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ABSTRACT
In many large network settings, such as computer networks, social
networks, or hyperlinked text documents, much information can be
obtained from the network’s spectral properties. However, tradi-
tional centralized approaches for computing eigenvectors struggle
with at least two obstacles: the data may be difficult to obtain (both
due to technical reasons and because of privacy concerns), and the
sheer size of the networks makes the computation expensive. A
decentralized, distributed algorithm addresses both of these obsta-
cles: it utilizes the computational power of all nodes in the network
and their ability to communicate, thus speeding up the computation
with the network size. And as each node knows its incident edges,
the data collection problem is avoided as well.

Our main result is a simple decentralized algorithm for com-
puting the topk eigenvectors of a symmetric weighted adjacency
matrix, and a proof that it converges essentially inO(τmix log2 n)
rounds of communication and computation, whereτmix is the mix-
ing time of a random walk on the network. An additional con-
tribution of our work is a decentralized way of actually detecting
convergence, and diagnosing the current error. Our protocol scales
well, in that the amount of computation performed at any node in
any one round, and the sizes of messages sent, depend polynomi-
ally onk, but not at all on the (typically much larger) numbern of
nodes.

1. INTRODUCTION
One of the most stunning trends of recent years has been the

emergence of very large-scale networks. A major driving force be-
hind this development has been the growth and wide-spread usage
of the Internet. The structure of hosts and routers — in itself a large
network — has facilitated the growth of the World Wide Web, con-
sisting of billions of web pages linking to each other. This in turn
has allowed or helped users to take advantage of services such as
Instant Messaging (IM) or various sites such as Friendster, Orkut,
or BuddyZoo to explore their current social network and develop
new social ties. Beyond Internet-based applications, a large amount
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of effort is now being focused on structures and applications of de-
centralized Peer-to-Peer (P2P) networks [19, 20, 23, 25].

In all of these cases, the (weighted) network structure contains
much information that could be beneficial to the nodes. For the
router graph of the Internet or P2P networks, we may be interested
in sparse cuts, as these may lead to network traffic congestion, or —
in the extreme case — network partitioning. For linked web pages,
most useful measures of relevance or relatedness (such as Page-
Rank [6] or hub and authority weights [15]) are defined in terms
of the eigenvectors of the network’s adjacency matrix. In social
networks, individuals may be interested in questions such as: Is
there a natural clustering among my friends? Which two of my
friends are most likely to be compatible, and should therefore be
introduced? Which of my friends belong to social circles different
from mine, and could therefore introduce me to new people?

For all of the above questions, good solutions can be obtained
by spectral analysis of the underlying graph structure, as nodes on
different sides of a sparse cut tend to have very different entries
in the second eigenvector [9]. In addition, several recent results
have also shown how to use spectral techniques for clustering [13,
18, 17], characterization [8, 15, 1], and recommendation/prediction
[2].

When trying to apply these techniques to the large network set-
tings described above, one encounters several difficulties. First and
foremost, the very size of the networks may be prohibitively large
for (efficient, but superlinear) spectral algorithms. Second, the ac-
tual network data may be difficult to collect. This may be a result
of either technological obstacles (such as implementing an efficient
web crawler), or of privacy concerns: users of a P2P network may
want to keep their identity concealed, and users of IM or other so-
cial network systems may be reluctant to share their social connec-
tions.

A solution to both of these problems is to perform the compu-
tation in the network. This leverages the computational power of
the individual nodes. At the same time, nodes only communicate
and share data with their neighbors in the network, which may go a
long way toward alleviating privacy concerns. Last but not least, a
decentralized design may be more desirable solely on the grounds
that it does not offer a single point of failure, and the system as a
whole can continue to function even when many of the nodes fail.

1.1 Our Contributions
We present a decentralized algorithm for computing eigenvectors

of a symmetric matrix, and singular vectors of arbitrary matrices
(corresponding to the adjacency matrices of undirected resp. di-
rected graphs). We assume that associated with each edge of the
network is a weightaij , which is known to both endpoints. This
weight may be the bandwidth available between two machines, the
number of links between two web pages, or an estimate of the



strength of a social tie between two individuals.
Our algorithm considers each node of the network as an inde-

pendent computational entity that can communicate with all of its
neighbors. (This assumption is certainly warranted for social net-
works, P2P networks, or the autonomous systems in the Internet;
it can also be simulated fairly easily for web graphs.) The sizes of
messages passed between nodes, as well as the computation per-
formed at each node, are nominal; when computing thek principal
eigenvectors (or singular vectors), they areO(k3) in each round.
The number of rounds to achieve errorε isO(log2(n/ε)·τmix(G)),
whereτmix(G) denotes the mixing time of the random walk on the
networkG. As many of the above-mentioned networks have good
expansion (either by design or empirical observation), this time will
essentially be logarithmic in the numbern of nodes, hence expo-
nentially faster than the centralized algorithms for spectral analysis.

Our algorithm is based on a decentralized implementation ofOr-
thogonal Iteration, a simple method for computing eigenvectors.
Let A = (aij) denote the weighted adjacency matrix of the graph
under consideration. In the Orthogonal Iteration method,k random
vectors are chosen initially. In each iteration, all vectors are first
multiplied by A; then, the resulting vectors are orthonormalized,
and serve as the starting vectors for the next iteration. We show
how to approximately implement both the multiplication and or-
thogonalization phases of an iteration in a decentralized fashion. As
this implementation introduces additional errors, we analyze how
errors propagate through future iterations.

