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Abstract

Recently, there has been an increasing interest in wire-
less broadcast systems as a means to enable scalable con-
tent delivery to large numbers of mobile users. However,
gracefully providing efficient reconciliation of different
versions of a file over such broadcast channels still re-
mains a challenge. Such systems often lack a feedback
channel and consequently updates cannot be easily tai-
lored to a specific user. Moreover, given the potentially
large number of possible versions of a file, it is impracti-
cal to send a tailored update for each particular user.

In this paper we consider the problem of efficiently
updating files in such wireless broadcast channels. To
this extent, we present DeltaCast, a system that combines
hierarchical hashes and erasure codes to minimise the
amount of battery power and the amount of time needed
to synchronise each mobile device. Based on our exper-
imental results, we show that DeltaCast is able to effi-
ciently identify the missing portions of a file and quickly
updated each client.

1 Introduction

Wireless communication systems are one of the fastest
growing areas of communication technology, with new
devices and standards constantly emerging, developed
to transmit digital signals over both short and long dis-
tances. There are two main delivery approaches for wire-
less data services: point-to-point and point-to-multipoint
or broadcast systems [1]. Point-to-point systems employ
a basic client-server model, where the server is respon-
sible for processing a query and returning the result to
the user via a dedicated point-to-point channel. In broad-
casting or DataCasting systems, on the other hand, the
server actively pushes data to the users in an open loop
fashion. The server determines the data to be transmitted
and schedules the broadcast. A user listens to the broad-
cast channel to retrieve data without any signalling to the

server and thus is responsible for his own query process-
ing.

Point-to-point access is particularly suitable for light
loaded systems where contention for wireless resources
and server processing is not severe. As the number of
users increases, however the overall system performance
can quickly degrade. Compared with point-to-point ac-
cess, broadcasting is a very attractive alternative [2][3].
It allows simultaneous access by an arbitrary number of
mobile clients without causing any inter-receiver inter-
ference and thus allows efficient usage of the scarce wire-
less bandwidth and server resources.

Wireless data broadcast services have been avail-
able as commercial products for many years (e.g., Star-
Band [4] and Hughes Network [5]). However, re-
cently there has been a particular push for Wireless
DataCasting systems both in Europe and in the US.
Both 3gpp as well as 3gpp2 are developing plans to
provide multicast/broadcast support over UMTS/CDMA
networks [6] [7]. Moreover, systems such as Digital
Audio Broadcast (DAB) and Digital Video Broadcast
(DVB) standards in Europe [8] and ATSC in the US
which have been traditionally used for the transmission
of digital radio and television, are also capable of pro-
viding data services, a feature that is anticipated to expe-
rience significant utilisation. One of the key motivators
for the rapid growth of digital broadcasting and in partic-
ular, data services over DAB and DVB, is that cell phone
manufacturers are announcing plans to trial new devices
incorporating built-in DAB/DVB receivers over the next
year [9]. This will enable a wide range of DataCasting
services into mobile devices. Another example of Data-
Casting services is the smart personal objects technology
(SPOT) by Microsoft [10], which further highlights the
industrial interest in and feasibility of utilising broadcast
for wireless data services. Using such DataCasting ser-
vices, mobile devices can continuously receive timely in-
formation such as maps, software, news, weather, traffic
information, etc.



In this paper, we focus on wireless data broadcasting
services and mechanisms for efficiently reconciling con-
tent on distributed receiving devices to the latest avail-
able version. Reconciliation of data files between two
computers is a well studied problem with efficient solu-
tions such as rsync [11] utilised on a wide scale in the
Internet. Such solutions, however, rely on two-way com-
munication channels to identify the appropriate delta in-
formation between two files and are best suited for point-
to-point reconciliation. In DataCasting systems, mobile
users with intermittent coverage or settings may synchro-
nise at arbitrary times, thus, generating a potentially very
large number of different versions. DataCasting sys-
tems often lack a feedback channel, which prevents the
server from gathering information about the user’s file
and therefore provide a tailored delta update. Even if
the server had knowledge of which versions each client
has, it is difficult to tailor the broadcast channel to a spe-
cific user without delaying other users with different ver-
sions. All these conditions make it hard to construct a
system that gracefully provides differential updates to a
large number of different users in a multicast/broadcast
system.

One possible solution is to make sure that the users up-
date their own data to the most recent version every time
by simply transmitting the latest version of the file. It
is generally expected, however, that changes to content
versions of a file on average are likely to be incremen-
tally small, hence the motivation for widespread adop-
tion of protocols like rsync, providing a good deal of re-
dundancy between current and previous data. By forcing
the user to repeatedly download the same portions of the
file, inefficient battery consumption and an increase in
download latency can be experienced as a result.

Up until recently, fixed power devices have been the
most common DataCasting service receivers, e.g. home
radios and computers, or vehicular based receivers. In
the near future however it is anticipated that there will be
a proliferation of small, handheld, mobile receivers such
as cellphones and PDAs capable of receiving DataCast-
ing services. Access efficiency and energy conservation
therefore are two critical issues for users in a wireless
data broadcast system. Access efficiency refers to max-
imising the speed with which data is downloaded, while
energy conservation minimises the mobile client’s power
consumption when accessing the data of interest.

In this paper we present DeltaCast, a new mechanism
that provides efficient file reconciliation in DataCasting
systems. DeltaCast combines decomposable hierarchical
hashing schemes with low-cost random linear codes to
enable efficient file synchronisation among an unlimited
number of receivers. As we will see later in the paper,
DeltaCast has the ability to update different receivers’
versions simultaneously through the use of master en-

coded deltas that can be used by any receiver at any point
in time.

The rest of the paper is structured as follows. Section 2
discusses the design of DeltaCast in response to the spe-
cific challenges of the environment. We discuss the use
of decomposable hashes and erasure codes to minimise
the amount of data downloaded by each receiver. Sec-
tion 3 we outline the performance considerations of the
system, and our approach toward measuring the bene-
fits and trade-offs of different file synchronisation tech-
niques. We present results from our experiments with
the DeltaCast system, comparing the optimised Delta-
Cast against alternative approaches, and demonstrating
that it is a very efficient approach to reconciling data in
broadcast systems. In section 4 we discuss related work,
and we conclude the paper in section 5.

