
Chapter 1

Gaussian Mixture Models

Abstract In this chapter we �rst introduce the basic concepts of random
variables and the associated distributions. These concepts are then applied
to Gaussian random variables and mixture-of-Gaussian random variables.
Both scalar and vector-valued cases are discussed and the probability density
functions for these random variables are given with their parameters speci�ed.
This introduction leads to the Gaussian mixture model (GMM) when the
distribution of mixture-of-Gaussian random variables is used to �t the real-
world data such as speech features. The GMM as a statistical model for
Fourier-spectrum-based speech features plays an important role in acoustic
modeling of conventional speech recognition systems. We discuss some key
advantages of GMMs in acoustic modeling, among which is the easy way
of using them to �t the data of a wide range of speech features using the
EM algorithm. We describe the principle of maximum likelihood and the
related EM algorithm for parameter estimation of the GMM in some detail
as it is still a widely used method in speech recognition. We �nally discuss a
serious weakness of using GMMs in acoustic modeling for speech recognition,
motivating new models and methods that form the bulk part of this book.

1.1 Random Variables

The most basic concept in probability theory and in statistics is the random
variable. A scalar random variable is a real-valued function or variable which
takes its value based on the outcome of a random experiment. A vector-valued
random variable is a set of scalar random variables, which may either be
related to or be independent of each other. Since the experiment is random,
the value assumed by the random variable is random as well. A random
variable can be understood as a mapping from a random experiment to a
variable. Depending on the nature of the experiment and of the design of
the mapping, a random variable can take either discrete values, continuous
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values, or a mix of discrete and continuous values. We hence see the names
of discrete random variable, continuous random variable, or hybrid random
variable. All possible values which may be assumed by a random variable are
sometimes called its domain. In this as well as a few other later chapters, we
use the same notations to describe random variables and other concepts as
those adopted in [16].

The fundamental characterization of a continuous-valued random variable,x,
is its distribution or the probability density function (PDF), denoted gener-
ally by p(x). The PDF for a continuous random variable at x = a is de�ned
by

p(a)
.
= lim
∆a→0

P (a−∆a < x ≤ a)
∆a

≥ 0 (1.1)

where P (·) denotes the probability of the event.
The cumulative distribution function of a continuous random variable x

evaluated at x = a is de�ned by

P (a)
.
= P (x ≤ a) =

� a

−∞
p(x)dx. (1.2)

A PDF has to satisfy the property of normalization:

P (x ≤ ∞) =

� ∞
−∞

p(x)dx = 1. (1.3)

If the normalization property is not held, we sometime call the PDF an
improper density or unnormalized distribution.

For a continuous random vector x = (x1, x2, . . . , xD)
T ∈ RD , we can

similarly de�ne their joint PDF of p(x1, x2, . . . , xD). Further, a marginal PDF
for each of the random variable xi in the random vector x is de�ned by

p(xi)
.
=

� �
all xj : xj 6=xi

. . .

�
p(x1, . . . , xD)dx1 . . . dxi−1dxi+1 . . . dxD. (1.4)

It has the same properties as the PDF for a scalar random variable.

1.2 Gaussian and Gaussian-Mixture Random Variables

A scalar continuous random variable x is normally or Gaussian distributed if
its PDF is

p(x) =
1

(2π)1/2σ
exp

[
−1

2

(
x− µ
σ

)2
]
.
= N (x;µ, σ2),

(−∞ < x <∞;σ > 0) (1.5)
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An equivalent notation for the above is

x ∼ N (µ, σ2),

denoting that random variable x obeys a normal distribution with meanµ
and varianceσ2. With the use of the precision parameter, a Gaussian PDF
can also be written as

p(x) =

√
r

2π
exp

[
−r
2
(x− µ)2

]
. (1.6)

It is a simple exercise to show that for a Gaussian random variable x, E(x) =
µ, var(x) = σ2 = r−1.

