
Dichotomy: A Practical Architecture for Multi-

channel IEEE 802.11 Multi-hop Networks

Kun Tan Haitao Wu

Microsoft Research Asia

Beijing China

Li (Errar) Li

Bell Labs, Lucent

USA

Qian Zhang

HKUST

Hong Kong, China

Yongguang Zhang

Microsoft Research Asia

Beijing China

Abstract -- In this paper, we present Dichotomy, a novel

practical architecture that exploits channel diversity to improve

wireless multi-hop network throughput with a single transceiver.

Unlike previous link-layer multichannel work that requires

complex coordination and is difficult to implement, Dichotomy

operates without clock synchronization, and with greatly

reduced switching overhead. The core idea is to strategically

select a subset of nodes as anchors whose channels seldom

change; while other nodes are hoppers that dynamically switch

its radio among channels of neighboring anchors.

Communications are enforced between anchor-hopper pairs or

same-channel anchor-anchor pairs. It uses localized distributed

algorithm to select anchors and assign channels to anchors,

while maximizing the channel diversity and keeping the

network well connected. We implement Dichotomy as a

software shim layer between IP and MAC, and evaluate it in a

real test-bed. Experimental results show that Dichotomy

effectively boosts the network throughput up to 100%. We

further conduct extensive simulations and demonstrate that the

Dichotomy architecture is scalable and achieves better or

comparable performance than other previous work.

Keywords -- Channel diversity, multi-channel, wireless multi-

hop network

I. INTRODUCTION

This paper focuses on exploiting channel diversity to
mitigate the interference, so as to improve the overall
throughput of wireless multi-hop networks (WMN). We
specifically consider the case in which most of nodes in a
WMN are equipped with single transceiver. This assumption
has much practical value since current devices are typically
equipped with only one single half-duplex 802.11 radio
interface.

To make use of multiple channels in a single-radio
network, nodes need to dynamically configure their radios
with different channel based on the traffic requirement.
Recently, many approaches have been proposed in the
literature that schedule wireless transmissions across different
channels with different time granularities: 1) packet level. The
schedule is performed in a packet-by-packet manner.
Therefore, a transmission of a subsequent packet may be on a
different channel from the previous one, e.g. RDT [15] and
McMAC [4]. 2) Link level (or Super-frame level). The
schedule is performed for a link between two nodes based on
a small duration of time, typically within one hundred
milliseconds. Within this duration, a group of packets to the
selected wireless link can be transmitted. MMAC [1] and
SSCH [2] are examples in this category. 3) Session level. In
this category, the channel of a node’s radio keeps unchanged

during the entire communication session. Component-based
Channel Assignment (CBCA) [8] is an example of session-
level approaches.

Ideally, it would be better to perform channel scheduling
at smaller granularity, as it would have higher flexibility to
exploiting channel diversity. However, in practice, there is a
tradeoff among the potential performance gain, the practical
overhead and the system complexity. Packet-level scheduling
suffers a high overhead, since it may switch a channel after
each packet transmission. Switching channel has a delay that
is comparable to packet transmission time for current NIC
hardware. Link level approaches are designed to amortize this
channel switching overhead by scheduling groups of packets
together. However, existing designs require complex
coordination among networked nodes, and therefore are
difficult to implement in multi-hop networks. Session level
approaches are proposed to avoid some issues of previous two
types of solutions. However, these approaches has the least
ability to exploit channel diversity.

In this paper, we present a new practical multi-channel
architecture for single radio WMNs that performs channel
scheduling at link level, while eliminateing two most
important constraints existed in previous solutions [1][2]:
tight clock synchronization and large channel switching
overhead. Moreover, many of these solutions requires
changing the underlying MAC behavior, but our scheme can
be easily implemented as software modules on top of existing
IEEE 802.11 MAC over commercial off-the-shelf hardware.