2 DeltaCast Design

DeltaCast is an efficient file synchronisation protocol for
one-way, receiver driven incremental file updating. A
typical use of DeltaCast would be in the radio broadcast
environment, where one-to-many DataCasting can pro-
vide a highly effective means to reach unlimited numbers
of receivers without requiring any increase in network
capacity to scale the service to larger numbers. Delta-
cast in fact is not just useful within the wireless broad-
cast environment, we expect it to provide similar ben-
efits in terrestrial point-to-multipoint environments such
as IP Multicast, Content Distribution Networks and Peer-
to-peer overlay systems.

A limitation of such radio broadcast systems, how-
ever is that data can only be delivered asymmetrically.
Typically, receiving devices do not have any return chan-
nel to the source, and therefore the transmission must
be uni-directional. Typical applications in this environ-
ment might be providing downloads of local information
to mobile devices, maps, software, video, etc. An ad-
vantage of DataCasting is that multiple channels can be
used to transmit content in parallel, and the scalability of
the system is only constrained by the amount of content
that can fit in the available spectrum bandwidth. Data
content is typically carouseled continuously to enable re-
ceivers to ‘tune-in’ at any stage to the relevant channel
and receive content. Since this is a broadcast only envi-
ronment, low layer errors are handled through strong re-
dundant Forward Error Correction (FEC) applied to the
source signal. In this paper we will assume that the re-
ceiver’s application does not experience errors due to sig-
nal interference and that any missing data is due to lack
of application level synchronisation.

Due to the heterogeneity of the receiver group and the
wireless environment, it is likely that a) there will be in-
termittent connectivity for individual receivers (e.g. loss
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of signal, power-down overnight etc.) and b) that differ-
ent receivers start the synchronisation process at differ-
ent points in time, resulting in a high variation in most
recently synchronised versions of data distributed across
the whole receiver set. This variability is compounded
by the fact that the source has no knowledge of the exact
distribution of data versions. In addition to which, many
devices utilising such a service are likely to be small, mo-
bile and consequently power constrained. The solution
must take all these considerations into account.

2.1 Problem Definition

The setup for the file synchronisation problem is as fol-
lows. We have a current file fnew with size F , and a
set of N outdated file versions fold,j , for j ∈ 1, .., N
over some alphabet

∑

, and two types of machines C (the
clients) and S (the server) connected through a broadcast
data channel and no feedback link. We assume that ma-
chines in C have copies in fold,j and S only has a copy of
fnew, and the goal is to design a protocol that results in
C holding a copy of fnew, while minimising the amount
of time and the resources consumed at the clients.

2.2 General System Overview

The Deltacast system comprises two distinct phases; the
detection of changes between old and new content and
the update of such changes. During the detection phase,
receivers determine what portions of the local file match
the target updated version at the server and can be re-
utilised. Note that the receiver may not match any por-
tion of the local file, in which case it requires to down-
load the full file. Unmatched portions are discarded,
while matched portions are kept in a temporary file. Dur-
ing the update phase, each receiver downloads enough
data to fill in the gaps left by the un-matched portions.

The server receives no feedback at all from the re-
ceiver group and sends out a constant stream of hashes
and data. Hashes are used during the detection phase,
while data is used during the update phase. During the
detection and the update phase, erasure encoding is used.
Such erasure codes ensure that any information received
by any receiver is useful.

To identify the unmatched portions with a high level
of granularity, the server does a multi-level hierarchical
division of the target file into blocks of a fixed size. The
size of a block at each hierarchy level being half the size
of the preceding level, i.e. decreasing powers of 2. For
every block of data the server then generates a small,
unique hash. When all the hashes at a given level have
been generated, the server uses such hashes to create era-
sure hashes for a particular level. There is a potentially
very large number of unique erasure hashes that can be
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Figure 1: DeltaCast Architecture.

produced, which are published over the broadcast chan-
nel (normally erasure hashes for each level are sent over
different channels). The same process is then repeated at
each level of the hierarchy, producing a constant stream
of erasure hashes at each level of the hierarchy. At the
bottom level of the hierarchy, the server also produces
encoded data blocks, which are broadcast in a separate
channel and are used by the receivers to fill in the un-
matched portions of their local files. Figure 1 shows the
overall architecture of the DeltaCast system.

Receivers in the detection phase download enough
hashes at each hierarchy level to determine the un-
matched portions of the local file. To this extent, re-
ceivers first tune in to the top-level hash channel and
download a complete set of hashes. Typically the top-
level hashes are sent un-encoded since no additional ben-
efit is achieved by encoding them. The receivers know
the hashing algorithm used by the server, and thus, can
generate a local database of hierarchical hashes corre-
sponding to the local file. By comparing each down-
loaded hash against the local database, the receiver iden-
tifies the high level areas of the file that are matched. For
each area of the file where the hash comparison failed,
the receiver downloads enough erasure hashes from the
subsequent level (normally, the number of erasure hashes
required is twice the number of un-matched hashes at the
previous level). Such erasure hashes are then combined
with the hashes of the matched blocks at that particular
level in order to reconstruct the missing hashes for the
un-matched blocks. Since the hashes at each subsequent
level correspond to a smaller area of the content, the de-
tection of changes becomes more fine-grained each time.

Once the receiver has either reached the lowest level
of hashes, or has identified that there is no further bene-
fit to detecting finer-grained changes by reconstructing a
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further sub-level of hashes, it enters the update phase. In
the update phase, for every unmatched hash at the lowest
level, the receiver downloads a corresponding number of
erasure data blocks. Given the erasure blocks, and the
set of matched content blocks, the receiver can then re-
construct the latest version of the content as published by
the server. The final file is verified with a strong signa-
ture provided by the server.

