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ABSTRACT

Proper scoring rules, particularly when used as the basis for
a prediction market, are powerful tools for eliciting and ag-
gregating beliefs about events such as the likely outcome of
an election or sporting event. Such scoring rules incentivize
a single agent to reveal her true beliefs about the event.
Othman and Sandholm [16] introduced the idea of a deci-
sion rule to examine these problems in contexts where the
information being elicited is conditional on some decision al-
ternatives. For example, “What is the probability having ten
million viewers if we choose to air new television show X7
What if we choose Y?” Since only one show can actually air
in a slot, only the results under the chosen alternative can
ever be observed. Othman and Sandholm developed proper
scoring rules (and thus decision markets) for a single, deter-
ministic decision rule: always select the the action with the
greatest probability of success. In this work we significantly
generalize their results, developing scoring rules for other
deterministic decision rules, randomized decision rules, and
situations where there may be more than two outcomes (e.g.
less than a million viewers, more than one but less than ten,
or more than ten million).
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1. INTRODUCTION

Eliciting information about uncertain events is crucial for
informed decision making. Information is often possessed
by individual agents. Truthfully eliciting such information,
resolving conflicting beliefs, and aggregating the dispersed
information are key problems for achieving collective intel-
ligence in multi-agent systems. Proper scoring rules have
been proposed to incentivize an expert to honestly report
her probability assessment for an uncertain event [2, 7, 21,
22, 18, 23, 3, 6, 11]. Prediction markets, betting interme-
diaries where participants wager on the outcome of some
event of interest, can output equilibrium market prices rep-
resenting the consensus probability assessment based on the
pooled information of market participants [1, 24, 17].

However, most work, with the exception of Othman and
Sandholm [16] and Dimitrov and Sami [4], separates the
information elicitation problem from the decision problem.
Information elicitation and aggregation are studied without
considering how the resultant information will be used. Par-
ticipants of mechanisms are assumed to only care about their
rewards within the mechanism. Incentives for the isolated
elicitation problem may not motivate desirable behavior of
participants when the elicited information is used for deci-
sion making, because participants may have vested interests
in some decision outcome and may misreport their informa-
tion hoping to achieve the decision outcome.

In this paper, we study the information elicitation prob-
lem situated in a decision making process. We consider a
setting where a decision maker seeks to elicit information
about the consequences of various actions that he could take
and choose an action based on the elicited information. For
example, a company needs to choose among three market-
ing campaigns and wants to elicit the probability that each
campaign will result in a sales goal being reached. This set-
ting was first investigated by Othman and Sandholm [16]
when the decision maker uses a deterministic decision rule
and there are two possible outcomes given any action. They
derived a proper scoring rule for a particular decision rule.
Our main contribution is a theorem that significantly gener-
alizes their result by characterizing all (strictly) proper scor-
ing rules for all decision rules.

The rest of the paper is organized as follows. In Section 2,
we cover the relevant background and related work on the
use of scoring rules for information elicitation. Then in Sec-
tion 3, we provide a formal model of the problem of eliciting
information from a single expert for the purpose of making
a decision. We state and prove our main result, a charac-
terization theorem for (strictly) proper scoring rules in the



decision making setting, in Section 4. Using this character-
ization, we provide a sufficient condition for the existence
of a strictly proper scoring rule and a sufficient condition
for when no such rule exists in Section 5. For situations
where strictly proper scoring rules are not possible, we pro-
vide a derivation of “quasi-strictly proper” scoring rules in
Section 6. We discuss issues that arise when eliciting infor-
mation from multiple experts and some potential solutions
in Section 7. We conclude in Section 8.

2. BACKGROUND AND RELATED WORK

Proper scoring rules have been designed to incentivize a
risk-neutral expert to truthfully report her probability as-
sessment for an uncertain event [2, 7, 21, 22, 18, 23, 14, 13,
20, 15]. Let v be a discrete random variable that has m mu-
tually exclusive and exhaustive outcomes, O = {01, ...,0m}.
A scoring rule assigns score $o(p) to an expert who reports
a probability assessment p when outcome o happens. A
scoring rule is regular if so(p) is real valued for all o, ex-
cept possibly so(p) = —oo if po = 0. A regular scoring rule
is (strictly) proper if a risk-neutral expert (strictly) maxi-
mizes her expected score by reporting truthfully. That is,
P is an optimal solution to maxyca (o) Y oeq PoSo(F) for any
proper scoring rule s, and is the unique optimal solution if
s is strictly proper. A(Q) is the probability simplex over O.
For example, logarithmic scoring rule s,(p) = ao + blogp,
and quadratic scoring rule s,(p) = ao+b(2po—3,; p?), where
b > 0 and a, are arbitrary parameters, are strictly proper
scoring rules.

Proper scoring rules are closely related to convex func-
tions. In fact, the following characterization theorem of
Gneiting and Raftery [6], which is credited to McCarthy [12]
and Savage [18], gives the precise relationship between con-
vex functions and proper scoring rules. In the theorem, -
denotes the vector inner product.