Our proposed architecture is called Dichotomy. The core
idea is to strategically divide the nodes in the network into
two subsets. One subset of nodes (named anchors) is assigned
fixed working channels, while the other nodes (named
hoppers) keep hopping among channels of neighboring
anchors. Communications are enforced to occur only between
anchor-hopper pairs or anchor-anchor pairs if they are
assigned on the same channel. Since only one node between
two communication parties is allowed to dynamically change
channels, it does not require clock synchronization among
neighboring nodes. We further develop a localized and
distributed algorithm that dynamically selects anchors and
coordinates the working channels of anchors in such a way
that the interference in the network is minimized. Our
evaluation demonstrates that although Dichotomy restricts
anchors work on almost fixed channels, it is able to exploit
multi-channel capability effectively.

Dichotomy differs significantly from previous
multichannel MAC designs that are based on quiescent
channel, which also do not require time-synchronization, e.g.

RDT [15] and its later extension [16]. First, RDT require
packet-level channel scheduling, so that after transmission,
each node could return to a pre-assigned quiescent channel for
receiving. Second, RDT allows all nodes in the network to
change channels and packets are sent to neighbors in an
opportunistic way. This may cause the deafness problem [16],
which arises because an intended receiver may currently be
transmitting in the quiescent channel of a third node, and
thereby cause transmission failures and backoff. As we will
show later, this deafness problem also exists in link-level
multi-channel solutions that exploit opportunistic
synchronization, which may cause performance loss.
However, Dichotomy solves this problem by fixing anchors in
stable channels, and therefore the neighboring hoppers and
anchors can always ensure they are on the same channel
before initiating transmissions.

We have implemented the Dichotomy architecture on
Windows platform with commercial 802.11 wireless interface
cards. We deploy and evaluate our implementation in a 10-
node wireless multi-hop test-bed in our building. We further
implement Dichotomy in NS2 and conduct large-scale
simulation studies and compare our solution with other link-
level solutions e.g. SSCH [2]. Our experience shows that
Dichotomy architecture yields great improvement in network
throughput compared to single channel 802.11, and achieves
better or comparable performance compared to those
solutions that require complex global time synchronization in
the network.

The primary research contributions of our paper are
summarized as follows:
1. We propose a novel Dichotomy architecture that

exploits channel diversity at link level for single radio
WMN. Our solution does not need clock
synchronization among neighboring nodes.

2. We propose a localized and distributed anchor selection
and channel assignment algorithm to minimize the
interference in the network. We prove the proposed
algorithm converges.

3. We implement our architecture in a real system and
demonstrate that it is feasible and practical to perform
channel schedule at link level. To the best of our
knowledge, we are not aware of other implementation of
multi-channel schemes for single radio 802.11-based
multi-hop wireless network.

4. We evaluate our prototype in both an indoor test-bed and
large-scale NS2 simulations. Our experimental results
suggest that our architecture handles practical overheads
well and greatly improves the network throughput by
exploiting multichannel capability.

The rest of paper is organized as follows. Section II
describes the background and the motivation of our work. We
present the Dichotomy architecture in detailed in Section III.
We present the system design and implementation in Section
IV. We evaluate the performance of Dichotomy in our indoor
test-bed and in NS2 simulator in Section V. Related work is
discussed in Section VI. Section VII concludes the paper.

II. BACKGROUND AND MOTIVATION

Wireless multi-hop networks are typically implemented
using IEEE 802.11 radios. Each node in a WMN is typically
equipped with a single 802.11 radio, which can operate on a
single 2.4G or 5G channel. Transmissions in the same channel
may interfere with one another if they are within the
interference range. Using multiple channels, this interference
can be mitigated. As an example, Figure 1 shows a simple
wireless network with four nodes. If all nodes are configured
in the same channel, these flows interfere with one another
and only one flow can transmit at any given time, and thus
share the same channel capacity. However, if nodes are
allowed to dynamically switch between two channels, i.e.
channel 1 and 2, the transmissions can be scheduled on
different channel simultaneously, and therefore double the
overall network throughput, as shown in Figure 1b and c.