2.3 The Details

DeltaCast enables receivers to efficiently identify
changes in their own content and download only as much
data as required to synchronise their version with the
source. The most common techniques for providing
identifying matched portions between a source and re-
ceiver involve content hashing over partial portions of
a file. Due to the high probability of data similarity in
incremental version updates, forwarding block hashes,
can potentially save a significant amount of bandwidth
and time through identifying the precise portions of the
old version which need updating, rather than forwarding
the whole data file. However, identifying the most ef-
ficient block size for which the source sends hashes to
the receiver, is challenging and greatly varies depending
upon the nature of the content changes. Utilising small
block sizes increases the number of blocks and conse-
quently the amount of hashes transmitted. In contrast,
utilising large block sizes decreases the amount of hash
data transmitted, but lowers the precision of each hash,
consequently reducing the ability to detect fine-grained
data changes. In this manner there is a distinct trade-off
between the granularity of the hashes and the amount of
data transmitted, the optimal setting of which can only
be determined retrospectively by comparing the two ver-
sions.

One way to solve this problem is to use a hierarchi-
cal hashing scheme that gradually decreases the block
sizes to narrow down the unmatched portions. How-
ever, hierarchical hashing schemes often rely on mul-
tiple rounds of communication between the server and
the client, sending only the appropriate hashes at each
hierarchy level. Such multi-round protocols cannot be
implemented in open-loop DataCasting systems. More-
over, since the server does not know which versions are
currently held by the receivers, it needs to broadcast all
hashes for each block at every hierarchy level. This
wastes precious bandwidth resources at the broadcast
channel but, even more significantly, increases the av-
erage time for a user to update its file since many hashes
in the carousel will correspond to already matched file
portions.

The DeltaCast approach is to utilise a hierarchical
hashing scheme combined with highly efficient erasure

coding and decomposable hashes in order to efficiently
reconcile different file versions at multiple receivers si-
multaneously.

The approach is as follows:

1. The source performs a hierarchical division of the
file into n different layers i ∈ 1, .., n, with each
layer having a different block size bmax, ..., bmin,
where bmax is the block size at the top layer i = 1,
and bmin is the block size at the lowest layer i = n.
In this paper we assume that the block size is halved
at each level, i.e. bi−1 = bi ∗ 2. For each block
at a given level, the server calculates a block hash
h(b), which is of size H bits. The only constraint
on block sizes is that bmin > H .

2. For the first level of the hierarchy, the server trans-
mits the top-level hashes continuously. For each
subsequent level of the hierarchy, the server calcu-
lates a large number of erasure hashes based on the
block hashes at that level. For a given level, erasure
hashes are calculated as a random linear combina-
tion of the hashes at that particular level and have
the property that they can be used in place of any
hash. The total number of possible different erasure
hashes is very large. Erasure hashes for each level
are continuously transmitted in a separate channel.

3. One extra channel is included to forward the data
content. Data content is not sent in its original form
but as erasure blocks of the original data.

The reconstruction at the receiver proceeds as follows:

1. Let F be the size of the file at the server. The
receiver first downloads F/bmax top level hashes
and coarsely identifies the matching blocks. To do
this, it checks the values across the whole file using
a rolling block window and marks any unchanged
data blocks. The set of blocks where the hashes do
not coincide are marked as unmatched. The size of
that set at level i is represented by u(i).

2. For each level i > 1 of hash values, the receiver
downloads u(i − 1) ∗ 2 erasure hashes in order
to reconstruct the correct set of hashes at level i.
As we will see later in this section, we can halve
the amount of erasure hashes downloaded at level
i using decomposable homomorphic hashes. Such
hashing functions hold the property that h(a) =
h(b) + h(c) where a is the top level block, and b
and c are the sub-level blocks corresponding to the
top-level block a. This property enables us to re-
construct all hashes at level i by downloading only
u(i − 1) erasure hashes.
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3. The same process is repeated at each level of the
hierarchy. After decoding the hashes at level n and
identifying the number of failing blocks u(n), the
receiver downloads u(n) encoded data blocks from
the data content channel. After proper decoding,
the receiver is able to reconstruct the file and thus
synchronise it’s local version with the source file.

Figure 2 illustrates the encoding approach at the
source, highlighting the hash relationship between lev-
els, and the decreasing size of the blocks.

2.4 Hash Accuracy

One important parameter in the DeltaCast system is de-
termining the size of the hash H . Provided that the prob-
ability distribution of hash values is perfectly random,
the statistical accuracy of a hash of H bits can be ex-
pressed as a function of the comparison file at the re-
ceiver, fold, of length m and the block size b on which
the hash is based. Suppose that S initially sends a set
of H-bit hashes to C, and that C uses these hashes to
check for matches in fold. As the comparison block win-
dow at the receiver is rolled across every byte position
in the file, there are m − b + 1 possible match positions
in fold that need to be checked, and for each position
there is a certain probability of a false match. Other
hashes based on fingerprints [26] could also be used to
reduce the complexity of matching blocks over the file,
however since these hashes use variable size blocks, try-
ing to maintain a clean hierarchical structure becomes
more complex and additional signalling would be re-
quired from the source. Since the probability of a certain
match occurring at any single position in the file is ex-
pressed as 1/2H , the probability of any particular match
not occurring (i.e. no collision) anywhere in the file is
(1 − 1/2H)m−b+1. Thus we can say that the chance of
a false match is 1 − (1 − 1/2H)m−b+1. For an even
chance of not getting a false match, the required hash
size can be approximated by lg(m) + log(m/b), while
lg(m)+ lg(m/b)+ d bits are needed to get a probability
less than 1/2d of having a false match between files.

For every file downloaded, the server also sends a 16-
byte MD5 hash of the entire content that allows the client
to check the correctness of the final version. Thus, in the
unlikely event that collisions occur due to weak block-
level hashes, the client can then download the content
again.

2.5 Erasure Hashes

To be able to quickly identify the missing data por-
tions, receivers need to download the correct set of block
hashes as fast as possible. Different receivers may be
missing different data blocks, however and therefore

need a different set of hashes. Thus, a common approach
is for a server to continuously send the full set of hashes
at each level to ensure that all receivers can synchronise
their file regardless of what version they may have. If
the server knew which receivers where missing what por-
tions, it could devise an more efficient protocol where
certain hashes were to be transmitted more frequently
than others. However, without any feedback channel, the
server has no choice but to send all hashes. As a result,
clients must wait for the specific hash to arrive in the
carousel, potentially wasting a lot of time.