THEOREM 2.1
A regular scoring rule is (strictly) proper if and only if

so(P) = G(§) — G'(F) - I+ Go(),

where G : A(O) — R is a (strictly) convez function and
G'(p) is a subgradient of G at the point § and G,(p) is the
o-th element of G'(p).

Theorem 2.1 indicates that a regular scoring rule is (strictly)
proper if and only if its expected score function G(p) =
>, PoSo(P) is (strictly) convex on A(O), and the vector with
elements s,(p) is a subgradient of G at the point p.
Hanson [9, 10] shows how a proper scoring rule designed
to elicit information from a single expert can be turned into
a mechanism for prediction markets, which aggregate the
information of multiple experts. Such a mechanism is called
a market scoring rule. and is essentially a shared proper
scoring rule. Hanson [8] also promotes the idea of decision
markets. A decision market is a prediction market for condi-
tional events. A decision maker who needs to decide among
some actions can operate a conditional prediction market for
each action. The conditional market elicits information on
outcomes of some event of interest conditioned on the cor-
responding action being taken (e.g. probability that stock
price of a company increases conditioned on A is hired as
the CEO). The decision maker can decide on what action to
take based on the elicited conditional probability distribu-
tions. Our work focuses on the incentive problem of eliciting

(GNEITING AND RAFTERY THEOREM 2).

conditional information from a single expert using a scoring
rule, but we also discuss the implications for using a mar-
ket scoring rule for decision markets. Furthermore, while
Hanson proposes the idea of a decision market, he does not
provide any analysis or techniques showing how one could
be implemented to correctly encourage participants to re-
veal their information. As we discuss in Section 7, this is a
difficult problem.

The closest work to ours is that of Othman and Sand-
holm [16]. They pair a scoring rule for eliciting conditional
probability distributions over two outcomes with a deter-
ministic decision rule. This differs from the standard infor-
mation elicitation problem using proper scoring rules, be-
cause only one action will be taken and used to determine
the score of an expert, but the selected action depends on
the reported conditional probability distributions. Othman
and Sandholm show that for deterministic decision rules, to
have a “quasi-strictly proper” scoring rule it is necessary that
the decision rule only change its decision when probabilities
are equal. A natural version of this is the MAX rule: de-
cide on the action with the highest reported probability for
the more desirable outcome. They construct a quasi-strictly
proper scoring rule for MAX and then extend their results to
decision markets. However, they show that it is impossible
to achieve properness in decision markets using the MAX
decision rule. As an open problem, they pose the question
of how proper scoring rules can be derived for randomized
decision rules. Our main theorem answers this question with
a characterization of all (strictly) proper scoring rules for all
decision rules. Thus, we extend their results to determin-
istic rules other than MAX, randomized decision rules, and
situations with more than two outcomes.

Three other papers have considered the problem of infor-
mation elicitation in other settings where the outcome is not
independent of the predictions of experts. Shi, Conitzer, and
Guo [19] examine settings where participants in a prediction
market may also have an ability to influence the outcome.
For example, participants in a market to predict terrorist
attacks may be able to carry out acts of terrorism and em-
ployees of a company participating in a prediction market
about when a new product will launch may have the ability
to delay the launch. They show how to derive scoring rules
that do not incentivize the participants to take these “unde-
sirable” actions. However, unlike our work, the information
elicited is not explicitly used for decision making. Dimitrov
and Sami [4] examine incentive problems when there are two
prediction markets for different but related events. This
might cause a trader to report sub-optimally in one mar-
ket to mislead a trader in another market. The first trader
can also participate in the second market and profit from
correcting the second trader. This is a situation where the
payoff from the first market does not depend on the decision
the second trader makes; instead, the first trader profits di-
rectly from the decision. Our work considers the opposite
case: experts do not care what decision is made, except that
the outcome (and thus their payoffs) depends on it. Gerding
et al. [5] consider a model where experts need to be incen-
tivized to make costly observations of the quality of service
providers. They consider a number of approaches, includ-
ing scoring rules, and all face tradeoffs between encouraging
experts to invest effort and getting accurate reports. One
of their approaches, basing scores on peer predictions, could
potentially be helpful with resolving the issues with decision



markets discussed in Section 7.

3. OUR MODEL

Before we introduce our model, we note some notational
conventions we use throughout the paper. We typically de-
note a matrix with a capital letter and an entry of a matrix
P as P; ,. We denote a vector as p, except that when con-
sidering a row of a matrix as a vector we denote it P;. We
use the Frobenius inner product, P: Q =Y,  Pi cQs,0, for
matrices. ’

Our model is essentially that of Othman and Sandholm [16],
but adapted to allow randomized decision rules and more
than two outcomes.

A decision maker needs to choose an action from a set
A ={1,...,n}. Each action may affect the probability of
achieving each possible outcome from a set O = {o01,...0m}.
Othman and Sandholm [16] considered the case of two out-
comes, in which case we use T to denote the more desirable
outcome and L to denote the less.