Our analysis of a single orthogonal iteration shows that the error
with respect to a centralized implementation drops toε within time
O(log 1

ε
· τmix). One feature of our approach is that nodes need

not (and usually do not) know the entire network structure, and
in particular will usually not know the value ofτmix. Hence, we
also show how nodes can detect convergence to within errorε in a
decentralized way without more than a constant factor in overhead.

1.2 Applications
We elaborate briefly on some of the previously mentioned poten-

tial applications of spectral methods in a decentralized setting. We
restrict our discussion to applications where nodes can make deci-
sions or draw inferences locally, by comparing their ownk-tuples
to those of their neighbors. This precludes more global uses of
eigenvectors, including the prediction of non-existing links (except
perhaps when the two nodes are at distance 2, and the comparison
could thus be performed by a common neighbor).

1.2.1 Network Engineering
One of the main challenges in designing and maintaining net-

works is to ensure a high bandwidth for concurrent flows between
arbitrary sources and sinks. This usually involves detecting bottle-
necks, and removing them by increasing the bandwidth along bot-
tleneck edges, or by adding more edges. Bottlenecks can often be
detected by considering the principal eigenvectors of the network’s
adjacency matrix, as the components of nodes on different sides of
a sparse cut tend to have different signs in these eigenvectors.

More formally, by combining the Theorem of Leighton and Rao
[16], on the maximum amountf∗ of flow that can be concurrently
routed between source/sink pairs(si, ti), with results relating the
expansion of a graph to the second-largest eigenvector of its Lapla-
cian matrixL, maximum concurrent flow and eigenvalues relate as
follows: O(

nλn−1(L)

log n
) ≤ f∗ ≤ O(n

p
λn−1(L)). Hence, to in-

crease the amount of flow that can be concurrently sent, it suffices
to increaseλn−1(L) — or equivalently, to decrease the second-
largest eigenvalue ofI − L.

One approach to attempt to minimizeλ2(I − L) is to consider

the eigenvalue characterizationλ2(I −L) = max~x⊥~x1
~xT (I−L)~x

~xT ~x
,

where~x1 denotes the principal eigenvector ofA. The second eigen-
vector is the~x attaining the maximum. By increasingaij for nodes
i, j with opposite signs in the vector~x (and decreasingaij for
nodes with equal signs), the ratio on the right-hand side is reduced,
corresponding to the above intuition that the bandwidth should be
increased between nodes with different signs in their eigenvector
entries. Notice that this will not necessarily reduceλ2(I − L), as
the maximum may be attained by a different vector~x now. How-
ever, at worst, this is a good practical heuristic; in fact, we con-
jecture that by extending this technique to multiple eigenvectors,
λ2(I − L) can be provably reduced. As all non-zero entries of
I−L coincide with non-zero entries ofA, they correspond to edges
of the network, and the computation can thus be performed by our
decentralized algorithm.

1.2.2 Social Engineering and Weak Ties
The importance of spectral methods in the analysis of networks

in general, and social networks in particular, results from the fact
that it assigns to each point a vector inRk for some smallk, and
that proximity in this spaceRk corresponds to a similarity of the
two nodes in terms of their positions within the network. For social
networks, this means that individuals with similar (or compatible)
social circles will be mapped to close points.

A first application of this observation would lie in link prediction
or “social engineering”: introducing individuals who do not know
each other (do not share an edge), even though their mappings into
Rk are close. This requires the existence of a node to observe the
proximity. This could be a “common friend” (a node adjacent to
both); a more sophisticated solution might let a node broadcast its
k-dimensional vector to other nodes, and let them choose to contact
this possibly compatible node (with small inner product of the two
vectors [2]).

A second, and perhaps more interesting, application is the de-
tection of weak ties. Sociologists have long distinguished between
“strong” and “weak” social ties — see the seminal paper by Gra-
novetter [12] on the subject. The notions of weak and strong ties
refer to the frequency of interaction between individuals, but fre-
quently coincide with ties between individuals of similar resp. dif-
ferent social circles. The distinction of social ties into different
classes is important in that [12] reports that a disproportionately
large fraction of employment contracts are the result of weak tie
interaction. One may expect similar phenomena for other aspects
of life. An individual may therefore want to discover which of his
ties are weak, in order to seek introduction to potential employers,
new friends, etc.

Using the mapping intoRk, we can define a precise notion of
a weak tie, by comparing the distance between the two endpoints
of an edge. (A weak tie between individuals will thus correspond
intuitively to adjacent nodes on different sides of a sparse cut in
the sense discussed above.) What is more, the two endpoints them-
selves can determine whether their tie is weak, and act accordingly.

1.3 Related Work
For a general introduction to spectral techniques, see [7]. There

has been a large body of work on parallelizing matrix operations
— see for instance [10] for a comprehensive overview. These ap-
proaches assume a fixed topology of the parallel computer which
is unrelated to the matrix to be decomposed; our approach, on the
other hand, has a network of processors analyze its own adjacency
matrix.

Our work relates to other recent work that tries to infer global
properties of a graph by simple local processes on it. In particular,



Benjamini and Lov́asz [3] show how to determine the genus of a
graph from a simple random walk-style process.

Our implementation of Orthogonal Iteration is based on a recent
decentralized protocol for computing aggregate data in networks,
due to Kempe, Dobra, and Gehrke [14]. Here, we show how to
extend the ideas to compute significantly more complex properties
of the network itself.

Both the above-mentioned paper [14] and our paper draw con-
nections between computing the sum or average of numbers, and
the mixing speed of random walks. In recent work, Boyd et al. [5]
have made this connection even more explicit, showing that the two
are essentially identical under additional assumptions.