DeltaCast solves this problem by encoding the origi-
nal hashes to produce erasure hashes that can be used by
any receiver in place of any missing hash at a given level
(a similar thing happens for the data content channel). To
this extent, we have implemented a rateless erasure en-
coder/decoder that generates a set of random linear era-
sure blocks. Each erasure block is produced by selecting
a unique set of co-efficients, applying the co-efficients
across the original source blocks and then calculating the
sum of all the blocks over a finite field(e.g. GF 216).
As long as the co-efficients are generated randomly over
a sufficiently large field, the probability of generating a
non-innovative code becomes insignificantly small.

Such codes hold the property that for a system of n
source blocks, the receiver only needs to obtain any com-
bination of n erasure or original data blocks, where the
blocks are linearly independent, in order to reconstruct
the original source data. For the receiver to be able to de-
code the erasure blocks, the encoded data is also tagged
with the set of random co-efficients that were used to
generate the linear combination. The co-efficients can be
explicitly broadcast with the encoded block, although a
more efficient approach would be to use a seeded pseudo-
random generator, in which case only the seed value and
the index would be required. To improve the decoding
time, one can also use well-known sparse encoding tech-
niques which require downloading some extra data but
significantly reduce the overall decoding time [36].

2.6 Decomposable Hashes

Decomposable hashes permit receivers to download half
the number of erasure hashes at each level. The idea
of using decomposable hashes is that if we have already
transmitted a hash value for a parent block at a given hi-
erarchy level, then for certain types of hash function we
could compute a child hash at the next hierarchy level
from the top-level hash and one extra child hash. In prac-
tise though, designing appropriate hash functions to im-
plement this is nontrivial.

Assume that a top-level block is created out of bytes
[l, r], and the corresponding children blocks are [l, m]
and [m, r]. We say that a hash function is decompos-
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Figure 2: DeltaCast hashing scheme. Two levels.

able if we can efficiently compute h(f [m + 1, r]) from
the values h(f [l, r]), h(f [l, m]), r − l, and r − m − 1,
and also h(f [l, m]) from h(f [l, r]), h(f [m+1, r]), r− l,
and m − l.

A decomposable hash function allows us to signifi-
cantly save on the cost of delivering hashes for identi-
fying matching data. Since receivers already have a hash
for the parent block, they only need to receive one ad-
ditional hash per pair of sibling blocks, the hash for the
other sibling can then be computed from these two. Util-
ising decomposable hashes is particularly efficient in the
deltacast system since erasure hashes can be produced
in the same way out of decomposable hashes. In fact,
decomposable hashes can be used as input to the era-
sure decoding algorithm at the next level of the hierarchy
where, given the parent hash and an additional erasure
block, both of the next level hashes can be reconstructed.
Decomposable parent hashes can be interpreted as sim-
ple erasure codes created as a linear combination of the
two child block hashes.

Decomposable hashes can be implemented using Ho-
momorphic hashing functions such as the ones described
in [12][13][14] and [15] where h(a + b) = h(a) + h(b)
or h(a ∗ b) = h(a) ∗ h(b), a and b being two different
blocks. To make use of decomposable hashes in Delta-
Cast we ensure that h(f [l, r]) for a block at a given level
is equal to h(f [l, m])+h(f [m, r]), where h(f [l, m]) and
h(f [m, r]) are the hashes for the corresponding sibling
blocks at the next hierarchy level. To this extent, we
define h(b1, ...bn) =

∑v=n

v=1
gv

· bn, where bi is an in-
dividual block, (b1, ..., bn) is the parent block made of
the concatenation of blocks 1, .., n, and g is a generator
number of a given Galois field. A more detailed study of
such functions is described in [15].

3 Experimental Results

Next we consider the performance of the algorithm. We
evaluate the improvement in data download requirements
through utilising hierarchical hashing versus single-layer
hashing, and additionally consider the performance from
a temporal perspective, comparing the time to synchro-
nise content using Deltacast against a full content down-
load as well as the non-encoded case.

3.1 Performance Considerations

Within a fixed wire environment such as the Internet,
the key optimisation metric for data download perfor-
mance is minimising the overall download latency from
initialisation to completion of the data transfer from
source to receiver. Factors which typically contribute to
this latency are protocol communication overheads, e.g.
for multi-round conversations between senders and re-
ceivers, the delay for which can vary considerably de-
pending on the link. In the broadcast radio environment,
latency is typically tightly controlled and bounded by the
physical propagation speed of the signal and the channel
capacity. Since the environment can only support one-
way broadcast communication, we do not consider any
interactive protocol communication overhead. Instead,
we must consider the amount of data that is transmitted in
order to synchronise the local receiver data version with
that of the server. We consider the average time for which
a receiver may have to wait to receive sufficient data, and
in addition we must consider the overheads of erasure
decoding introduced by the Deltacast system. The latter
consideration is particularly important in drawing a fair
comparison since although the decoding may be handled
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offline, it is still power intensive, and whilst we do not
measure precise energy consumption values, we include
it as a latency factor in our experiments.

3.1.1 Power Efficiency

Minimising receiver power consumption is a responsi-
bility for both the receiver device and the protocol de-
signer. The process of tuning a radio to a channel and
demodulating data being transmitted consumes energy.
Attempting to minimise the frequency with which a re-
ceiver must demodulate data in order to synchronise it-
self with the transmission from a source is therefore cru-
cial. By utilising erasure coding, Deltacast ensures that
any data the receiver may demodulate will be useful.
DeltaCast leaves a certain amount of intelligent interpre-
tation up to the receiver by providing it with multiple en-
coded channels from which to select and download data
as required. There is no passive listening required while
certain data segments rotate through the carousel since
any erasure block can be used as data. There is a trade-
off in utilising erasure coding in terms of the decoding
requirements and consequently additional power is con-
sumed by the device in the process of decoding erasure
blocks, however we maintain that there are many opti-
misations that can be applied to minimise the impact of
the decoding complexity such as using sparse matrices,
or dividing the source data into smaller files. The bene-
fits of utilising erasure codes therefore greatly outweigh
the processing disadvantages, and we demonstrate that
the latency overhead of decoding is much lower than the
download latency of unencoded data transmission.