The decision maker asks an expert to report a set of con-
ditional probability distributions, denoted by a n xm matrix
P, where P;, is the probability of outcome o conditional on
the decision maker taking action i. We use P; to denote the
i-th row of P, that is, the probability distribution over O
conditional on action i being taken. P; € A(O) for all ac-
tions 4, where A(Q) is the probability simplex over O. We
use P to denote the space of P. In general, not every de-
cision need potentially lead to each outcome. For example,
we could model a decision maker that cares about which
decision is made by having a disjoint set outcomes for each
decision.

Based on the expert’s report, the decision maker makes
a decision using a decision rule D : P — A(A). D;(P) is
the probability the decision maker assigns to action i given
report P. In the special case of a deterministic decision rule,
D : P — A. The decision rule D is known by the expert.

To encourage the expert to make an accurate prediction,
the decision maker rewards her using a scoring rule S : A x
O x P — RU{—oo}. For notational convenience, we use
Si,o(P) to represent S(i,o0, P), the score for the report P
when action 7 is taken and outcome o happens. Note that
we allow the expert’s reward to depend on the decision made,
a feature not necessary for the deterministic decision rules
considered in Othman and Sandholm’s model. We assume
the expert is risk neutral and only cares about her reward
according to the scoring rule. Specifically, she does not care
what decision is made, other than to the extent that it affects
her expected score.

We now define regular, proper, strictly proper, and quasi-
strictly proper scoring rules for a decision rule.

DEFINITION 3.1. A scoring rule S is regular for decision
rule D if Si o(P) € R unless P; o = 0.

The definition is analogous to that of regular scoring rules in
Section 2. An expert may get a score of —oo only if an event
occurred to which she assigned probability 0. We consider
only regular scoring rules for a decision rule in this paper
because if this condition is not met an expert can get —oo
in expectation, making the scoring rule unappealing.

Let V(P, Q) denote the expected score of an expert who
believes that the true conditional probabilities are P but re-

ports the probabilities @, i.e. V(P,Q) =3_, , Di(Q)Pi,05:,0(Q).

We define (strictly) proper scoring rules for a decision rule as
follows, which is a direct generalization of (strictly) proper
scoring rules in Section 2.

DEFINITION 3.2. A regular scoring rule S is proper for a
decision rule D if

V(P,P) > V(P,Q)

for all P and all Q # P. It is strictly proper for the decision
rule if the inequality is strict.

Othman and Sandholm showed that no deterministic de-
cision rule has a strictly proper scoring rule, but showed one
that satisfies a slightly weaker condition. Intuitively, the de-
cision maker does not care if the expert is not strictly incen-
tivized to tell the truth about the probabilities for actions
he does not take as long as he learns the true conditional
probabilities for the action he takes. We formally define the
notion for randomized decision rules below.

DEFINITION 3.3. A regular scoring rule S is quasi-strictly
proper for a decision rule D if it is proper (i.e.

V(P,P) > V(P,Q)
for all P and all Q # P), and
V(P,P)>V(P,Q)

for all P and Q such that Py # Qy for some k € g, where
g = {i|Di(Q) > 0} is the support of D(Q)*.

A quasi-strictly proper scoring rule for a decision rule en-
sures that an expert is strictly incentivized to truthfully
report her conditional probability distributions for actions
that will be taken with positive probabilities by the decision
maker, although she may lie about her conditional proba-
bility distributions for actions that won’t be taken without
changing her expected score.

4. CHARACTERIZING PROPER SCORING
RULES FOR DECISION RULES

In this section, we state and prove our main theorem, a
characterization of all regular (strictly) proper scoring rules
for arbitrary (randomized) decision rules. We show that any
scoring rule of a particular form is (strictly) proper for the
corresponding decision rule and that every regular (strictly)
proper scoring rule for a decision rule is of this form. This
form, similar to the one used by Gneiting and Raftery in
Theorem 2.1, relies on the (strict) convexity of a function
G, which can be thought of as the expected truthful score
function V(P, P) = Zi,o D;P; ,S;,0(P). Our theorem can be
interpreted as saying that a scoring rule is (strictly) proper
for D if and only if G(P) = V(P, P) is (strictly) convex and
satisfies some additional conditions. GG need not be differen-
tiable in general (for example with a deterministic decision
rule), so rather than using the gradient of G, the theorem
uses the notion of a subgradient. At a point where G is
differentiable, the gradient is the unique subgradient.

!Othman and Sandholm give a different definition of quasi-
strict properness, which does not account for the possibility
that a decision rule may be effectively “tied.” For example
the scoring rule they give for the MAX decision rule violates
their definition when Pi v = 0.5, P> = 0.5 Q1,7 = 0.4,
and Q2,7 = 0.5, but satisfies our definition.



The resulting theorem is quite powerful. For an arbitrary
decision rule and scoring rule it provides a simple test to de-
termine whether the scoring rule is proper for the decision
rule. For an arbitrary decision rule, it gives a method of con-
structing proper scoring rules. Additionally, generalizations
of many of Othman and Sandholm’s results [16] characteriz-
ing properties of proper scoring rules for deterministic deci-
sion rules to situations where the decision rule does not have
full support (for example that there are no strictly proper
scoring rules and that all proper scoring rules satisfy an in-
dependence of irrelevant alternatives condition), are simple
corollaries of our theorem.

