* BUG: Off-by-one error */

8 /* if (src[*i - 1] == ESCAPE) */

9 if (src[*i] == ESCAPE) {

10 escjunk = esc(src, i);

11 junk = addstr(escjunk, dest, j, maxset);

12 } else

...

}

Figure 7: Buggy code from replace benchmark version 1

%[0-9][^9-B][@t][^a-c] exercises this bug and causes a failure. Our DAR-
WIN toolkit is able to generate a new input string %[0-9][^9-B][00][^a-c].
Note that in this string, the character at the 13th position has been changed
from an ESCAPE character (@) to 0 (which also necessitates changes in few
other characters of the input since they are “related” to the ESCAPE character
due to correlation of branch outcomes in the replace program). This change
in input causes the program to trace a different path in the buggy version (in
which the condition at line 9 is evaluated to false) while following the same
path in the bug-free program version. An alignment of the traces obtained using
these input strings clearly shows the root cause.

Amount of code examined post-mortem We also evaluated the amount of
code to be examined for localizing the bug using our bug reports. We computed
the number of lines of code required to localize the bug by ranking the inputs
we generated based on the number of branches that align with the trace of the
buggy input — stepping through the traces in order according to this rank and
stopping when we hit the error root cause. We find that the average number
of lines to be examined in both tcas and replace benchmarks is about 10% of
the program size. The number of lines to be examined in libPNG is very small
— less than 0.01% of the program size. We now elaborate on our debugging
experience with the libPNG case study.

5.3 Experience with libPNG

Unlike the SIR benchmarks which contain seeded faults, the libPNG case study
involves localizing an actual real-life error using our method. We took a buggy
version of libPNG (with a documented test-case showing the bug) as our new
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if (!(png_ptr->mode & PNG_HAVE_PLTE))

{

png_warning(png_ptr, "Missing PLTE before tRNS");

}

else if (length > (png_uint_32)png_ptr->num_palette)

{

png_warning(png_ptr, "Incorrect tRNS chunk length");

png_crc_finish(png_ptr, length);

return;

}

Figure 8: Buggy code fragment from libPNG

program version. Another version of libPNG where the error was fixed by de-
velopers serves as the stable program version.

The bug we localized is a remotely exploitable stack-based buffer overrun
error in libPNG. Under certain situations, the libPNG code misses a length
check on PNG data prior to filling a buffer on the stack using the PNG data.
Since the length check is missed, the buffer may overrrun possibly crashing web-
browsers such as Mozilla. What is worse, such a bug may remotely exploited by
emailing a bad PNG file to another user who uses a graphical e-mail client for
decoding PNGs with a vulnerable libPNG! In Figure 8, we show a code fragment
of libPNG showing the error in question. If the first condition !(png ptr->mode
& PNG HAVE PLTE) is true, the length check is missed, leading to a buffer overrun
error. A fix to the error is to convert the else if in Figure 8 to an if. In other
words, whenever the length check succeeds, the control should return.

We now explain some of the complexities we face in localizing such a bug
using approaches other than ours. Suppose we have the buggy libPNG program
and a bad PNG image which causes a crash due to the above error. If we want
to localize the error by an analysis of the erroneous execution trace starting from
the observable error — it is very hard to even define the observable error since
the program crashes. Even if the buffer being overrrun is somehow defined as the
observable error, tracking program dependencies from the observable error can
be problemmatic for the following reason. The libPNG library is used by a client
which inputs an image, performs computation and outputs to a buffer (the one
that is overrun due to error inside libPNG). In this case, we are debugging the
sumtotal of the client along with the libPNG library. Since almost all statements
in the client program and many statements in libPNG involve manipulation
of the buffer being overrun itself — a program dependence or slicing based
approach, however refined, seems to highlight almost the entire client program
as well as large parts of the libPNG library.