The normal random vector x = (x1, x2, . . . , xD)
T, also called multivariate

or vector-valued Gaussian random variable, is de�ned by the following joint
PDF:

p(x) =
1

(2π)D/2|Σ|1/2
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
.
= N (x;µ,Σ) (1.7)

An equivalent notation isx ∼ N (µ ∈ RD,Σ ∈ RD×D). It is also straightfor-
ward to show that for a multivariate Gaussian random variable, the expecta-
tion and covariance matrix are given by E(x) = µ;E[(x− x)(x− x)T] = Σ.

The Gaussian distribution is commonly used in many engineering and
science disciplines including speech recognition. The popularity arises not
only from its highly desirable computational properties, but also from its
ability to approximate many naturally occurring real-world data thanks to
the law of large numbers.

Let us now move to discuss the Gaussian-mixture random variable with
the distribution called mixture of Gaussians. A scalar continuous random
variable x has a Gaussian-mixture distribution if its PDF is speci�ed by

p(x) =

M∑
m=1

cm
(2π)1/2σm

exp

[
−1

2

(
x− µm
σm

)2
]

(1.8)

=

M∑
m=1

cmN (x;µm, σ
2
m) (−∞ < x <∞;σm > 0; cm > 0)

where the positive mixture weights sum to unity:
∑M
m=1 cm = 1.

The most obvious property of Gaussian mixture distribution is its multi-
modal one (M > 1 in Eq. 1.8), in contrast to the uni-modal property of the
Gaussian distribution where M = 1. This makes it possible for a mixture
Gaussian distribution to adequately describe many types of physical data
(including speech data) exhibiting multi-modality poorly suited for a single
Gaussian distribution. The multi-modality in data may come from multiple
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underlying causes each being responsible for one particular mixture com-
ponent in the distribution. If such causes are identi�ed, then the mixture
distribution can be decomposed into a set of cause-dependent or context-
dependent component distributions.

It is easy to show that the expectation of a random variable x with the
mixture Gaussian PDF of Eq. 1.8 is E(x) =

∑M
m=1 cmµm. But unlike a (uni-

modal) Gaussian distribution, this simple summary statistic is not very infor-
mative unless all the component means, µm,m = 1, ...,M , in the Gaussian-
mixture distribution are close to each other.

The multivariate generalization of the mixture Gaussian distribution has
the joint PDF of

p(x) =

M∑
m=1

cm
(2π)D/2|Σm|1/2

exp

[
−1

2
(x− µm)TΣ−1m (x− µm)

]

=

M∑
m=1

cmN (x;µm,Σm), (cm > 0). (1.9)

The use of this multivariate mixture Gaussian distribution has been one
key factor contributing to improved performance of many speech recognition
systems (prior to the rise of deep learning); e.g., [27, 14, 23, 24]. In most ap-
plications, the number of mixture components,M , is chosen a priori according
to the nature of the problem, although attempts have been made to sidestep
such an often di�cult problem of �nding the �right� number; e.g., [31].

In using the multivariate mixture Gaussian distribution of Eq. 1.8, if the
variable x's dimensionality, D, is large (say, 40, for speech recognition prob-
lems), then the use of full (non-diagonal) covariance matrices (Σm) would
involve a large number of parameters (on the order ofM×D2). To reduce such
a number, one can opt to use diagonal covariance matrices forΣm . (WhenM
is large, one can also constrain all covariance matrices to be the same; i.e.,
�tying� Σm for all mixture components,m.) An additional advantage of us-
ing diagonal covariance matrices is signi�cant simpli�cation of computations
needed for the applications of the Gaussian-mixture distributions. Reducing
full covariance matrices to diagonal ones may have seemed to impose uncorre-
latedness among data vector components. This has been misleading, however,
since a mixture of Gaussians each with a diagonal covariance matrix can at
least e�ectively describe the correlations modeled by one Gaussian with a full
covariance matrix.
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1.3 Parameter Estimation

The Gaussian-mixture distributions we just discussed contain a set of pa-
rameters. In the multivariate case of Eq. 1.8, the parameter set consists of
Θ =

{
cm,µm,Σm

}
. The parameter estimation problem, also called learning,

is to determine the values of these parameters from a set of data typically
assumed to be drawn from the Gaussian-mixture distribution.