3.1.2 Broadcast Channel Capacity

The Datacasting environment is bandwidth constrained
due to the finite limitation of regulated wireless spectrum
compared to the diversity of content that users might like
to see. However, there is provision for data transmission,
and there a large variety of applications that are antici-
pated for use within the environment. Channels are typ-
ically assigned in multiples of 64Kbit/s due to the tight
correlation with traditional audio and video transmission.
Wide-band popular applications might receive more than
one channel, enabling faster or more frequent data up-
dates, however typically it is assumed that each channel
would be utilised by one data carousel. In our experi-
ments therefore we consider the usable throughput of the
channel to approximate close to 50kbit/s, leaving an ad-
ditional 14Kbit/s to account for protocol headers and any
additional signalling information that may be required by
the source. Within the channel we further subdivide the
data into sub-channels. We do not draw a distinction be-
tween physical division of the spectrum or logical, e.g.

IP level multicast addressing, since this is highly tech-
nology dependent, however we assume that channels can
be arbitrarily divided into smaller units.

3.1.3 Latency

Minimising data transmission bandwidth through effi-
cient encoding is highly desirable, however it is also im-
portant to consider the delays imposed by the system on
a user device. Certain types of information have more
real-time constraints than others, e.g. stock quotes, or
news sites, and we therefore also address the perfor-
mance of the system in terms of data synchronisation
latency. DeltaCast performs extremely favourably in this
respect since the utilisation of erasure codes does not im-
pose any download delays from the data carousel to the
receiver, and the actual data that is required is in fact min-
imal in comparison to any other schemes we have consid-
ered. In the following section therefore we also address
the latency performance of the system, and present some
quantifiable results to outline the trade-off in decoding
latency versus channel download latency.

3.2 Experimental Setup

For analysing the performance of Deltacast, we utilised
a random subset of a collection of ten thousand web
pages available at [16]. The collection comprises mul-
tiple text/html pages which were crawled repeatedly ev-
ery night for several weeks during Fall 2001. Pages were
selected at random from two massive web crawls of hun-
dreds of millions of pages and are thus a fairly reasonable
random sample of the web. We consider such a data set
to be representative of a content subscription based chan-
nel such as a news, sports or weather information stream
which would likely be composed of textual information,
images and meta-data such as HTML formatting tags.

For our experiments we divided collections of pages
into content channels, each one comprising one hundred
sites. In a commercial DataCasting environment, such
channels might be tailored to specific types of informa-
tion, e.g. sports, news, etc. We assumed that distributed
across the user group is a wide range of versions of the
file, some recent, and some non-existent. Whenever a
user wants to sync its version to the source, it updates
all the pages within a content channel. For each con-
tent channel we have four different instances in time: a
base set and three updated versions crawled 2, 20, and 72
days later, respectively. Our experiments always consid-
ered the cost of updating an earlier version to one of the
more recent versions.

We also measured the impact of different types of con-
tent such as source code distributions and binary files.
We consider that these content types are representative of
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alternative applications such as geographical map infor-
mation and software updates for mobile devices. We ran
experiments for multiple content channels and averaged
the performance over all content channels, the results of
which are presented in this section.

To evaluate the performance of DeltaCast we will first
study what is the impact of the number of hash lev-
els on the overall performance of the system for dif-
ferent types of file. Too few hash levels may not pro-
vide enough granularity while too many hash levels may
waste precious bandwidth to download unnecessarily de-
tailed hashes. Next, we compare the performance of an
optimised DeltaCast system with that of a flat hash sys-
tem that only transmits one level of hashes. We then
study the impact of using DeltaCast to concurrently up-
date users with different file versions. Finally, we analyse
the latency benefits of using DeltaCast to update users
that join the data carousel at random times and determine
the overhead of the decoding times imposed by using en-
coded data.

3.3 Number of Hierarchy Levels

We next evaluate the performance trade-offs of utilising
multiple hash layers in DeltaCast. To this extent we com-
pared the performance of DeltaCast for multiple hash
levels when reconciling a content channel of 1.7 MBytes
of source data incorporating 100 Web pages. We also
measured the performance on a binary file of size 1.9
MBytes. The motivation being that as we will see next,
the optimal number of hashing hierarchies depends upon
the nature of the content.

We consider a DeltaCast system that uses a 6 Byte
hash size, and a hash-hierarchy that uses a top-level
block size of 1024 Bytes, and a bottom-level block size
of 8 Bytes. Using such hash sizes we guarantee a proba-
bility of collision smaller than 220. (we did not observe
any collisions on our data set due to our use of 7-byte
hashes). Each level of the hierarchy has a block size that
is half the size of the previous level. For each hash-level
we use decomposable hashes. We note that although util-
ising blocks as small as 8 bytes on html content does pro-
vide improvements in bandwidth efficiency, the decoding
overhead for such block sizes is very large making the
use of such small block sizes infeasible. We therefore
focus our attention more on 16 Byte blocks and higher.

Figure 3 illustrates the impact of the number of hi-
erarchy levels on the amount of data required to recon-
cile a set of Web pages. For each combination of hi-
erarchy levels we have illustrated the division of hash
data and content data out of the total data downloaded.
We can clearly see that in utilising a smaller number
of hierarchy levels, the amount of data required is quite
high since hashes are not able to efficiently identify file
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Figure 3: DeltaCast for different Hash Hierarchy Levels - Web
content. Both the new and the outdated content approximates
to 1.7 MBytes worth of data each. This figure demonstrates
that utilising finer-grained hashing (i.e. a greater number of
hierarchy levels) is particularly efficient in this context.

changes. As the number of hierarchy levels increases, the
amount of hashes downloaded increases, but the over-
all total data required decreases significantly. The rea-
son for this is that deeper hashes provide a finer level
of granularity providing greater clarification of the ex-
act file changes enabling a higher degree of redundancy
detection between versions and consequently requiring a
smaller amount of actual data downloaded.