Ideally, these flows should be scheduled on different
channels at small time granularity to ensure fairness among
competing flows. For example, if we schedule the flow at
session-level (i.e. first schedule the flow 2 and 4, and then
schedule flow 1 and 3 after the completion of the previous
two flows), this will cause a large latency for some flows and
therefore is unacceptable, since users may have already
aborted their transmissions

1
. In contrast, scheduling at packet

or link level will provide users the illusion of concurrent
services on different channels. However, performing
scheduling at low level faces two important challenges: 1)
practical switching overhead; and 2) tight clock
synchronization among nodes. The first issue arises because a
node needs to frequently switch from one channel to another,
and this switching overhead can be significant if the
scheduling is made at very fine granularity. The second issue
occurs because when two communicating nodes are
scheduled to transmit/receive on different channels, the link
between them is broken and if they want to resume the
communication, they have to agree to return to the same
channel at the same time. In the following, we elaborate these
challenges and explain why they are difficult to resolve in
practice. We believe these are major obstacles for
implementing existing approach in real systems.
 Practical Switching Overhead: Although current wireless

hardware does support channel switching capability,
there is an overhead for doing so. Firstly, it takes a delay
for the radio hardware to reset its Voltage Control
Oscillator (VCO) to provide stable frequency output.
This switching latency ranges from 80us to a few
hundred microseconds. In our work, we operate on a
commercial off-the-shelf 802.11 NIC based on Atheros
AR5212 chipset, which has a switching latency of 300us

1 Current session-level approaches cannot handle such cases and

will fall back to use only single channel for all nodes.

Figure 1. The illustration of the need of dynamic channel switching. (a) a

four-node wireless network with four flows. (b) and (c) all nodes are

scheduled to dynamically switch their channels. Then, simultaneous
transmissions can happen on different channels.

in 802.11a mode. Such latency is already comparable to a
full-sized packet transmission time (1500Bytes) on
802.11a, and therefore per-packet switching is unrealistic.
Secondly, when two nodes agree to switch to a common
channel at the same time, even if they have perfectly
synchronized clock, there still needs a guard-time to
ensure that these two nodes are on the same channel
before actual transmission could happen. This is because
a NIC cannot reset a channel at arbitrary time point. If a
transmission is going on, reset channel will cause packet
drops. As a consequence, the switching action may be
delayed by a maximal packet transmission time. This
time can be from 385us to 2.16ms depending on the rate
selected. In practice, this guard-time should be several
milliseconds in practice and actually dominates the
overall switching overhead.

 Need for Tight Clock Synchronization: In order for two
neighboring nodes on different channels to rendezvous
on a common channel at the same time, clock
synchronization is needed and synchronized nodes need
to re-synchronize periodically, or otherwise their clocks
would eventually drift away. However, clock
synchronization is particular difficult in multi-channel
settings since traditional techniques using broadcasts
work poorly [4]. Many existing link-level approaches
require all nodes in the neighborhood to perform
synchronized switching, with a desired precision at a few
hundred microseconds [1][2]. This implies that all nodes
in the network need to agree on a common clock, which
is particular difficult in a dynamic environment like
multi-channel multi-hop networks. As far as we know,
we are not aware any solution on this and it remains an
open problem [5].

We argue that the aforementioned two practical issues are
actually coming from a common source. That is, both two
nodes in a communication link are allowed to dynamical
switch their channels. This creates the first issue: when a node
switches to a channel, it has to wait for the other node to
switch to the same channel before start communicating
(guard-time); and it also creates the second issue as two nodes
hop among channels, they have to follow precisely the pre-
scheduled rendezvous time that cannot be changed
independently. However, for any communication pairs, if
only one node is allowed to switch, while the other remains
on a fixed channel, these two issues are largely mitigated: 1) it
does not need a guard-time, since the other node is guaranteed
to be on that channel; and 2) no clock synchronization is
needed. Although two nodes still need to synchronize their
actions, this can be done by message-passing, instead of a
pre-scheduled timer. Surprisingly, even if we limit the
number of nodes that can dynamically switch their channels
during normal operation, it may still be able to utilize multi-
channel capability effectively. For example, in the four nodes
network in Figure 1, it is indeed unnecessary for all four
nodes to dynamically change channels. If two nodes, say 1, 3,
stay on two different channels all the time, while node 2 and 4
performs dynamic channel switching, it actually achieves the
same performance gain. This motivates us the design of
Dichotomy.