It is common to think of Gaussian mixture modeling and the related pa-
rameter estimation as a missing data problem. To understand this, let us
assume that the data points under consideration have �membership,� or the
component of the mixture, in one of the individual Gaussian distributions we
are using to model the data. At the start, this membership is unknown, or
missing. The task of parameter estimation is to learn appropriate parameters
for the distribution, with the connection to the data points being represented
as their membership in the individual Gaussian distributions.

Here we focus on maximum likelihood methods for parameter estimation of
the Gaussian-mixture distribution, and the expectation maximization (EM)
algorithm in particular. The EM algorithm is the most popular technique
used to estimate the parameters of a mixture given a �xed number of mixture
components, and it can be used to compute the parameters of any parametric
mixture distribution. It is an iterative algorithm with two steps: an expec-
tation or E-step and a maximization or M-step. We will cover the general
statistical formulation of the EM algorithm, based on [5], in more detail in
Chapter ?? on hidden Markov models and here we only discuss its practical
use for the parameter estimation problem related to the Gaussian mixture
distribution.

The EM algorithm is of particular appeal for the Gaussian mixture dis-
tribution as the main topic of this chapter, where closed-form expressions in
the M-step are available as expressed in the following iterative fashion:1

c(j+1)
m =

1

N

N∑
t=1

h(j)m (t), (1.10)

µ(j+1)
m =

∑N
t=1 h

(j)
m (t)x(t)∑N

t=1 h
(j)
m (t)

, (1.11)

Σ(j+1)
m =

∑N
t=1 h

(j)
m (t)[x(t) − µ(j)

m ][x(t) − µ(j)
m ]T∑N

t=1 h
(j)
m (t)

, (1.12)

where the posterior probabilities (also called the membership responsibilities)
computed from the E-step are given by

1 (Detailed derivation of these formuli can be found in [1], which we omit here. Related
derivations for similar but more general models can be found in [6, 15, 18, 2, 3].)
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h(j)m (t) =
c
(j)
m N (x(t);µ

(j)
m ,Σ(j)

m )∑n
i=1 c

(j)
i N (x(t);µ

(j)
i ,Σ

(j)
i )

. (1.13)

That is, on the basis of the current (denoted by superscript j above) estimate
for the parameters, the conditional probability for a given observationx(t)being
generated from mixture componentm is determined for each data sample
point at t = 1, . . . , N , where N is the sample size. The parameters are then
updated such that the new component weights correspond to the average
conditional probability and each component mean and covariance is the com-
ponent speci�c weighted average of the mean and covariance of the entire
sample.

It has been well established that each successive EM iteration will not
decrease the likelihood, a property not shared by most other gradient based
maximization techniques. Further, the EM algorithm naturally embeds within
it constraints on the probability vector, and for su�ciently large sample sizes
positive de�niteness of the covariance iterates. This is a key advantage since
explicitly constrained methods incur extra computational costs to check and
maintain appropriate values. Theoretically, the EM algorithm is a �rst-order
one and as such converges slowly to a �xed-point solution. However, con-
vergence in likelihood is rapid even if convergence in the parameter values
themselves is not. Another disadvantage of the EM algorithm is its propen-
sity to spuriously identify local maxima and its sensitivity to initial values.
These problems can be addressed by evaluating EM at several initial points in
the parameter space although this may become computationally costly. An-
other popular approach to address these issues is to start with one Gaussian
component and split the Gaussian components after each epoch.

In addition to the EM algorithm discussed above for parameter estimation
that is rested on maximum likelihood or data �tting, other types of estimation
aimed to perform discriminative estimation or learning have been developed
for Gaussian or Gaussian mixtures, as special cases of the related but more
general statistical models such as the Gaussian HMM and and its Gaussian-
mixture counterpart; e.g., [26, 25, 33, 22].