THEOREM 4.1. A regular scoring rule is (strictly) proper
for a decision rule D if and only if

Gi.o(P)

GP)-G'(P): P+ SREE)

IL; o (P)

D;(P) >0

Di(P) =0 W

Sio(P) = {
where G : P — RU{—o0} is a (strictly) convex function,
G'(P) is a subgradient of G at the point P with G} ,(P) =0
when D;(P) =0, and IL; , : P — RU {—o0} is an arbitrary
function that can take a value of —oco only when P;, = 0.

PRrROOF. Consider a regular scoring rule S satisfying (1).
We first show that it must be (strictly) proper. Let op =
{i | Di(P) > 0}. We have,

V(P,P) = Di(P)P;Si0(P)

P G o(P)
ig;’oDi(P)Pi,o (G(P) -G (P): P+ W)

=G(P)=G'(P): P+ > Gi,(P)Pi,

=G(P)-G'(P): P+ G’(I;) : P=G(P).

The fourth equality relies on the condition that G; ,(P) =0
when D;(P) = 0. Because G is convex and G’ is a subgra-
dient, for Q # P

V(P,Q) = Z Di(Q)Pi.05i,0(Q)

_ (Q)P, _ Q)04+ Giel@
- T o@r (cw-c@:a+ G
= GQ)+ (P Q) G'(Q) < G(P) = V(P P).

This gives us that S is a proper scoring rule for D. The
inequality is strict if G is strictly convex, in which case S is
strictly proper for D.

Now consider a regular proper scoring rule S for D. We
will show that it must be of the form of (1). Define G(P) =
V(P, P) = supg V(P, Q) and G; ,(P) = D;(P)S;,o(P). Each
V(P,Q) is a convex function of P. G is a point-wise supre-
mum of a set of convex functions and hence is convex itself.
If D;(P) = 0, G ,(P) = 0 by definition. For Q # P, we
have

G(P)+(Q—P):G'(P)
= Z Di(P)Pi6Si,0(P) + > (Qiso — Pio)Di(P)Si,0(P)

i,0

= ZDi(P)Qi,DSi,O(P) =V(Q,P)<V(Q,Q) =G(Q).

The inequality is due to the properness of S. It is strict if
S is strictly proper. Thus, G’ is a subgradient of the convex
function G, and G is strictly convex if S is strictly proper.
Finally, for any P and j such that D;(P) > 0,

G;,o’ (P)
D;(P)

= Di(P)P;,0Sio(P) = Y Di(P)Si,o(P)Pio +

G(P)-G'(P): P+

D;(P)
= 5,01 (P)-
So, S is of the proper form. []

In Theorem 4.1, II; , allows arbitrary scores to be assigned
when D;(P) = 0, subject to the constraint that the scoring
rule is regular. As the decision rule never takes action 4,
the score that would be assigned if it did is essentially arbi-
trary and does not affect the expected score of the expert.
The theorem has another condition with no parallel in The-
orem 2.1 by Gneiting and Raftery: the requirement that
G; ,(P) = 0 if D;(P) = 0. This can be read as requiring
the expert’s expected score to be independent of her reports
about the probabilities for actions that will not be taken.
For proper scoring rules for a decision rule D, this condition
is satisfied by the trivial convex function G(P) = 0, which
pays the expert nothing no matter what she reports, so she
is weakly indifferent to truthful reporting. However, this
condition may not be satisfied by any strictly convex func-
tion, resulting in a non-existence of strictly proper scoring
rules for D, an issue to which we return in Section 5.

We conclude this section with a number of examples of
proper scoring rules that can be derived using Theorem 4.1.

e For the two-outcome case, taking G(P) = max; P/t
for the MAX decision rule gives the proper scoring
rule derived by Othman and Sandholm [16].

e More generally, with more than two outcomes the de-
cision maker may have some utility u(o) for each out-
come and want to use the deterministic decision rule
that selects the action 7 that maximizes expected util-
ity Ui(P) = >, u(0)Pio. In this case, he can use
G(P) = max; U;(P)?, which gives the proper scoring
rule S;, = 2U;(P)u(o) — U;(P)?. Note that this rule
is not strictly proper, but we will see in Section 6 that
it is quasi-strictly proper.

For the two outcome case with randomized decision
rule D;(P) = P, 7/, Pj7, taking G(P) = 32, Pt
gives us the strictly proper scoring rule S; T = Zj 2P; 1—

P]-2,T and S; | = — Zj P]-%T, which is reminiscent of the

quadratic scoring rule.

S. STRICT PROPERNESS

In addition to characterizing all proper scoring rules for
a particular decision rule, Theorem 4.1 characterizes the
strictly proper scoring rules as well. However, as Othman
and Sandholm [16] observed for the case of deterministic
rules, some decision rules may not have any strictly proper
scoring rules. More generally, we would like to know whether,
given a decision rule D, there exists a strictly convex G sat-
isfying the requirements of Theorem 4.1, and thus a strictly

D;(P)S;.0(P)



proper scoring rule. In this section, we give sufficient con-
ditions for both the existence and non-existence of strictly
proper scoring rules.