The equivalence between averaging and Markov Chains suggests
that in order for these decentralized algorithms to be efficient, they
should use a Markov Chain with as small mixing time as possi-
ble. Boyd, Diaconis, and Xiao [4] show that the fastest mixing
Markov Chain can be computed in polynomial time, using semi-
definite programming. For the special case of random geometric
graphs (which are reasonable models for sensor networks), Boyd et
al. [5] show that the fastest mixing Markov Chain mixes at most by
a constant factor faster than the random walk, in timeΘ(r−2 log n)
(where alln points are randomly placed in a unit square, and con-
sidered adjacent if they are within distancer). In essence, this
shows that slow convergence is inherent in decentralized averag-
ing algorithms on random geometric graphs.

2. THE ALGORITHM
We consider the problem of computing the eigenvectors of a

weighted graph, where the computation is performed at the nodes in
the graph. Each node has access to the weights on incident edges,
and is able to communicate along edges of non-zero weight, ex-
changing messages of small size. The goal is for each node to
compute its value in each ofk principal eigenvectors. For sim-
plicity, we will assume that each node can perform an amount of
computation and communication proportional to its degree in each
round.

2.1 Orthogonal Iteration
Our algorithm emulates the behavior of Orthogonal Iteration, a

simple algorithm for computing the topk eigenvectors of a graph.

Algorithm 1 Orthogonal Iteration (A)

1: Choose a randomn× k matrixQ.
2: loop
3: LetV = AQ.
4: LetQ = Orthonormalize(V ).
5: end loop
6: ReturnQ as the eigenvectors.

Once the eigenvectors have been computed, it is easy to obtain
from them the projections of each node onto the eigenspace, as it is
captured by the rows ofV .

Orthogonal Iteration converges quickly: the error in the approx-
imation to the trueQ decreases exponentially in the numbert of
iterations, as characterized by Theorem 3.2.

We adapt Orthogonal Iteration to a decentralized environment.
Each nodei takes full responsibility for the rows ofV andQ asso-
ciated with it, denotedVi andQi. The choice of a random matrix
is easy to implement in a decentralized fashion. Similarly, when
the matrixQ is already known, thenV = AQ can be computed
locally: each nodej sends its rowQj to all of its neighbors; then,

nodei can compute its rowVi as a linear combination (with coef-
ficientsaij) of all vectorsQj received from its neighborsj. The
key aspect of the decentralization is therefore how to perform the
orthonormalization ofV in a decentralized way.

2.2 Decentralized Orthonormalization
The orthonormalization in Orthogonal Iteration is typically per-

formed by computing theQR factorization ofV , i.e. matricesQ, R
such thatV = QR, thek columns ofQ are orthonormal, and the
k× k matrixR is upper triangular. Orthonormalization is thus per-
formed by applyingR−1 to V , yieldingQ. If each node had access
to R, each could locally compute the inverseR−1 and apply it to
its copy ofVi. The resulting collection of vectors would then form
an orthonormalQ.

However, it is not obvious how to computeR directly. Therefore,
we use the fact that ifK = V T V , thenR is the uniquek×k upper
triangular matrix withK = RT R. This holds because ifQ is
orthonormal, thenQT Q is the identity matrix, so

K = V T V = RT QT QR = RT R.

(Here, we are using the fact that the QR-factorizationV = QR
and the Cholesky factorizationK = RT R are both unique.) Once
each nodei has access to thek × k matrix K, each can compute
the Cholesky factorizationK = RT R locally, invertR, and apply
R−1 to its rowVi.

Unfortunately, it is unclear how to provide each node with the
precise matrixK. Instead, each node computes an approximation
to K. To see how, observe thatK =

P
i V T

i Vi. Each nodei is
capable of producingK(i) = V T

i Vi locally, and if we can, in a
decentralized manner, sum up these matrices, each node can obtain
a copy ofK.

In order to compute this sum of matrices in a decentralized fash-
ion, we employ a technique proposed in [14]: the idea is to have the
value (or, in this case, matrix) from each node perform a determin-
istic simulation of a random walk. Once this “random walk” has
mixed well, each nodei will hold roughly aπi fraction of the value
from each other nodej. Hence, if we also computeπi and divide by
it, then each node calculates approximately the sum of all values.
(For matrices, all of this computation applies entry-wise.) Hence,
let B = (bij) be an arbitrary stochastic matrix, such that the cor-
responding Markov Chain is ergodic and reversible1, andbij = 0
whenever there is no edge fromi to j in the network.2 Then, the
algorithm for summing can be formulated as follows:

Algorithm 2 Push-Sum (B, (K(i)))

1: One nodêı starts withwı̂ = 1, all others withwi = 0.
2: All nodes setSi = K(i).
3: loop
4: SetSi =

P
j∈N(i) bjiSj

5: Setwi =
P

j∈N(i) bjiwj

6: end loop
7: ReturnSi

wi
.

At each node, this ratioSi
wi

converges to the the sum
P

i K(i) at
essentially the same speed as the Markov Chain defined byB con-

1Recall that a Markov Chain is calledreversibleif it satisfies the
detailed balance conditionπiBij = πjBji for all i andj.
2A natural choice is the random walk on the underlying network,
i.e. bij = 1

deg(i)
. However, our results hold in greater generality,

and the additional flexibility may be useful in practice when the
random walk on the network itself does not mix well.



verges to its stationary distribution. The exact bound and analysis
are given as Theorem 3.4.

Combining this orthonormalization process with the decentral-
ized computation ofAV , we obtain the following decentralized
algorithm for eigencomputation, as executed at each nodei:

Algorithm 3 DecentralizedOI (k)
1: Choose a randomk-dimensional vectorQi.
2: loop
3: SetVi =

P
j∈N(i) aijQj .

4: ComputeK(i) = V T
i Vi.