III. DICHOTOMY

Dichotomy strategetically divides nodes into two types:
anchors and hoppers. Anchors configure their radios to stable
working channels that seldom change. Hoppers dynamically
hop their channels to communicate with neighboring anchors.
Communications are enforced to happen between anchor-
hopper pairs or between two anchors if they are on a same
channel. As illustrated in last section, Dichotomy effectively
eliminates the overhead of large guard-time and the
complexity of global clock synchronization, but without
scarifying much flexibility in utilizing multi-channel
capability. In the following, we present the distributed
algorithm that dynamically selects anchor nodes and
coordinates the working channels among them. We will
present the system architecture of Dichotomy in the next
section.

We refer a Dichotomy assignment as an assignment that
selects a node to be either a hopper or an anchor and assigns a
working channel to each anchor. We would like to find an
assignment that maximally exploits channel diversity while at
the same time retains the similar connectivity of the wireless
network when all nodes are configured in a same channel,
which we term as the single-channel assignment. Hereby, we
term a Dichotomy assignment is valid if any one-hop
neighboring nodes in the single-channel assignment would be
at most two hops away in any Dichotomy assignment.

A. The Dichotomy Assignment Problem

We formulize the Dichotomy assignment problem in this
section. We assume all transmissions use a fixed power P. We
assume there are K channels available numbered 1,2,…,K. Let
G0=(V,E0) be the communication graph of a given wireless
multi-hop networks. That is, suppose u, v are tuned to the
same channel; an edge (u,v) exists in E0 iff transmissions from
u to v are received with a reception power greater than a pre-
determined threshold.

We would like to assign a node as either a hopper or an
anchor. For anchors, we would like to assign channels in such
a way to maximally exploit channel diversity. Denote λ as the
assignment. For a node u, if it is a hopper, 𝜆 𝑢 = 0; if it is an
anchor and assigned channel i, 1 ≤ 𝑖 ≤ 𝐾 , then 𝜆 𝑢 = 𝑖 .
Given an assignment, it induces a graph 𝐺 = 𝑉, 𝐸 .
Assuming 𝐺0 is connected, 𝐺 should be connected as well
under the given assignment. Further, to ensure the assignment
is valid, the following requirement should be satisfied. That is,
for 𝑢, 𝑣 ∈ 𝐸0, either 𝑢, 𝑣 ∈ 𝐸 or there exists w such that,
 𝑢,𝑤 ∈ 𝐸 and 𝑣, 𝑤 ∈ 𝐸 . Note that, this requirement
implies G is connected.

Ideally, we would like to compute an assignment to
maximize the network throughput. However, the problem is
NP-hard even with known traffic patterns.

Theorem 1. Given a multi-hop network 𝐺 = (𝑉, 𝐸) and a
known traffic pattern, computing a Dichotomy assignment 𝜆
that maximizes the network throughput is NP-hard.

We outline the proof in Appendix.
Note that, our problem is unique, although it looks similar

to a few known problems. It is different from traditional
channel assignment or graph coloring problem. Our problem
has a connectivity constraint due to the different roles of
anchor and hopper, and communication only happens

between anchor and hopper or anchors with the same channel.
Further, anchors form a dominating set. However, we do not
want to compute a minimal dominating set nor we want to
compute a connected dominating set. One can think of our
goal as minimizing total interference with the connectivity
constraint through channel assignment and anchor selection.

B. The Localized Distributed Dichotomy Assignment

Algorithm

Given the NP-hard nature of the problem, in this
subsection we present a localized distributed algorithm that
computes a valid assignment. Our proposed algorithm jointly
applies two greedy heuristics that select valid assignment to
maximize the links between anchors and hoppers, and choose
channels for anchors to minimize the interference.

We assume messages will be delivered reliably in
bounded time. This can be achieved through retransmissions.
We assume nodes exchange two-hop topology information
through beaconing. Each node has three states related to
assignment: unassigned, declared and committed. A node
initializes in the unassigned state. When a node declares it
wants to be an anchor or hopper, it will be in the declared
state. When a node receives all ACKs from its neighbors, it
goes into the committed state regarding its chosen role. For a
given assignment λ , we say invariant ℓ is satisfied at node u
if u can reach each neighbor in G0 either directly (one node is
a hopper, the other is an anchor) or indirectly through another
neighbor (both nodes are hoppers or anchors not assigned the
same channel). We say an anchor u is pined if there are two
hoppers v, w which are neighbors of u in G0,and v, w ∈ E0.
In our algorithm, a node u may be forced to change to a
channel i that is assigned to node w. If this happens and i has
been assigned by w to itself, we denote the channel i assigned
to a node u as iID (w). If u further forces v to take channel i,
then v will get iID w as well.