For a strictly proper scoring rule to exist, we need to find
a strictly convex function G that satisfies the condition from
Theorem 4.1 that G ,(P) = 0 whenever D;(P) = 0. When
D(P) always has full support (i.e. D;(P) is never 0) this is
trivially satisfied by any strictly convex function. This gives
us a sufficient condition for a decision rule to have a strictly
proper scoring rule.

COROLLARY 5.1. If a decision rule D always has full sup-
port (D;(P) > 0 for all i and P) then it has a strictly proper
scoring rule.

PROOF. Any strictly convex function G, for example G(P) =

> ‘o PEO, satisfies the requirements of Theorem 4.1 and thus
yields a strictly proper scoring rule. [J

On the other hand, Othman and Sandholm show that no
deterministic decision rule has a strictly proper scoring rule.
The following corollary establishes a larger class of decision
rules for which this is the case, namely those for which the
probability distribution over actions chosen by the decision
rule does not have full support and there is a case where the
probabilities outside the support can be changed without
changing the probability distribution over actions.

COROLLARY 5.2. If there exist P # @Q such that
1. D(P) = D(Q),
2. op C A, and
3. Pio= Qi foralli € op and all o,

then D does not have a strictly proper scoring rule.

ProoOF. Consider such a P and @ and a proper scoring
rule S. By Theorem 4.1, G} ,(P) = G} ,(Q) = 0 for all
i€ op, so G(P) =G(Q) and

V(P,Q) = Zpi,oDi(Q)Si,o(Q)

= 3 PLDIQIGQ) +E(@Q):Q+ Cr(@)

iEO'QyO

Z P;oD;i(P)(G(P) 4+ G'(P) : P+ G} o(P))

=V(P,P).

Thus S is not strictly proper. [

While Corollary 5.2 shows that a subset of decision rules
that do not have full support do not have a strictly proper
scoring rule, the following open problem remains.

OPEN PROBLEM 1. Characterize when decision rules that
do not have full support and also do not satisfy the additional
conditions of Corollary 5.2 have a strictly proper scoring
rule.

6. QUASI-STRICT PROPERNESS

We saw in Section 5 that, while we can always construct
a proper scoring rule, many decision rules do not have any
strictly proper scoring rules. The mere existence of a proper
scoring rule is unsatisfying; the scoring rule that gives the
expert a score of 0 no matter what the decision and outcome

is proper for every decision rule but gives the expert no par-
ticular incentive to reveal her beliefs. Strictly proper scoring
rules fix this problem by ensuring that truthful reporting
is uniquely optimal. While not quite as satisfying, a quasi-
strictly proper scoring rule provides the weaker promise that,
no matter what optimal report the expert makes, she re-
ported her true beliefs over the outcome space for the ac-
tions the decision maker might take. In this section, we give
a derivation of quasi-strictly proper scoring rules for a class
of decision rules.

To build intuition about how quasi-strictly proper scoring
rules can be derived, we first examine a set of sufficient con-
ditions for a scoring rule to be quasi-strictly proper for the
MAX decision rule.

LEMMA 6.1 (OTHMAN AND SANDHOLM [16]). Let f and
g be functions such that

1. f and g are twice differentiable on (0,1),

2. h(p) = pf(p) + (1 — p)g(p) is strictly increasing on
[0,1],

8. pf'(p) + (1 —=p)g'(p) = 0 for all p € [0,1], and

4- pf"(p) + (1 —p)g"(p) <0 for all p € [0,1].2

Then S; 7(P) = f(P;71) and S;, 1 (P) = g(Pi,7) is quasi-
strictly proper for the MAX decision rule.

A subset of these conditions also suffices to prove that a
function h used in the construction is strictly convex.

LEMMA 6.2. Let f and g be functions such that
1. f and g are twice differentiable on (0, 1),
2. pf'(p) + (1 = p)g'(p) = 0 for all p € [0,1],
3. pf"(p) + (1 —p)g"(p) <0 for all p € [0,1].
Then h(p) = pf(p) + (1 — p)g(p) is strictly convez on [0,1].

PrOOF. ' (p) = f(p) — g(p) + pf'(p) + (1 — p)g'(p) and
h'(p) = 2(f'(p) — g'(p)) +pf"(p) + (1 — p)g”(p). Because
pf'(p) + (1 = p)g'(p) = 0, we have h'(p) = f(p) — g(p) and
R’ (p) = f'(p) — ¢’'(p). Combining our two equations for h”
gives f'(p) — g'(p) + pf"(p) + (1 —p)g"(p) = 0, or f'(p) >
g'(p). Thus h”(p) > 0 and h is strictly convex. [I

This is not a coincidence; we now show how such strictly
convex functions can be used to construct quasi-strictly proper
scoring rules for a large class of decision rules. In the sim-
ple case of deterministic decision rules, the members of this
class share the feature that the desirability of each action
can be computed as a strictly convex function of the condi-
tional probabilities reported for that action and the decision
rule simply takes the maximum of these desirabilities. For
example, the MAX decision rule for two outcomes can be
expressed as D(P) = argmax; P+, where h(P;) = P}t is a
strictly convex function of P;. More generally the decision
rule may randomize over several actions and may a priori
exclude some actions or combinations of actions from con-
sideration. Thus, our construction proceeds by selecting a
subset of the power set of actions, associating a strictly con-
vex function with each, and showing that every correspond-
ing decision rule has a quasi-strictly proper scoring rule.