If we want to employ statistical bug isolation methods (which instrument
predicates and correlate failed executions with predicate outcomes), the key is to
instrument the “right predicate”. In this case, the predicates in question (such
as !(png ptr->mode & PNG HAVE PLTE) ) contain pointers and fields. Hence
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they would be hard to guess using current statistical debugging methods which
usually consider predicates involving branch conditions, return values and scalar
variables.

If we want to compare the trace of the bad PNG image (which exposes the
error) with the trace of a good PNG image (which does not show the error) for
debugging — how do we get the good PNG image? Even if we have a pool of
PNG images from which we choose one (for comparison with the trace of the
bad PNG image) – making the “right” choice becomes critical to the utility of
the bug report. More importantly, such a method is extremely sensitive to the
pool of PNG images available at hand.

In our debugging method, given the bad PNG image — we construct an
alternate PNG image via semantic analysis of the execution traces of the bad
PNG image in the two program versions. This image is a “minimal modification”
of the bad PNG image — our analysis only minimally changes the bad PNG
image to get an image which follows the same (different) program path in correct
(buggy) program version. By aligning/comparing the traces of the two images
— our bug report localizes the error to the branch condition !(png ptr->mode
& PNG HAVE PLTE). Indeed, this is the first branch where the traces of the two
images do not align. We then examine all the occurrences of this condition
within the same function (there were actually 8 of them since the same condition
is tested several times). By examining these 8 lines (the libPNG library has more
than 32,000 lines of code), we zoom into the error root-cause.

5.4 Analysis time

In our approach, the time required to analyze a fault and generate a bug report
can be attributed to the time taken for executing both the buggy program and
the reference program concolically, solving constraint, executing the new input
and aligning branches. Table 3 gives the breakdown of the time (in seconds)
spent in each of these tasks for the benchmarks in our test suite. For the SIR
benchmarks, we report the average time across all versions of the benchmark.

Interestingly, we find that a large fraction of the time is spent in tracing the
new inputs. We expected the concolic execution or the constraint solving to be
the bottleneck but those tasks do not seem to dominate the debugging cycle.
For libPNG, concolic execution accounts for only 25% of the total time.

On the whole, analyzing a buggy input and generating a bug report can
take between 30 seconds and 4 minutes. We believe that these time spans are
reasonable given the amount of time developers typically spend in debugging.

6 Related Work

Developing validation methods for evolving programs is an important problem,
since any large software system moves from one version to another. One of the
established efforts in this direction are the works on regression testing which
focus on which tests need to be executed for a changed program. Even though
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regression testing in general refers to any testing process intended to detect
software regressions (where a program functionality stops working after some
change), often regression testing amounts to re-testing (of tests from existing
test-suite). In the past, there have been several work directions which go beyond
re-testing all of the tests of an existing test-suite. One stream of work has es-
poused test selection [2, 17] — selecting a subset of tests from existing test-suite
(before program modification) for running on the modified program. Another
stream of works propose test prioritization [18, 19] — ordering test cases in
existing test suite to better meet testing objectives of the changed program. Fi-
nally, most recently [8] has proposed test-suite augmentation — developing new
tests (over and above the test-suite existing prior to program change) to stress
the effect of the program changes. We note that our technique is complementary
to regression testing since regression testing seeks to detect or uncover software
regressions, whereas we seek to explain (already detected) software regressions.

Program differencing methods [3, 20, 21] try to identify differences between
two program versions. Indeed, this is the first step towards detecting errors
introduced due to program changes — identifying the changes themeselves! The
works on change impact analysis are often built on such program differencing
methods (e.g., see [21]) — where the analysis identifies not only the changes (by
comparing two program versions), but also which tests are affected by which
changes. A recent work [22] uses symbolic execution to accurately capture
behavioral differences between program versions. Overall, the works on program
differencing try to identify (via static analysis) possible software regressions,
rather than finding the root-cause of a given software regression.

Dynamic analysis based change detection have also been studied (e.g., [23],
which analyzes via regression testing the change in dependencies between parts
of a program). These works focus on qualitative code measures and the possible
impact of program changes. Instead we focus on the specific issue of root-causing
a bug that has surfaced due to program changes.