From Figure 3 we can see that DeltaCast receivers can
use up to eight hierarchy levels and still enjoy a reduc-
tion in the total data download. The reason for this is
that changes in Web pages are typically on the order of
several KBytes, thus, one can use smaller lower block
sizes and still find duplicate data portions. Obviously,
the number of hierarchy levels cannot go below the point
where the block size equals the hash size since the over-
head of downloading hashes would be prohibitive. In
this example, for an eight-level hierarchy, DeltaCast re-
ceivers only need to download about 240 KBytes of data
and hashes, which roughly corresponds to 11.4% of the
file.

For a file that statistically incorporates changes in
larger block sizes such as appending data to the start of
a file, or adding a binary module to a software distribu-
tion, utilising smaller hash hierarchies will not provide
any finer granularity in change detection thereby not re-
ducing the amount of final data blocks downloaded. Ap-
plying unnecessary levels of hierarchy in this manner ac-
tually increases the bandwidth overhead. To better un-
derstand the variable impact of the number of hierarchies
based on the content type, figure 4 illustrates the recon-
ciliation of two different versions of a binary file, where
the difference in the file lengths was on the order of 135
KBytes. From this Figure we can see that using too many
hierarchy levels wastes precious bandwidth since hashes
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Figure 4: DeltaCast for different Hash Hierarchy Levels - Bi-
nary content. Both the new and the outdated content approx-
imates to 2 MBytes worth of data each. This figure demon-
strates that in this context (binary content with larger block size
changes than HTML data) utilising finer-grained hashing (i.e. a
greater number of hierarchy levels) does not provide any addi-
tional benefit below an original data block length of 64 Bytes.

are unnecessarily downloaded, providing no additional
help in identifying missing portions. The optimal level of
the hierarchy in this example is around five levels, which
is quite different from the case of Web content. Ideally
our system should attempt to make some intelligent de-
cision about the optimal number of hashing hierarchies
to apply.

To ensure that nodes do not download an unnecessary
amount of hashes, DeltaCast servers could use a simple
rule that limits the number of hierarchy levels depending
on the content type, thus, allowing more levels for con-
tent that would be expected to incorporate finer changes,
and less levels for content with less fine grained changes
and lower intra-file redundancy such as with binary data.
Another way to tackle this problem is to allow the Delta-
Cast receivers to dynamically choose the number of hier-
archy levels that they want to use and halt the hierarchi-
cal detection process when needed. Receivers constantly
monitor the new amount of changes detected with each
new hash hierarchy. When this value goes below a cer-
tain threshold, receivers stop downloading further hash
levels and begin downloading the missing data blocks.
Such a scheme adapts well to different types of content
but also to different types of users with multiple file ver-
sions. Each user with a different version will dynami-
cally pick the right hierarchy level that best matches its
level of changes. This receiver-driven adaptive approach
also provides an efficient way to limit the overhead of
deltacast when no redundancy exists between the local
and the published content. For instance, in the worst
case where no redundancy exists, the receiver would only
download 2 levels of hashes in order to identify the lack
of usable content and before switching to the simple file
download case, which in the example in figure 3 would
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Figure 5: The Single-Layer hashing approach with Different
Block Sizes.The figure illustrates the trade-off in hash accu-
racy versus amount of data downloaded. For comparison, we
include the performance of deltacast, however since the algo-
rithm uses hierarchical blocksize hashing in each round we il-
lustrate a constant value for data downloaded.

result in an overhead of just 0.8%.

3.4 Flat Hash System

In this section we compare DeltaCast with a naive hash-
ing scheme that sends only one-level of hashes. For this
flat hash system, we vary the block size to determine
how an ideal system that could pre-determine the most
efficient data block size for all receivers would perform
compared to DeltaCast (note that this is an unrealistic
scenario but useful for the purposes of a best-case com-
parison).

Figure 5 shows the total data downloaded to synchro-
nise a collection of Web pages for both a single-layer
hashing scheme and DeltaCast. For the single-layer
scheme we vary the block size from 8 Bytes to 1024
Bytes. For DeltaCast we use an 7 level hierarchy with
top-level blocks equal to 1024 Bytes and bottom-level
blocks equal to 16 Bytes. For both schemes we use a
hash of size 6 Bytes. From this Figure we can see that
the single-layer scheme suffers from large overheads for
very small block sizes since the amount of hashes down-
loaded is very high. Similarly, when the block size is
very large, the number of hashes is significantly reduced
but missing portions are only coarsely matched, thus re-
sulting in very large portions of redundant data being
downloaded. For this specific set of data, the optimal
working point for a single-layer scheme is around 128
Bytes.

When comparing the optimal working point of a
single-layer scheme with DeltaCast, we see that Delta-
Cast is much more efficient. The DeltaCast hierarchical
system does not need to download deep-level hashes for
already matched blocks and is still able to efficiently lo-
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Figure 6: Performance Comparison for Multiple Receivers
with Different Content

cate the high-level unmatched data portions. From Fig-
ure 5 we see that the performance improvement of Delta-
Cast compared to the optimal single-layer protocol is
greater than a factor of 2.

3.5 Reconciling Different Versions

We now consider the case of three receiver groups with
different versions of the same content, all of which
are older than the current version being released at the
source. We measure the performance of the schemes
based on 4 versions of 100 web sites as outlined in sec-
tion 3.2. Figure 6 illustrates the performance improve-
ment provided by DeltaCast using seven layers compared
to a single-round hashing scheme using an optimal block
size of 128 Bytes.

All file versions are very similar, within 100 KBytes
from largest to smallest. Thus, the overhead of send-
ing hashes in the single-round protocol is very similar
across file versions. The actual data downloaded for each
single-round protocol experiment, however, ranged from
581KB to 450KB. In contrast, however the DeltaCast
experiments on average required approximately half as
much data, ranging from 351KB to 221KB. In general
we would expect more recent files to have less differ-
ences and therefore require less data to be transmitted
overall. This is clearly the case for version 3, but not so
much for versions 1 and 2.