20Othman and Sandholm do not explicitly state this condi-
tion, but it is implicit from the proof of their Theorem 7.



LEMMA 6.3. Let 8 C 24 — {0}, and for each b € 3, G* :
A(O0)P = R be a strictly convex function. D(P) has support
argmax;e g G’b(Pb) for all P, where ties are broken arbitrarily
and Py is the submatriz of P consisting of those rows whose
action is in b. Then, the scoring rule from Theorem 4.1 with
G(P) = maxpes G°(Py) is quasi-strictly proper for D.

PrOOF. Let P and @ be given and let b be the support of
D(Q) (the decisions made with positive probability). Then
by Theorem 4.1 and the strict convexity of G?,

V(P,Q)=G(Q)+(P-Q): G'(Q)
=G"(Qv) + (Py— Qp) : (G (Qp)

If P, # Qy the first inequality is strict. Ifb € argmax .5 G°(Pe)
the second is strict. Thus the scoring rule is quasi-strictly
proper for D. [

In the statement of Lemma 6.3, 8 is the set of possible
supports the decision rule considers. For each such sup-
port b, G® is a strictly convex function that determines
how “good” that support is given the probabilities (G°(P)).
Our construction applies to any decision rule that always
has a support that is “best” according to the various G°
(argmax, 4 G®(Py)). There are many such rules, as this
condition restricts only the support, not the actual decision
probabilities. Each has a different quasi-strictly proper scor-
ing rule, but they can all be derived from the same convex
function G(P) = maxpes G°(Ps).

Lemma 6.3 allows us to derive quasi-strictly proper scor-
ing rules for deterministic decision rules with two outcomes
using 8 = A and G® = h. For example, we can derive
quasi-strictly proper scoring rules for MAX (e.g. h(P;) =
PfT, mentioned previously, gives Othman and Sandholm’s
rule [16]), MIN (e.g. h(P;) = P?,), and even strange rules
like “probability farthest from 0.5” (h(P;) = (P;,t — 0.5)%).
We can take 8 C A to allow for decisions rules that only
allow certain actions (e.g. “choose whichever of actions 1
and 3 is more likely to succeed”). With more than two out-
comes it allows rules like the expected utility maximization
rule from Section 4. We can also apply this construction to
the randomized case. For example, we saw in Section 4 a
construction of a scoring rule that is strictly proper for the
decision rule D;(P) = P; v/, Pjv. Lemma 6.3 tells us
that a version of this rule that disregards some actions and
uses an appropriately modified scoring rule is quasi-strictly
proper. In particular, if @ C A is the set of actions con-
sidered then Lemma 6.3 can be applied with 8 = {a} and
G*(P) =%, PPr.

The proof of Lemma 6.3 actually proves something stronger
than quasi-strict properness. In particular, it shows that,
unless the support of D(Q) is a maximizer of max.cg G°(P.),
V(P,P) > V(P,Q). Thus, not only does the expert have a
strict incentive to report the true probabilities for the actions
the decision maker ends up randomizing over, she also has
a strict incentive to ensure this set is one that the decision
rule considers “optimal.”

One interesting observation about these scoring rules in
the deterministic case is that they can all be viewed as
strictly proper scoring rules when outcomes are exogenous.
For example taking h(P;) = P+ and D(P) = i gives the
scoring rule sT(P;) = 2P, T — Pf-r and s (P;) = fPfT,

which is a variant of the well known quadratic scoring rule
(which is strictly proper).

In fact, we can show that this is generally true for quasi-
strictly proper scoring rules derived according to Lemma 6.3
with a deterministic decision rule. When D is a determin-
istic decision rule, its support given P must be a singleton
action. Hence, 8 in Lemma 6.3 equals A . For each ele-
ment of 3 (i.e. each action i), we set G*(P;) = h(P;), where
h is strictly convex. Thus, the decision rule will take ac-
tion k where k € argmax;. 4 h(P;). We assume that the
decision rule breaks ties arbitrarily when there are more
than one actions that have the same highest value of h(F;).
We have G(P) = max;ea h(P;) = h(Py) and can derive a
quasi-strictly proper scoring rule S;,(P) according to ex-
pression (1) in Theorem 4.1. Clearly, for the chosen action
k, Sk,o(P) only depends on P,. We would like to consider
whether S ,(P) can be viewed as a strictly proper scoring
rule of P, assuming that action k is always chosen no mat-
ter how Py changes. Let ¢ = argmingh(p). ¢ is unique
because h is strictly convex. We construct a scoring rule
50(F) = Sk.o(QP) where QF is a probability matrix where

izﬁand@?:cfforallj;ék.
COROLLARY 6.1. s,(p) constructed above is strictly proper.