The algorithm has the following simple operations:
1. If a node is unassigned, and has a committed anchor, it

declares as a hopper.
2. If a node receives ACKs from all neighbors after

declared, it will enter into committed state. It sends a
committed message to all neighbors.

3. if a node u and one of its neighbors v in G0 are both
NOT anchors (can be unassigned); however, they do not
share a common anchor, then the one with a smaller ID
will declare as an anchor; it will choose the channel that
conflicts with the least anchors in its two-hop
neighborhood.

4. if two committed anchors u, v are neighbors in G0 , and
do not have a hopper in common, further suppose u has
channel iID w , and v has channel jID t , then u will
change the channel to jID t if ID(t) < 𝐼𝐷(𝑤). Otherwise,
v will change to iID w .

5. if a committed hopper u satisfies the following
conditions: (1) the number of its neighbor anchors is less
than half of its neighbors; (2) the last message u
received from each neighbor in G0 is its commit
message; (3) u switches to anchor, invariant ℓ still holds
at u; then u will declare as a anchor.

6. if a committed anchor u satisfies the following
conditions: (1) has a neighbor anchor v in G0 which is
also committed; (2) both u and v share the same channel;

(3) the last message u received from each neighbor in
G0 is its commit message; (4) u is not pined; (5) u
switches to hopper, invariant ℓ still holds at u; (6) after
u changes to hopper, for each node v of N(u) ∪{u}, the
number of v's anchor neighbor is still more than half of
v's neighbors; then u will declare as a hopper.

7. If u receives a role change from a neighbor w before its
role change message gets received by w , and if w 's
change makes invariant ℓ invalid, then only one of the
two nodes w, u can commit; the one with lower node ID
has high priority.

A node marks a neighbor’s role changed only if it receives
its commit message. A node will assume its previous role if
its declare message fails to commit.

Rule 1-5 achieves invariant ℓ at each node u while trying
to maximize the anchor-hopper links. The idea for Rule 6 is to
remove unnecessary anchors. Rule 7 handles the simultaneous
role changes in a distributed system. Note that the protocol is
adaptive and deals with topology changes automatically. As
elaborated later, we implement this protocol through
beaconing across channels. Nodes report the roles of its
neighbors inside beacons. Only new nodes need to scan all
channels to receive beacons in every channel.

We now illustrate the protocol operation using an example,
which is a partial topology in our test-bed, as shown in Figure
4. Let’s consider only nodes 1,6,7,5,8,9. Assume node 6
declares as an anchor and chooses channel R; then node 1 and
7 receiving its declare message; node 1 and 7, each replies
with an ACK. In the mean time, each declares as a hopper.
Suppose node 5 hears 7's declare message first, then 5 will
declare as an anchor due to Rule 3. Suppose node 5 knows its
two-hop topology through beacon messages. It will choose a
channel B that does not conflict node 1's assignment. Further
suppose, node 8 and 9 declares as an anchor simultaneously,
node 8 chooses channel Y and the other G. Apply Rule 4,
then 9 will change to channel Y.

We show the protocol outlined above converges and when
it converges, the assignment is a valid Dichotomy assignment.

Theorem 2. The localized distributed Dichotomy
assignment algorithm converges.

Theorem 3.The converged assignment induces a graph
𝐺 = (𝑉, 𝐸) that is connected; furthermore, the maximum
stretch for any path is at most 2.

We outline the proof in Appendix.