3.6 Latency Considerations

We next consider the benefits of DeltaCasting in terms
of the amount of time that a user needs to reconcile its
content. When hashes and data are sent unencoded, on
average a user may need to wait for long idle periods be-
fore he can download a specific hash from the carousel.
In the worse case, a user may need to wait for the full
carousel to be repeated, thus, significantly increasing the

average latency to update a file. With DeltaCast, on the
other hand, any erasure hash can be used by any receiver
to decode all the hashes on a given level. The same is
true for the lowest level of the hierarchy, which carries
the data payload packets. With DeltaCast, increasing the
number of hash levels to provide better resolution does
not significantly affect the overall latency since receivers
do not have to wait long idle periods of time for the right
hashes to arrive at each hierarchy level. This is not the
case with a hierarchical hashing system that does not use
erasure hashes. The higher the number of hierarchy lev-
els, the longer a receiver will have to remain idle since
idle times are almost certain to occur at each hierarchy
level.

Assume a user is receiving data from a carousel that
does not use encoded hashes. If the user needs to down-
load m data units from a given level (a data unit can be
either a hash, or a data block), and there are a total of
N data units at that particular level, we can calculate the
probability that a user receives the required m units by

round i or before as F (i) =

(

N −m

i−m

)

(

N

i

) . Based on

this probability distribution, one can easily calculate the
average latency before content is updated.

Next we quantify more precisely the latency bene-
fits of using DeltaCast vs using a hierarchical hashing
scheme with unencoded hashes and data. To this extent,
we implemented an emulator where each hash hierar-
chy level is sent in a different carousel with the lowest
carousel carrying the data payload. We consider four hi-
erarchical levels. We assume that the total rate of the
datacasting channel is 50 Kbit/s (which corresponds to
the typical throughput of a DAB channel) and that this
channel is evenly partitioned between the data payload
and the hashing data. Moreover, the rate corresponding
to the hashing data is evenly partitioned among all hash
levels. We assume that clients join the carousel at ran-
dom times.

In Figure 7 we show the average time that it takes for
a user to update it’s local version of Web content to rec-
oncile with that of the server. We consider four different
schemes (a) simple full file download with no hashes,
(b) single-layer hashing, (c) hierarchical hashing scheme
with no encoded data and (d) DeltaCast. The total la-
tency represented in this Figure includes (i) the time to
download the hashes or the erasure hashes, (ii) the time
to download the missing data, (iii) the idle time waiting
in the different carousels for the specific hashes and data
to arrive, and (iv) the time to decode the encoded hashes
and data. Note that not all latency factors are part of ev-
ery scheme. For instance, the total latency in scheme (a)
is determined by the latency factor (ii). The latency in
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Figure 7: Average Latency for (a) simple full file download
(uses all available channels), (b) optimal single-layer hashing
algorithm (available bandwidth sub-divided into 2 channels be-
tween hash and data), (c) non-encoded hierarchical-hashing
system and (d) DeltaCast (which also includes the time to de-
code the erasure data). The 2 hierarchical hashing schemes (c
and d) in this case utilise 4 levels of hashing, and 1 data level.

schemes (b) and (c), however, is determined by factors
(i), (ii), and (iii), while the latency in scheme (d) is deter-
mined by factors (i), (ii), and (iv).

From this Figure we can see that a hierarchical hashing
scheme with no encoded data and a single-layer hash-
ing scheme have an average latency that is 2-2.6 times
higher than doing a full file download and more than 4
times higher than DeltaCast. The reason for this is that
such schemes rely on finding the exact set of hashes and
data to be downloaded from the carousel, which can re-
sult in very large idle times waiting for the right data to
arrive. Observe, however, that while the latency is quite
high, these schemes still provide significant bandwidth
and power savings compared to a full file download since
only a fraction of the time is used in downloading data.

The number of levels in the unencoded hierarchical
scheme was set equal to four in this experiment (similar
to DeltaCast). We have also tested the performance of
such a hierarchical hashing scheme with a higher number
of levels and note that the overall latency increases. This
is due to the fact that the number of blocks increases as
the hierarchy level expands, and thus, it becomes more
difficult to find a specific set hashes.

When we compare the performance of DeltaCast to
the other schemes we can see that DeltaCast provides
significantly lower latencies. DeltaCast requires the
same amount of data to be downloaded as a hierarchi-
cal scheme that uses non-encoded data. However, with
DeltaCast, idle times practically do not exist since any
hash or data block will be useful for any receiver as long
as it is linearly independent with all the other blocks. A
non-linearly independent packet can be generated and re-

ceived, however since the encoded data field is selected
to be very large, the probability of such an event occur-
ring is extremely small.

One drawback of DeltaCast is that erasure hashes and
erasure data blocks need to be decoded before they can
be used. Decoding time is proportional to the amount
of blocks in a given carousel and also proportional to
the amount of blocks that need to be decoded. We as-
sume that encoding times are negligible since data can
be pre-encoded at the DataCasting head-end. Decoding
times are more important since they increase the over-
all latency and consume resources at the receiver’s de-
vice. We show the results of an implementation of a
fast, software-based, sparse erasure decoder that we have
developed. The tests were conducted on a Pentium IV
workstation with 256 MBytes RAM which could provide
slightly higher performance than a typical small mobile
device, however we believe that the results indicate the
benefits of utilising erasure coding far outweigh the ar-
guments against. Other more popular Reed-Solomon de-
coders can also be used for the same purpose.

From Figure 7 we can see that the total latency time for
DeltaCast is roughly 2 times lower than the latency of the
best scheme. Even when we account for the total decod-
ing time of hashes and data, DeltaCast still offers signif-
icant benefits since less data is downloaded and there are
no idle waiting times. Decoding times increase as more
levels are used since the total number of blocks at lower
levels of the hierarchy is significantly higher. However,
even for multiple levels of hierarchies, the total decoding
time is only few seconds, thus, providing an almost neg-
ligible decoding overhead. DeltaCast, trades off latency
and downloaded data for decoding time, however, as we
have seen in this section the overall penalty is quite low.