PrOOF. For all p, D(QP) = k, s0 so(p) = Sk,o(QF) =
hp) — W (P) - P+ hL(p). By Theorem 2.1 and the strict
convexity of h, s is strictly proper. [J

Thus, for deterministic decision rules, the quasi-strictly
proper scoring rules derived according to Lemma 6.3 are
strictly proper given a chosen action. As we will see in Sec-
tion 7.1, this is a potentially useful property if one of these
rules is used as a basis for a decision market.

7. DISCUSSION: DECISION MARKETS

Scoring rules are useful in their own right as a tool to elicit
information from a single expert, but collectively a group of
experts may provide better information. In this section, we
discuss some challenges and observations on using decision
markets to elicit information from multiple experts.

For a standard market scoring rule, using a strictly proper
scoring rule s, the market maintains a probability distribu-
tion over outcomes p. At any time, a trader can change this
to ¢, and in doing so accepts the following bet: if outcome o
occurs then the market pays her s,(q) — so(p) (which may be
negative). A trader who only participates once maximizes
her expected payoff by changing the market probability to
match her true beliefs. We can use the same approach for
decision markets. A decision market maintains a market
probability matrix P. Any trader can change this to @,
accepting the bet that if action 7 is taken and outcome o
occurs then she receives S; o(Q) — Si0(P). At the close of
the market, there is some final probability matrix F', and
the decision is made according to D(F).

However, as Othman and Sandholm [16] observed, traders’
incentives are not as perfectly aligned in a decision market,
even if S is a proper scoring rule for D. A trader’s pay-
off relying on D(F') points to two key issues. First, in or-
der to determine her expected utility for a report, a trader
needs to know what F' will be, which is not determined until
the market closes. One way to resolve this issue is to fol-
low Othman and Sandholm and consider the last trader in
the market, whose report is F' (or equivalently assume that



traders are myopic and all assume they are the last trader).
Second, in a standard market scoring rule, a trader’s ex-
pected payment to the market institution given beliefs ¢
is ¢ - s(p), which is independent of her report. Thus, she
chooses her report 7 to maximize ¢- s(7), and strict proper-
ness of s is sufficient. However, a myopic trader who re-
ports R in a decision market makes an expected payment
of 3, Di(R)Qi,05:,0(P) given beliefs Q. This is not inde-
pendeht of R. Thus, although properness of S means that
Q maximizes ; , Di(R)Qi,05i,0(R), unlike the simple mar-
ket scoring rule case, it does not follow that Q maximizes
Zi,g Di(R)Qi,o(Si,o(R) - Sim(P))'

Othman and Sandholm give the following example for the
two-outcome, two-action case under the MAX decision rule
with scoring rule S;,+(P) = 2P+ — P+, S;, 1. (P) = —P?+
and show that all scoring rules for MAX have similar ma-
nipulations. Suppose a trader believes the true probabilities
are (Q1,7,Q2,7) = (0.8,0.75), but the current market prob-
abilities are (0.8,0.3). If the trader reports her true belief,
her net expected payment is 0, but if she reports (0.8,0.81)
her expected payment is 0.15. In essence, she only gets paid
for correcting the value of P> 1 if she convinces the deci-
sion maker to choose decision 2. To make matters worse,
any later trader with similar beliefs is weakly indifferent
to correcting the market, so the market may get stuck at
these wrong probabilities. Furthermore, this manipulation
is “safe;” if action 1 is chosen in the end the trader’s pay-
ment is 0 and if action 2 is chosen her expected payment is
positive.

Clearly this is not a desirable outcome. Othman and
Sandholm propose to address this problem choosing a scor-
ing rule that minimizes, but does not eliminate, the incentive
for a trader to perform such a manipulation. In the remain-
der of this section we consider several other approaches.

7.1 Faith in Markets

Suppose that, rather than being myopic, a trader believes
the market will “get it right” in the end. That is, if her
beliefs are @, she believes that, regardless of her report F'
will eventually equal Q). Then she believes that the portion
of her payment to the market institution based on the cur-
rent market probabilities is D>, Di(Q)Qi,05%,0(P), which
is independent of her report. Thus she wants to optimize
> i.0 Di(@Q)Qi,05:,0(R) by selecting R. In this case, Si,o(R)
need not to be proper for D. In fact, we can replace S; ,(R)
with any standard proper scoring rule s(R;) and traders are
incentivized to report their true beliefs. Thus, if traders
believe in the market, the decision maker can simply use a
standard proper scoring rule!

Of course, as Othman and Sandholm’s example shows,
traders may have good reason to believe that the market will
not get it right. In particular, traders near the close of the
market may have an incentive to distort the probabilities.
Luckily, for deterministic decision rules, Corollary 6.1 shows
that the quasi-strictly proper scoring rules we derive are
in fact proper scoring rules in this sense! Thus by using
such a rule we can simultaneously provide myopic traders
an incentive for truthful reporting in many, though not all,
situations and provide traders with faith in the market an
incentive for truthful reporting.