C. Evaluation

We evaluate the algorithm proposed earlier via
simulations. We consider three scenarios with different node
density. We fix 100 wireless nodes with transmission range of
100 meters, and put them into areas of 200x200 (density high),
500x500 (density median) and 800x800 m

2
(density low),

respectively. In our simulation, we want to verify: 1) the
impact of Dichotomy on the path length; and 2) the quality of
resulted channel assignment. Figure 2 shows the average path
length of Dichotomy as well as that of the single channel
assignment. Theorem 3 states the worst case path length
penalty is twice, but Dichotomy actually only increase the
path length very slightly in general. This is reasonable since
wireless multi-hop networks have many redundant links,
removing some links (e.g. hopper-to-hopper links) would not
affect network connectivity too much. Figure 2b shows the

number of average contention anchors for an anchor with
different number available channels under different network
densities. We call an anchor is contending with another
anchor if they are within two-hop range and on the same
channel. We can see that Dichotomy indeed allocates
channels to each anchor fairly well. With the increase of
available channels, the number of contending neighbor
anchors decreases proportionally. Given the 12 channels
defined in 802.11a, even in the densest network setting, the
number of contending neighboring anchors becomes low (<3).

(a) (b)

Figure 2. Evaluation of Dichotomy assignment algorithm. (a) The average

path length of Dichotomy comparing with the single channel assigment

under random networks with different densities. (b) The average number of
contention anchors with different number of available channels.

Figure 3. The system architecture of Dichotomy.

IV. SYSTEM ARCHITECTURE AND IMPLEMENTATION

A. System Architecture

Dichotomy is implemented as a thin shim layer between
IP layer and traditional MAC layer. It provides a virtual
network interface to the IP layer as a normal Ethernet
interface while hiding detailed operation on multiple channels.
It adds functionalities on both data plane and control plane.

In the data plane, it contains two functional modules:
1. Per-neighbor FIFO queues and priority queue. Each

neighbor is identified with its unique MAC address.
Since neighbors of a node may locate on different
channels, packets to each neighbor should be scheduled
individually. The priority queue prioritizes the
transmission of signaling packets, as detailed in
subsection E.

2. Traffic gate. This module regulates the outgoing packets.
It actually controls how many packets are allowed to be
buffered at the MAC layer. As explained in subsection B,
this module is critical to implement fast channel switch
in COTS 802.11 NIC, such as those based on Atheros
chipsets.

In the control plane, it contains four major modules:
1. Isochronous Channel Switching. This module cooperates

with the Traffic Gate to implement fast channel
switching with a delay of 570us. See details in
subsection B.

2. Beaconing and Discovery. This module handles the task
of learning about one-hop neighbors of a node. It
employs a beaconing mechanism that allows nodes to
discover one another. We explain the details in
subsection C.

3. Channel scheduler. This module determines the channel
on which a hopper would work on in the next time slot.
It also coordinates anchors and hoppers by exchanging
small signaling packets. We explain in the details in
subsection D.

4. Packet scheduler. It defines how packets are scheduled
to be sent when a hopper switches to the channel
assigned to an anchor. How packets scheduled is
discussed in subsection E.

B. Fast Channel Switching

Common drivers, e.g. MadWifi, expose programming
interfaces that only switch a channel with several
milliseconds delay (ranging from 2.8ms~5.8ms) depending on
the system type and the load on the system. This is because as
a common purpose driver, it is desirable to have a generic
system call that can be used by many tasks, e.g. a) do radio
modes switching as well; and b) be called at any time even if
a transmission/receiving is ongoing on the hardware.
Changing radio mode requires the hardware to reset its whole
radio front-end circuit which takes time (for example, 1.8ms
in Atheros AR5212 chipset); while changing channel when
there is ongoing communication would require the whole
reset of MAC controller as well as the DMA controller, which
taking even longer time (up to 4ms in our experiments).

For a multi-channel protocol, we only need to reset VCO
to provide a new frequency, and actually we do not want to
reset channel during the ongoing communication, since it will
cause packet drops. In this work, we customize a new
AR5212 driver in Windows platform that provides a new
system call which can directly reset VCO while not the whole
radio front-end, which reduce much overhead mentioned
earlier. But this system call cannot be invoked if the
hardware is transmitting or receiving frames. We use a
technique called traffic gating to prevent channel switching
from happening during a packet transmission. The basic idea
is that we keep counting packets we have sent to the MAC
layer. A system call to channel switching is only performed
when the count is zero. Note that traffic gating can only
guarantee that there are no packets sending out, and with
current hardware, by no means can we know that whether or
not the hardware is receiving a packet. Therefore, before each
reconfiguration on VCO, we still need to reset the receiving
unit. It takes 300us to reset VCO. As we also need to reset
the receiving unit, this adds another 270us overhead. This
results 570us delay for performing a channel switching.