5: SetK = Push-Sum(B, K(i)).
6: Compute the Cholesky factorizationK = RT R.
7: SetQi = ViR

−1.
8: end loop
9: ReturnQi as theith component of each eigenvector.

We have been fairly casual about the number of iterations that
should occur, and how a common consensus on this number is
achieved by the nodes. One simplistic approach is to have the ini-
tiator specify a number of iterations, and keep this amount fixed
throughout the execution. A more detailed analysis, showing how
nodes can estimate the approximation error in a decentralized way,
is given as Section 3.3.

3. ANALYSIS
In this section, we analyze the convergence properties of our de-

centralized algorithm, and prove our main theorem. We describe
the subspace returned by the algorithm in terms of projection ma-
trices, instead of a specific set of basis vectors. This simplifies the
presentation by avoiding technical issues with ordering and rota-
tions among the basis vectors. For a subspaceS with orthonormal
basis{~b1, . . . ,~bk}, theprojection matrixontoS is PS =

P
i
~bi

~bT
i .

THEOREM 3.1. Let A be a symmetric matrix, andλ1, λ2, . . .
its eigenvalues, such that|λ1| ≥ |λ2| ≥ . . .. Let PQ denote the
projection onto the space spanned by the topk eigenvectors ofA
and letPQ′ denote the projection onto the space spanned by the
eigenvectors computed aftert iterations of Decentralized Orthogo-
nal Iteration.

If DecentralizedOI runs Push-Sum forΩ(tτmix · log(8k‖A‖2
c
ε
))

steps in each of its iterations, and‖R−1‖2 is consistently less than
c, then with high probability,

‖PQ − PQ′‖2 ≤ O(|λk+1

λk
|t · n) + 3ε4t

REMARK (VECTOR AND MATRIX NORM NOTATION) For any
probability distribution~µ, we write‖~x‖p,~µ = (

P
i |xi|p · µi)

1/p,
and‖~x‖∞,~µ = maxi |xi|. When~µ is omitted, we mean the norm
‖~x‖p = (

P
i |xi|p)1/p.

For vector norms‖·‖a, ‖·‖b, the matrix operator norm of a ma-
trix A is defined as‖A‖a→b = max‖~x‖a=1 ‖A~x‖b. We most fre-
quently use‖A‖2 := ‖A‖2→2. In addition to the operator norms
induced byLp norms on vectors, we define theFrobenius normof
a matrixA as‖A‖F := (

P
i,j a2

ij)
1/2. These two norms relate

in the following useful ways: for all matricesA, B, we have that
‖A‖2 ≤ ‖A‖F ≤

p
rank(A)‖A‖2, and‖AB‖F ≤ ‖A‖2‖B‖F .

The proof of Theorem 3.1 must take into account two sources of
error: (1) The Orthogonal Iteration algorithm itself does not pro-
duce an exact solution, but instead converges to the true eigenvec-
tors, and (2) Our decentralized implementation DecentralizedOI in-
troduces additional error.

The convergence of Orthogonal Iteration itself has been analyzed
extensively in the past (see [11] for references); the relevant results
are stated as Theorem 3.2.

THEOREM 3.2. Let PQ describe the projection onto the space
spanned by the topk eigenvectors of a symmetric matrixA, and let
PQ′ be the projection onto the space spanned by the approximate
Q′ obtained aftert iterations of Orthogonal Iteration. With high
probability,

‖PQ − PQ′‖2 ≤ O(|λk+1

λk
|t · n)

Interpreted, this theorem implies that the space found by orthogonal
iteration is close to the true space, so the projectionsVi = AQi are
nearly perfect. Furthermore, not many iterations are required to
achieve good accuracy. To bring this error bound toε, we need to
performt = log(n

ε
)/ log(|λk+1

λk
|) iterations.

3.1 Error of Orthogonal Iteration
The main focus of our analysis is to deal with the approximation

errors introduced by the Push-Sum algorithm. In Section 3.2, we
show that the error for each entry of the matrixK at each nodei
drops exponentially in the number of steps that Push-Sum is run.
Still, after any finite number of steps, each nodei is using a (dif-
ferent) approximationbKi to the correct matrixK, from which it
computesbR−1

i and then its new vectorQi. We therefore need to
analyze the effects that the error introduced into the matrixbKi will
have on future (approximate) iterations, and show that it does not
hinder convergence. Specifically, we want to know how many iter-
ations of Push-Sum need to be run to make the error so small that
even the accumulation over the iterations of Orthogonal Iteration
keeps the total error bounded byε.

In order to bound the growth of error for the decentralized Or-
thogonal Iteration algorithm, we first analyze the effects of a single
iteration. Recall that a single iteration, in the version that we use to
decentralize, looks as follows: It starts with an orthonormal matrix
Q, determinesV = AQ andK = V T V , and from this computes
a Cholesky factorizationK = RT R, whereR is ak × k matrix.
Finally, the output of the iteration isQ′ = V R−1, which is used as
input for the next iteration.

The decentralized implementation will start from a matrixbQ
which is perturbed due to approximation errors from previous iter-
ations. The network computesbV = A bQ, and we can hence definebK = bV T bV . However, due to the approximate nature of Push-Sum,
nodei will not use bK, but instead use a matrixbKi = bK + Ei,
for some error matrixEi. Node i then computesbRi such thatbKi = bRT

i
bRi, and appliesbR−1

i to its row bVi of the matrix bV .
Hence, the resulting matrixbQ′ has as itsith row the vectorbVi

bR−1
i .