7.2 Differing Beliefs

We saw that one potential way around Othman and Sand-

holm’s example is if some traders have a different belief
about the final market prediction F. Another possibility is
some traders have different beliefs about the true probability
matrix. For example, consider a trader arriving with beliefs
(0.79,0.74) and market probabilities (0.8,0.81). Depending
on her beliefs about F', the trader has an incentive to change
at least one of the probabilities to match her beliefs, so the
market will no longer be “stuck” at (0.8,0.81).

7.3 Randomized Decision Rules

The negative example involves a deterministic decision
rule. Potentially, randomized rules could have better in-
centive properties. However, simply adding randomness is
not a panacea, as the following example shows.

Suppose A = {1,2} and O = {T,L}. In section 4,
we saw that the scoring rule S;+ = Zj 2P; T — PJ%T and
Si,1 = Zj ij%-r is strictly proper for the decision rule
D;(P) = P, 7/(Pi,T + P>,7). Suppose the current market
probabilities are (0.8,0.7) and a myopic trader arrives with
the belief (0.8,0.7). Ideally, we would like her to not make
a prediction as the current market probabilities match her
belief. However, it turns out to be optimal for her to report
(0.75,0.75). More generally, we have the following lemma.

LEMMA T7.1. Suppose A = {1,2}, O = {T,L1}, Di(P) =
P, 7/(Pim+Po7), and S; =32, 2P; 7 — Pir and S;,1 =
Zj —Pﬁ-r. Suppose the current market probabilities are P
and a myopic trader arrives with belief P. The trader’s opti-
mal report is Q;, 7 = (P17 + P2, 1)/2. Furthermore, suppose
the current market probabilities are QQ when the trader ar-
rives. Then her optimal report is still Q.

The proof is straightforward calculus and is therefore omit-
ted. In many ways this example is worse than Othman and
Sandholm’s. Even if the market reaches the correct proba-
bilities, the next trader to arrive will change them to values
that give the decision maker no useful information. Fur-
thermore, these uninformative values are stable. While this
feature makes this particular randomized decision rule and
scoring rule pair a poor choice for use in a decision market,
the more general question is open.

OPEN PROBLEM 2. Is there a randomized decision rule
and corresponding scoring rule with good incentive properties
for decision markets?

7.4 Increasing Market Maker Loss

Another option is to consider a more drastic change to
the design of the market. Othman and Sandholm’s example
shows that a decision market can get “stuck” with a predic-
tion like (0.8,0.81) that no rational agent has an incentive
to fix, because of the form of the expected payment of a my-
opic trader: >, | Di(R)Qi,0(Si,0(R) — Si,o(P)). Suppose we
gave each trader only the side of the bet based on her predic-
tion (i.e. >,  Di(R)Qi,0(Si,0(})) assuming she is myopic).
Then if S is proper she would have an incentive to report
her true probability rather than leaving the market at the
current probability.

This approach loses the shared nature of market scoring
rules and may create a large loss for the market maker. In
particular, using a market scoring rule, if the initial predic-
tion is P° and traders update this as P!, ..., P/, the market
maker’s total payments to traders when action ¢ is chosen



and outcome o occurs are S;o(P*) — Sio(P%), Sio(P?) —
Sio(P), ..., Si0(PT)=8; o(PT71), for a total of S; o(Pf)—
Si,o(P%). If traders’ payments are changed to be based only
on their own predictions, this property disappears.

While paying each trader based solely on her own predic-
tion can be expensive, if this is done occasionally the loss
may be acceptable. For example, once per hour or once per
day the market maker could select a random trader to whom
to make such an offer. The loss of the market maker is linear
in the number of such offers made.

8. CONCLUSION

We examined the problem of information elicitation for
decision making. One agent, a decision maker, wants to
choose a distribution over a set of actions based on the prob-
ability distribution over outcomes for each action. Another
agent, an expert, has a belief about these probabilities that
the decision maker wants to elicit. Such elicitation is done
through scoring rules. Othman and Sandholm [16] studied
this problem for deterministic decision rules, with many of
their results focusing on the MAX decision rule in partic-
ular. Our main result significantly generalized their results
by providing a complete characterization of (strictly) proper
scoring rules for arbitrary decision rules.

This characterization allowed us to give a sufficient condi-
tion for a decision rule to have a strictly proper scoring rule
and a sufficient condition for no strictly proper scoring rule
to exist. As these sufficient conditions do not cover all deci-
sion rules, an open problem remains. We also showed how
our characterization allows us to derive quasi-strictly proper
scoring rules in a number of cases where strictly proper scor-
ing rules do not exist.

Finally, we discussed how the elicitation problem becomes
more complicated when there are multiple experts, an obser-
vation also made by Othman and Sandholm [16]. A natural
approach is to use a proper scoring rule for a decision rule
to make a decision market, in the same way proper scor-
ing rules are used to make prediction markets. However,
this introduces two main problems. First, since only one
decision is made in the end, an agent trading in the mar-
ket has to base her decisions on beliefs about what the final
market probabilities would be, a strategic problem with no
parallel in prediction markets. Second, since no individual
trader controls the final decision, scoring rules that encour-
age truthful revelation when they do have control no longer
have the safe effect. We examined several ways this problem
might be tackled in practice.
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