3.7 Device Utilisation

Following the experiments from the previous section, we
now identify the amount of time that the user’s device
is utilised, either to download hashes and data, or to de-
code the file. This time relates to the amount of battery
power consumed at the receiver’s device. We assume
that during the idle times, no power is consumed. How-
ever, this assumption provides a lower estimate on the
overall device utilisation for those schemes that have to
wait long idle times (e.g. hierarchical hashing with no
encoded data, and single-layer schemes). During such
idle waiting times devices perform periodic attempts to
check whether the right hash/data is being carouselled,
which could consume non-negligible amounts of battery
power. With DeltaCast, on the other hand, all required
hashes and data are downloaded consecutively one af-
ter the other without random time gaps in between, thus,
eliminating the need for periodic data checks.
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In table 1 we show the device’s activity time for all
four schemes described before. The active time total and
the average latency values for DeltaCast also include the
decoder time. From this table we can see that DeltaCast
utilises much fewer resources compared to a full down-
load or a single-layer hashing scheme (approximately
1.7-2.1 times less), which translates into significant bat-
tery savings. Compared to a hierarchical hashing scheme
with no encoded data, DeltaCast has a 7% higher device
utilization due to the extra time to decode data (total of
12 seconds). However, from the same table we can see
that by allowing data to be encoded, DeltaCast provides
an overall latency that is 4.6 times lower, which clearly
outweighs the decoding overhead.

Table 1 also summarises all the results presented up to
now, averaged over a large number of Web content chan-
nels. Such results include the average latency to update
the content, the amount of time that the user’s device is
utilised, the amount of data downloaded, and the decod-
ing time for four different schemes. From this table we
can clearly see that DeltaCast can very quickly recon-
cile files in a broadcast system while providing signifi-
cant battery savings.

4 Related Work

Next, we give a brief summary of related work. The
rsync protocol [11] is the basis of the very widely used
rsync tool. In rsync, receivers use two sets of hashes (one
weaker than the other) computed over a fixed block size
throughout the file. Such hashes are sent to the source,
which then does two passes to identify possible matches.
It first compares the fast hash incrementally over the
whole file (fixed blocks, utilising a sliding window). If
the fast hash matches, then, it tests the more accurate
hash. If the accurate hash also matches, then the source
only needs to send a hash index to the receiver. The re-
ceiver rebuilds the file based on either the hash index or
a new data segment sent by the source.

There are a number of theoretical studies of the file
synchronisation problem [18], [19], [21], [20]. Within
this framework, [22] discusses a relationship between Er-
ror Correcting Codes and file synchronisation. Orlitsky
and Viswanathan [22] showed a relationship between Er-
ror Correcting Codes for noisy channels and file synchro-
nisation that may be on some level related to the Delta-
Cast erasure-hash approach. A number of authors have
studied problems related to identifying disk pages, files,
or data records that have been changed or deleted [23],
[25], [24].

Hash-based techniques similar to rsync have been
explored by the OS and Systems community for pur-
poses such as compression of network traffic [28], dis-
tributed file systems [29], distributed backup [30], and

web caching [27]. These techniques use string finger-
printing techniques [26] to partition a data stream into
blocks. However, several of these techniques usually re-
quire variable-size blocks which would complicate the
design of a DeltaCast system based on erasure and de-
composable hashes.

In [28] efficient erasure encoded data is used to accel-
erate the delivery of content in multicast-based systems
that are prone to errors. We assume that data is reliably
delivered to the receivers and focus instead on how to
perform efficient file reconciliation. In this regard, [17]
provides a framework to reconcile encoded files in peer-
to-peer environments.

There has also been some related work that tries to
minimise the overhead caused by periodically tuning in
to the broadcast channel to find the appropriate data. As
such, there are a number of indexing techniques that can
be used to improve the performance. [34] [31][32][33]

The work that is closest to ours is [35]. In [35]
an erasure-based algorithm is proposed to replace the
need for multi-round communication protocols in client-
server reconciliation protocols. By estimating the num-
ber of required edit operations on the file, and send-
ing sufficient erasure hashes, the receiver is able to re-
generate the correct set of hashes at each level. The
server must send at least 2k erasures, where k is an up-
per bound on the edit distance. The server continues to
send hashes for smaller block sizes until the hash length
is equal to the block size, i.e. the original data. In re-
ality this algorithm is not practical since it requires the
server to know k accurately before hand. An alterna-
tive solution is to have the receiver send sufficient era-
sures to the source, which then detects how much of the
file has changed and sends deltas of the file back to the
client. However, both these approaches are better suited
for client-server environments with a symmetric commu-
nication channel, which does not exist in most DataCast-
ing systems.

5 Summary

We have considered the problem of efficiently reconcil-
ing two versions of a file in a broadcast system. Broad-
cast data systems are becoming very popular as a means
for distributing information to a large number of re-
ceivers (e.g. news, maps, software, etc.). In a mobile
environment where receivers connect at arbitrary times
and have power constrained devices, designing a fast rec-
onciliation protocol that minimises battery consumption
is quite challenging. This is even more the case in broad-
cast systems where servers have no information about
what type of content or what version resides at each re-
ceiver’s device and often have to make blind decisions
about what content to broadcast.
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DeltaCast Hierarchical Single Layer Simple Download
Avg. Latency 41.6 120.1 173.4 204.9 583.03 797.93 303.79 305.21 609 0 291.6 291.6
Active Time 41.6 120.1 173.4 41.6 120.1 161.7 303.79 62.9 366.69 0 291.6 291.6
Data Download 31.7 366.8 398.5 31.7 366.8 398.5 83.4 366.8 450.2 0 1780 1780
Decoding Time 0.4 11.6 12 0 0 0 0 0 0 0 0 0

Table 1: Performance Comparison. Time in seconds, Data in KBytes (hashes/data/total).

In this paper we have presented DeltaCast, a practical
reconciliation system that combines hierarchical hashing
with erasure codes and decomposable hashes. DeltaCast
is able to simultaneously update an unlimited number
of receivers holding a wide range of file versions. We
have evaluated the performance of DeltaCast using a va-
riety of content types, including Web content, and binary
files and compared it with several other standard recon-
ciliation techniques. Our results show that DeltaCast
is very effective in quickly updating outdated content
while conserving scarce power resources in mobile de-
vices. We note also that the Deltacast system is not only
useful within the radio broadcast environment, but the
technique could also be applied to more general point-
to-multipoint systems such as IP Multicast, Overlay net-
works, Peer-to-peer and Content Distribution Networks
within the wired Internet environment. As future work,
we plan on producing a stable version of this practical
algorithm and use it in a real DataCasting environment
to test its performance over a large scale deployment.
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