LEMMA 3.3. Let Q and bQ be matrices whereQ is orthonor-
mal, and‖Q− bQ‖F +εk ≤ (2‖A‖2‖R−1‖2)

−3. If Q′ and bQ′ are
respectively the results of one step of Orthogonal Iteration applied
to Q and Decentralized Orthogonal Iteration applied tobQ, and the
number of steps run in Push-Sum ist = Ω(τmix log(1/ε)), then

‖Q′ − bQ′‖F ≤ k1/2(2‖A‖2‖R−1‖2)
4(‖Q− bQ‖F + εk)

Proof. The proof consists of two parts: First, we apply perturba-
tion results for the Cholesky decomposition and matrix inverse to
derive a bound on‖R−1 − bR−1

i ‖2. Second, we analyze the effect
of applying the (different) matricesbR−1

i to the rows ofbV .



Throughout, we will be making repeated use of the relationship
between the matrix norms ofA, V, R, K. BecauseQ′ is orthonor-
mal, we have that‖V ‖F = ‖R‖F and‖V ‖2 = ‖R‖2. For A,
this does not hold with equality; however, becauseV = AQ,
the submultiplicativity of norms gives that‖V ‖2 ≤ ‖A‖2 and
‖V ‖F ≤ ‖A‖F . Finally, becauseK = RT R, its norms satisfy
‖K‖2 = ‖R‖2

2, and‖K‖F ≤ ‖R‖2
F .

Simply from the definitionsV = AQ and bV = A bQ, we have
that ‖V − bV ‖F ≤ ‖A‖2‖Q− bQ‖F . Using this bound with the
Triangle Inequality, we obtain

‖K − bK‖F = ‖V T V − bV T bV ‖F

≤ ‖V T V − bV T V ‖F + ‖bV T V − bV T bV ‖F

≤ ‖V ‖2‖V T − bV T ‖F + ‖bV ‖2‖V − bV ‖F .

‖·‖2 is submultiplicative, so1 = ‖RR−1‖2 ≤ ‖R‖2‖R−1‖2.
Therefore,‖R−1‖2 ≥ 1

‖R‖2
≥ 1

‖A‖2
, and our assumed bound

on‖Q− bQ‖F is bounded by1
8
. Hence,‖bV ‖2 ≤ 9

8
‖V ‖2, yielding

‖K − bK‖F ≤ 17
8
‖V ‖2‖V − bV ‖F ≤ 17

8
‖A‖2

2‖Q− bQ‖F .

Next, we want to bound the distance betweenK and the approxi-
mation bKi used by nodei. By our choice oft, Theorem 3.4 implies
that‖ bKi − bK‖F ≤ ε‖M‖F , whereMrc =

P
i |(bV T

i
bVi)rc|. Ap-

plying the Cauchy-Schwartz Inequality after expanding the defini-
tion of‖·‖F bounds‖M‖F ≤ ‖bV ‖2

F . In turn,‖bV ‖2
F ≤ ( 9

8
)2‖V ‖2

F ,
and‖V ‖2

F ≤ rank(V ) · ‖V ‖2
2 ≤ k‖A‖2

2, so

‖K − bKi‖F ≤ ‖K − bK‖F + ‖ bK − bKi‖F

≤ 17

8
‖A‖2

2‖Q− bQ‖F + (
9

8
)2εk‖A‖2

2

≤ 17

8
‖A‖2

2 · (‖Q− bQ‖F + εk).

We apply two well-known theorems to bound the propagation
of errors in the Cholesky factorization and matrix inversion steps.
First, a theorem by Stewart [22] states that ifK = RT R andbK = bRT bR are Cholesky factorizations of symmetric matrices,
then‖R− bR‖F ≤ ‖K−1‖2‖R‖2‖ bK −K‖F . Applying this the-
orem to our setting, and using that‖K−1‖2 ≤ ‖R−1‖2

2, yields
that

‖R− bRi‖F ≤ ‖K−1‖2‖R‖2‖K − bKi‖F

≤ 17

8
‖R−1‖2

2‖A‖3
2 · (‖Q− bQ‖F + εk).

Next, we apply Wedin’s Theorem [24], which states that for non-
singular matricesR, bRi,

‖R−1 − bR−1
i ‖2 ≤ 1+

√
5

2
‖R − bRi‖2 max{‖R−1‖2

2, ‖ bR−1
i ‖2

2}.

To bound‖ bR−1
i ‖2, recall that| 1

‖R−1‖2
− 1

‖ bR−1
i ‖2

| ≤ ‖R − bRi‖F .

Using our bound on‖R − bRi‖F and our assumption on‖Q− bQ‖F ,
we obtain that

| 1
‖R−1‖2

− 1

‖ bR−1
i ‖2

| ≤ 9
32

1
‖R−1‖2

Therefore,‖ bR−1
i ‖2

2 ≤ 2‖R−1‖2
2, and using this bound in Wedin’s

Theorem, we obtain

‖R−1 − bR−1
i ‖2 ≤ (1 +

√
5)‖R−1‖2

2‖R − bRi‖2

≤ 8‖A‖3
2‖R−1‖4

2 · (‖Q− bQ‖F + εk).