1.4 Mixture of Gaussians as a Model for the

Distribution of Speech Features

When speech waveforms are processed into compressed (e.g., by taking log-
arithm of) short-time Fourier transform magnitudes or related cepstra, the
Gaussian-mixture distribution discussed above is shown to be quite appro-
priate to �t such speech features when the information about the temporal
order is discarded. That is, one can use the Gaussian-mixture distribution as
a model to represent frame-based speech features. We use the Gaussian mix-
ture model (GMM) to refer to the use of the Gaussian-mixture distribution
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for representing the data distribution. In this case and in the remainder of this
book, we generally use model or computational model to refer to a form of
mathematical abstraction of aspects of some realistic physical process (such
as the human speech process), following the guiding principles detailed in [9].
Such models are established often with necessary simpli�cation and approxi-
mation aimed at mathematical or computational tractability. The tractability
is crucial in making the mathematical abstraction amenable to computer or
algorithmic implementation for practical engineering applications (such as
speech analysis and recognition).

Both inside and outside the speech recognition domain, the GMM is com-
monly used for modeling the data and for statistical classi�cation. GMMs are
well known for their ability to represent arbitrarily complex distributions with
multiple modes. GMM-based classi�ers are highly e�ective with widespread
use in speech research, primarily for speaker recognition, denoising speech
features, and speech recognition. For speaker recognition, the GMM is di-
rectly used as a universal background model (UBM) for the speech feature
distribution pooled from all speakers [32, 28, 34, 4]. In speech feature denois-
ing or noise tracking applications, the GMM is used in a similar way and as a
prior distribution [21, 19, 11, 12, 13, 10]. In speech recognition applications,
the GMM is integrated into the doubly stochastic model of HMM as its out-
put distribution conditioned on a state, a topic which will be discussed in a
great detail in Chapter ??.

When speech sequence information is taken into account, the GMM is no
longer a good model as it contains no sequence information. A class of more
general models, called the hidden Markov models (HMM) to be discussed in
Chapter ??, captures the sequence information. Given a �xed state of the
HMM, the GMM remains a reasonably good model for the PDF of speech
feature vectors allocated to the state.

GMMs have several distinct advantages that make them suitable for mod-
eling the PDFs over speech feature vectors associated with each state of an
HMM. With enough components, they can model PDFs to any required level
of accuracy, and they are easy to �t to data using the EM algorithm de-
scribed in Section 1.3. A huge amount of research has gone into �nding ways
of constraining GMMs to increase their evaluation speed and to optimize the
tradeo� between their �exibility and the amount of training data required to
avoid over�tting. This includes the development of parameter-tied or semi-
tied GMMs and subspace GMMs.

Beyond the use of the EM algorithm for parameter estimation of the GMM
parameters, the speech recognition accuracy obtained by a GMM-based sys-
tem (which is interfaced with the HMM) has been drastically improved if the
GMM parameters are discriminatively learned after they have been genera-
tively trained by EM to maximize its probability of generating the observed
speech features in the training data. This is especially true if the discrimina-
tive objective function used for training is closely related to the error rate on
phones, words, or sentences. The accuracy can also be improved by augment-
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ing (or concatenating) the input speech features with tandem or bottleneck
features generated using neural networks, which we will discuss in a later
chapter. GMMs had been very successful in modeling speech features and in
acoustic modeling for speech recognition for many years (until around year
2010-2011 when deep neural networks were shown to outperform the GMMs).

Despite all their advantages, GMMs have a serious shortcoming. That is,
GMMs are statistically ine�cient for modeling data that lie on or near a non-
linear manifold in the data space. For example, modeling the set of points
that lie very close to the surface of a sphere only requires a few parameters
using an appropriate model class, but it requires a very large number of di-
agonal Gaussians or a fairly large number of full-covariance Gaussians. It is
well known that speech is produced by modulating a relatively small number
of parameters of a dynamical system [20, 29, 30, 8, 17, 7]. This suggests that
the true underlying structure of speech is of a much lower dimension than
is immediately apparent in a window that contains hundreds of coe�cients.
Therefore, other types of model which can capture better properties of speech
features are expected to work better than GMMs for acoustic modeling of
speech. In particular, the new models should more e�ectively exploit infor-
mation embedded in a large window of frames of speech features than GMMs.
We will return to this important problem of characterizing speech features
after discussing a model, the HMM, for characterizing temporal properties of
speech in the next chapter.
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