In the area of computer security, deviation detection of various protocol
implementations (such as HTTP) have been studied [24, 25]. This problem
involves finding corner test cases in which two implementations of the same
protocol might “deviate” in program output, either by pseudorandom test gen-
eration or by semantic analysis. This problem setting is somewhat different from
ours since two implementations of the same security protocol may be widely dif-
ferent (e.g., one implementation is optimized for resource usage, while the other
is not), rather than being two program versions. Moreover, finding deviating
program inputs bears similarities with uncovering software regressions. Again,
our work is focused on explaining already uncovered software regressions. In
other words, given a deviating input (deviating in behavior in two program ver-
sions) — we will typically find an input which behaves similarly in both program
versions, which can allow us to explain the behavior deviation for the deviating
input.

Turning now to works on software debugging, the last decade has seen a
spurt of research activity in this area. Some of the works are based on static
analysis to locate common bug patterns in code (e.g., [26]), while others espouse
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a combination of static and dynamic analysis to find test cases which expose er-
rors (e.g., [27]). Another section of works address the problem of software fault
localization (typically via dynamic analysis) — given a program and an observ-
able error for a given failing program input, these works try to find the root
cause of the observable error. Our work solves this problem of fault localization,
albeit for evolving programs.

The works on software fault localization proceed by either (a) dynamic de-
pendence analysis of the failing program execution (e.g., [28, 29, 30]), or (b)
comparison of the failing program execution with the set of all “correct” execu-
tions (e.g., see [31]), or (c) comparsion of the failing program execution with one
chosen program execution which does not manifest the observable error in ques-
tion (e.g., [6, 15, 5]). Our work bears some resemblance to works which proceed
by comparing the failing program execution with one chosen program execution.
The first phase of our approach tries to construct an alternate input with whose
trace we compare the failing program execution, and the second phase of our
approach involves a trace alignment/comparison. However, the main novelty in
our approach lies in its ability to consider two different versions (of an evolving
program) in the debugging methodology. As a side remark, note that our trace
comparison works on binary level traces (rather than source level) and relies on
string alignment techniques (rather than dynamic program dependencies).

As mentioned earlier, the work of [4] studies the debugging of evolving pro-
grams by (a) enumerating the changes between two versions, and (b) searching
among the changes for a bug report. However, this is restricted to only reporting
the changes as error causes since no program analysis is involved. Errors present
in the old version which get manifested due to changes cannot be explained using
such an approach.

In summary, existing works on program analysis based software debugging
have not studied the debugging of evolving programs. In particular, the pos-
sibility of exploiting previous program versions (which were thoroughly tested)
for finding the root-cause of an observable error has not been studied. This
indeed is the key observation behind our approach. Moreover, existing works
on evolving software testing/analysis primarily focus on finding test cases which
show differences in behavior of different program versions. These works do not
prescribe any method for explaining/debugging a failed test case — an issue
that we study in this paper.

7 Discussion

In this paper, we have presented a debugging methodology and tool for evolving
programs. Our DARWIN toolkit takes in two program versions and explains
the behavior of a test case which passes in the old program version, while fail-
ing in the new program version. Our experience with the libPNG case study
demonstrate the scalability of our method to large programs, and the method’s
ability to localize real-life faults. We believe that a debugging approach such
as ours can truly be useful for developers, who are often faced with hard-to-
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locate regression bugs when a large software system changes from one version
to another.

In future, we plan to link up the DARWIN toolkit with regression testing
approaches, leading to an integrated testing and debugging tool for evolving
programs Yet another direction of work will be to study test-suite augmentation
of evolving programs — when a program changes from one version to another
should any additional tests be tested? Construction of such additional tests
may be inspired by our alternate input generation method — given a test in a
test suite, we can compose and solve its path conditions in different program
versions to get new tests.
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