In the second part of the proof, we want to analyze the effect
obtained by each nodei applying its own matrixbR−1

i to its rowbVi of the matrix bV . Notice that this is a non-linear operation, so
we cannot argue in terms of matrix products as above. Instead, we
perform the analysis on a row-by-row basis. We can writeQ′

i − bQ′
i

as

Q′
i − bQ′

i = ViR
−1 − bVi

bR−1
i

= Vi(R
−1 − bR−1

i ) + (Vi − bVi) bR−1
i

We letC be the matrix whoseith row is(Vi−bVi) bR−1
i , andD the

matrix whoseith row isVi(R
−1 − bR−1

i ). We bound the Frobenius
norms‖C‖F , ‖D‖F separately. To bound‖C‖F , observe that

‖C‖2
F =

X
i

‖(Vi − bVi) bR−1
i ‖2

2

≤
X

i

‖Vi − bVi‖2
2‖ bR−1

i ‖2
2

≤ max
i

‖ bR−1
i ‖2

2 ·
X

i

‖Vi − bVi‖2
2

= max
i

‖ bR−1
i ‖2

2 · ‖V − bV ‖2
F

Similarly, to bound the Frobenius norm ofD:

‖D‖2
F =

X
i

‖Vi(R
−1 − bR−1

i )‖2
2

≤ ‖V ‖2
F ·max

i
‖R−1 − bR−1

i ‖2
2.

We take square roots on both sides of these bounds, and combine
them using the Triangle Inequality, getting

‖Q′ − bQ′‖F ≤ ‖bV − V ‖F ·max
i

‖ bR−1
i ‖2

+ ‖V ‖F ·max
i

‖R−1 − bR−1
i ‖2

Finally, inserting our bounds on‖ bR−1
i ‖2 and‖R−1 − bR−1

i ‖2 yields
that

‖Q′ − bQ′‖F ≤ ‖A‖2‖ bQ−Q‖F ·
√

2‖R−1‖2

+8
√

k ‖A‖2‖A‖3
2‖R−1‖4

2(‖Q− bQ‖F + εk)

≤ 16
√

k‖R−1‖4
2‖A‖4

2(‖Q− bQ‖F + εk),

completing the proof.

Proof of Theorem 3.1. Lemma 3.3 shows that the approximation
error‖Q− bQ‖F grows by a factor ofk1/2(2‖R−1‖2‖A‖2)

4 with
each iteration, plus an additionalεk error. While this exponential
growth is worrisome, the initial error is0, andε decreases exponen-
tially with the number of Push-Sum steps performed. By perform-
ing Ω(tτmix log(8k‖A‖2

c
ε
)) steps of Push-Sum in each iteration,

the difference‖Q− bQ‖F is bounded byε4t aftert iterations.
To transform this bound to a bound on‖PQ − P bQ‖F , note that

‖PQ − P bQ‖F = ‖QQT − bQ bQT ‖F

≤ ‖QQT −Q bQT ‖F + ‖Q bQT − bQ bQT ‖F

≤ (‖Q‖2 + ‖ bQ‖2)‖Q− bQ‖F

By the argument in Lemma 3.3, the first factor is at most17/8, and
we achieve the statement of Theorem 3.1.

The main assumption of Theorem 3.1, that‖R−1‖2 is bounded,
raises an interesting point.‖R−1‖2 becoming unbounded corre-
sponds to the columns ofQ becoming linearly dependent, an event



that is unlikely to happen outside of matricesA of rank less than
k. Should it happen, the decentralized algorithm will deal with this
in the same manner that the centralized algorithm does: The final
column ofQ will be filled with garbage values. This garbage will
then serve as the basis for a new attempt at convergence for this
column. The difference between the centralized and decentralized
approaches is precisely which garbage is used. Clearly if the error
is adversarial, the new columns ofQ could be chosen to be orthog-
onal to the topk eigenvectors, and correct convergence will not
occur.

Notice that even if‖R−1‖2 is large for some value ofk, it may
be bounded for smaller valuesk′. Orthogonal iteration is a nested
process, meaning that the results hold fork′ < k, where we exam-
ine the matrices restricted to the firstk′ eigenvectors. This means
that while we can no longer say that the finalk − k′ columns nec-
essarily track the centralized approach, wecansay that the firstk′

are still behaving properly.

3.2 Analysis of Push-Sum
Next, we analyze the error incurred by the Push-Sum protocol,

proving the following theorem. We define the mixing timeτmix

of the Markov Chain associated withB in terms of the‖·‖2 norm,
namely as the smallestt such that‖~eT

i Bt − ~πT ‖2 ≤ 1
2

for all i.

THEOREM 3.4. Let St,i be thek × k matrix held by nodei
after thetth iteration of Push-Sum,wt,i its weight at that time,
andS the correct matrix. DefineM =

P
i |S0,i| to be the matrix

whose(r, c) entry is the sum of absolute values of the initial matri-
cesS0,i at all nodesi. Then, for anyε, the approximation error is
‖ St,i

wt,i
− S‖F ≤ ε‖M‖F , aftert = O(τmix · log 1

ε
) rounds.

The proof of this theorem rests mainly on Lemma 3.5 below, re-
lating the approximation quality for every single entry of the matrix
to the convergence ofBt to the stationary distribution ofB. In the
formulation of the lemma, we are fixing a single entry(r, c) of all
matrices involved. We writexi = K

(i)
rc , andst,i = (St,i)rc.

LEMMA 3.5. Let t be such that‖~eT
j Bt−~π

~π
‖∞ ≤ ε

2+ε
for all j.3

Then, for any nodei, the approximation error| st,i

wt,i
−

P
j xj | at

timet is at mostε
P

j |xj |.

Proof. Let~st and~wt denote the vector of allst,i resp.wt,i values
at time t. Thus,~s0 = ~x, and ~w0 = ~eı̂, for the special nodêı.
Then, it follows immediately from the definition of Push-Sum that
~sT

t+1 = ~sT
t B, and ~wT

t+1 = ~wT
t B. By induction, we obtain that

~sT
t = ~xT Bt =

P
j xj · ~ejB

t, and~wT
t = ~eT

ı̂ Bt.

Nodei’s estimate of the sum at timet is
st,i

wt,i
=

P
j xj · (~ejBt)i

(~eı̂Bt)i
.

Because both the numerator and denominator converge toπi, the
right-hand side converges to

P
j xj . Specifically, lett be such that

‖~eT
j Bt−~π

~π
‖∞ ≤ ε

2+ε
for all j. Then, a straightforward calculation

shows that1− ε ≤ (~ejBt)i

(~eı̂Bt)i
≤ 1 + ε for all i, j.

A simple application of the Triangle Inequality now gives that
| st,i

wt,i
−

P
j xj | ≤ ε

P
j |xj |, completing the proof.

The lemma gives bounds on the error in terms of the mixing
speed of the Markov Chain, as measured in the‖·‖∞ norm. Most
analysis of Markov Chains is done in terms of the‖·‖2,~π norm,
or the total variation distance. For this reason, we give the discrete
time analogue of Lemma (2.4.6) from [21], which relates‖·‖∞ and
‖·‖2,~π for reversible Markov Chains.
3When we write a fraction of vectors, we mean the vector whose
entries are the component-wise fractions.

LEMMA 3.6. Let B be a stochastic matrix whose associated
Markov Chain is ergodic and reversible, with stationary probabil-

ity ~π. Then,maxi ‖~eT
i B2t−~πT

~π
‖∞ ≤ (maxi ‖~eT

i Bt−~πT

~π
‖2,~π)2 for

anyt.

Proof. First, by substituting the definition of‖·‖∞, and noticing
that~πT = ~eT

i
~1~πT , we can rewrite the quantity to be bounded as

maxi,j ~eT
i (B2t −~1~πT )

~ej

~π
. Then, it is easy to see that this quantity

is equal tomax‖~x‖1,~π=1 ‖(B2t −~1~πT )~x‖∞ (as the maximum in
the second version is attained when only one coordinate of~x is non-
zero). This is, by definition, the operator norm‖B2t −~1~πT ‖1,~π→∞.

BecauseB (and henceBt) is stochastic with stationary proba-
bility ~π, we have that~πT ·Bt = ~πT , andBt ·~1 = ~1. Furthermore,
the fact that~π is a probability measure implies that~πT~1 = 1, so
we obtain thatB2t − ~1~πT = (Bt − ~1~πT )2. Now, the submulti-
plicativity of operator norms gives us that‖B2t −~1~πT ‖1,~π→∞ ≤
‖Bt −~1~πT ‖1,~π→2,~π · ‖Bt −~1~πT ‖2,~π→∞.

For ease of notation, we writeK = Bt − ~1~πT . BecauseB
satisfies the detailed balance conditionπibij = πjbji for all i, j,
so doesBt (which can be shown by a simple inductive proof).
Therefore,K also satisfies the detailed balance condition. Using
the fact that‖K‖1,~π→2,~π = max‖~x‖1,~π=1,‖~y‖2,~π=1

P
i(K~x)iyiπi

(one direction of which is proved using the Cauchy-Schwartz In-
equality, the other by appropriate choice of~x and~y), the detailed
balance property ofK yields‖K‖1,~π→2,~π = ‖K‖2,~π→∞. Finally,

‖K‖1,~π→2,~π = maxi(
P

j

K2
ij

πj
)1/2 = maxi ‖~eT

i Bt−~πT

~π
‖2,~π, again

by the detailed balanced condition.

By combining Lemma 3.5 and Lemma 3.6, we can prove Theo-
rem 3.4.

Proof of Theorem 3.4. Given a desired approximation qualityε,
defineε′ = ε

(2+ε)
. By definition of the mixing timeτmix, the

‖·‖2 distance at timeτmix is at most‖~eT
i Bτmix − ~πT ‖2 ≤ 1

2
for

any i. Therefore, by a simple geometric convergence argument, at
time t = O(log 1√

ε′
τmix) = O(log 1

ε
τmix), the error is at most

‖~eT
i Bt − ~πT ‖2 ≤

√
ε′, for anyi.

Lemma 3.6 now yields thatmaxi ‖~eT
i B2t−~πT

~π
‖∞ ≤ ε′ = ε

2+ε
.

For any nodei and each(r, c) pair, Lemma 3.5 therefore shows that

| (S2t,i)rc

w2t,i
−

P
j xj | ≤ ε ·

P
j |xj | = εMrc. Hence, we can bound

the Frobenius norm

‖S2t,i − S‖F ≤
qP

r,c ε2
P

j M2
rc = ε‖M‖F ,

completing the proof.

3.3 Detecting Convergence in Push-Sum
In our discussion thus far, we have glossed over the issue of ter-

mination by writing “Run Push-Sum until the error drops belowε.”
We have yet to address the issue of how the nodes in the network
know how many rounds to run. If the nodes knewτmix, the prob-
lem would be easy — however, this would require knowledge and
a detailed analysis of the graph topology, which we cannot assume
nodes to possess.

Instead, we would like nodes to detect convergence to within
errorε themselves. We show how to achieve this goal under the as-
sumption that each node knows (a reasonable upper bound on) the
diameterdiam(G) of the graphG. In order to learn the diameter
to within a factor of 2, a node may simply initiate a BFS at the be-
ginning of the computation, and add the length of the two longest
paths found this way.



Assume now that nodes know an upper boundd on the diam-
eter, as well as a target upper boundε on the relative error. For
the purpose of error detection, the nodes, in addition to the ma-
tricesSi from before, compute the sum of the non-negative ma-
tricesAi, with (Ai)rc = |(Si)rc|. When the nodes want to test
whether the error has dropped belowε, they compute the values
amax

rc = maxi
(Ai)rc

wi
, amin

rc = mini
(Ai)rc

wi
, smax

rc = maxi
(Si)rc

wi
,

andsmin
rc = mini

(Si)rc

wi
. (Notice that the maximum and minimum

can be computed by using flooding, and only sending one value for
each position(r, c), as both operations are idempotent.) The nodes
decide to stop if the values for all matrix positions(r, c) satisfy
amin

rc ≥ 1
1+ε

amax
rc , andsmax

rc − smin
rc ≤ ε

1+ε
amax

rc . Otherwise, the
nodes continue with Push-Sum.

We will show in Theorem 3.7 below that this rule essentially
terminates when the maximum error is less thanε. As the com-
putation of the maximum and minimum takes timeΘ(diam(G)),
testing the error after each iteration would cause a slowdown by a
multiplicative factor ofΘ(diam(G)). However, the BFS need only
be performed everyd steps, in which case at most an additionald
rounds are run, while the amortized cost is at most a constant factor.
Wheneverd = Θ(diam(G)), the overall effect is only a constant
factor.

For our theorem below, we focus only on one matrix entry(r, c),
as taking the conjunction over all entries does not alter the problem.
We letxi denote the value held by nodei before the first iteration,
and writesi = (Si)rc, andai = (Ai)rc for the entries at the time
under consideration. We defineamax, amin, smax, andsmin in the
obvious way. In line with the error analysis above, we say that the
error at nodei is bounded byε if | si

wi
−

P
j xj | ≤ ε

P
j |xj |. The

error is bounded byε if it is bounded byε at all nodesi.

THEOREM 3.7. 1. When the computation stops, the error is
at mostε.

2. After the numbert of steps specified in Lemma 3.5 to obtain
error at most ε

2(1+ε)
, the computation will stop.

Notice that there is a gap of 1
2(1+ε)

between the actual desired er-
ror and the error bound that ensures that the protocol will terminate.
However, this is only a constant factor, so only a constant number
of additional steps is required (after the actual error has dropped
belowε) until the nodes actually detect that it is time to terminate.

Proof. 1. When the computation stops, the stopping require-
ment ensures that

amin ≥ 1

1 + ε
amax (1)

smax − smin ≤ ε

1 + ε
amax. (2)

Because
P

j wj = 1, we obtain that
P

j aj =
P

j wj
aj

wj
is

in fact a convex combination of
aj

wj
terms, and in particular

amin ≤
P

i ai ≤ amax. A straightforward calculation using
Inequality (1) now shows thatamax ≤ 1

1+ε
·

P
j aj .

Substituting this bound onamax into Inequality (2) gives us
that smax − smin ≤ ε

P
j aj . The same convexity argu-

ment, applied this time to
P

j sj , as well as the facts thatP
j aj =

P
j |xj | and

P
j sj =

P
j xj , now ensures that

| si
wi

−
P

j xj | ≤ ε ·
P

j |xj | for all nodesi, i.e. the desired
error bound.

2. For the second part, we first apply Lemma 3.5, yielding for
all nodesi that

| ai

wi
−

X
j

|xj || ≤ ε

2(1 + ε)

X
j

|xj | (3)

| si

wi
−

X
j

xj | ≤ ε

2(1 + ε)

X
j

|xj | (4)

By the Triangle Inequality and the above convexity argu-
ment,

amax − amin ≤ 2 ε
2(1+ε)

P
j |xj | ≤ ε

1+ε
amax,

so the first stopping criterion is satisfied. Similarly,

smax − smin ≤ 2 ε
2(1+ε)

P
j |xj | ≤ ε

1+ε
amax,

so the second criterion is met as well, and the protocol will
terminate.

4. CONCLUSIONS
In this paper, we have presented and analyzed a decentralized

algorithm for the computation of a graph’s spectral decomposition.
The approach is based on a simple algorithm called Push-Sum for
summing values held by nodes in a network [14].

We have presented a worst-case error analysis; one that is far
more pessimistic than those performed in bounding the (similar) ef-
fects of floating point errors on numerical linear algebra algorithms.
Nonetheless, our analysis shows thatt iterations of orthogonal iter-
ation can be performed without central control in timeO(t2τmix),
whereτmix is the mixing time of any Markov Chain on the network
under consideration.

We believe that our algorithm represents a starting point for a
large class of distributed data mining algorithms, which leverage
the structure and participants of the network. This suggests the
more general question of which data mining services really need to
be centralized. For example, Google’s primary service is not the
computation of Pagerank, but rather computing and serving a huge
text reverse-index. Can such a task be decentralized, and can a web
search system be designed without central control?

Above, we argue informally that one of the advantages of our
algorithm is a greater protection of nodes’ privacy. An exciting di-
rection for future work is to investigate in what sense decentralized
algorithms can give formal privacy guarantees.

The convergence of our algorithm depends on the mixing speed
of the underlying Markov Chain. For a fixed network, different
Markov Chains may have vastly different mixing speeds [4]. Boyd
et al. [4] show how to compute the fastest mixing Markov Chain by
using semi-definite programming; however, this approach requires
knowledge of the entire network and is inherently centralized. An
interesting open question is whether this fastest Markov Chain can
be computed (approximately) in a decentralized way, perhaps by
analyzing the eigenvectors. This would have applications to rout-
ing of concurrent flows (by removing bottlenecks), and allow the
network to “self-diagnose” and speed up future invocations of our
decentralized algorithm.

Another question related to self-diagnosis is the error estimate in
the Push-Sum algorithm. At the moment, we assume that all nodes
know the diameter, and can run an error estimation protocol after
appropriately chosen intervals. Is there a decentralized stopping
criterion that does not require knowledge ofdiam(G) or n?
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