C. Beaconing and Discovery

Dichotomy employs a beaconing mechanism to discover
one-hop neighbors. The beacon packet contains the MAC
address, the role of the node, and the assigned channel if the

0

1

2

3

4

5

6

7

8

Density high Density median Density low

A
v
e

ra
g

e
 P

a
th

 L
e

n
g

th

Dichotomy

Single Channel

0

5

10

15

20

25

2 4 8 12

A
v
e

ra
g

e
 C

o
n

te
n

ti
o

n
 A

n
c

h
o

rs

Available Channels

Density High

Density median

Density Low

node is an anchor. The beacon also contains a list of one-hop
neighbor information of the node. Therefore, by receiving
beacons, a node can actually discover its two-hop neighbors.
Beacons also contain fields to negotiate the roles among
neighboring nodes. Both anchors and hoppers are beaconing
across multiple channels. However, the difference lies in that
anchors will return to its assigned channel immediately after
sending a beacon; while hoppers may stay on the channel just
beaconed for a short delay, hopefully receiving a response
from an anchor on that channel. An anchor may reply to the
hopper if it receives a beacon from its assigned channel. Note
that beaconing is infrequent. Allowing anchors to leave their
assigned channels for a short period of time does not have
significant impact on the ongoing traffic. In current
implementation, the beacon interval is set to 3 seconds, and a
random channel is picked up to send a beacon when the
interval expires. A neighbor is considered to be dead if for a
significant long time no packets or beacons are received from
it. The neighbor timeout time is set to 2 minutes in current
implementation.

D. Channel Schedule

Dichotomy schedules channel time in slot. Note that
unlike previous work, the concept of slot is only a time unit. It
does not imply that every slot has the same length or nodes
need to have their slots’ boundaries aligned. We assume all
nodes in the network have the same set of available channels.

A hopper classifies each channel in the channel set into
one of three states:
1. Empty. A channel is classified as empty if no anchor is

found to be on that channel.
2. Inactive. A channel is in inactive state if at least one

anchor is found but no active traffic is ongoing on that
channel.

3. Active. If there is active traffic, either sending or
receiving on that channel, it is classified as active.

A hopper generates its hopping sequence in a randomized
way. That is, after a slot ends (as specified later), a hopper
randomly chooses an active channel and switch the radio to
that channel. If there is no active channel, the hopper will
choose an inactive channel to jump into. Note that hoppers are
required to visit an inactive channel periodically in order to
poll an incoming traffic that initiated from an anchor.
However, this is done less frequently.

Since only a hopper knows when it switches to or leaves a
channel, it needs to notify its presence to nearby anchors and
it is also needed to ensure that an anchor does not send
packets to it after it leaves the channel. To address this issue,
a light-weighted signaling protocol is defined to coordinate
the action between hoppers and anchors. When a hopper
comes to a new channel, it will broadcast a prob packet on
that channel. When receiving the prob packet, an anchor on
the channel will learn a hopper is visiting the channel. Then,
the anchor will reply a prob-ack to the hopper and start to
transmit packets to the hopper. When the anchor finishes its
transmission (by finding the queue to the hopper is idle for a
while), the anchor will explicitly close the link from its side
by sending a no-more signal. Upon receiving no-more, the
hopper knows that the anchor has finished sending. If at the
same time, the hopper also has an idle queue to the anchor,
then the hopper ends the current slot and schedules for a new

slot on different channel. We give a maximal length of a slot
to be 30ms. That is, even if the queue is always full, the
anchor and hopper have to end a slot after 30ms to yield the
time to serve other flows. Note that the length of slot is
actually determined by the traffic. This design has two
advantages compared to fixed size slots: 1) when the traffic is
light, the hopper may switch channel more frequency (with
shorter slots). When the load is high, the hopper switch
channel less frequently and thus trades delay for capacity; and
2) when a node serves multiple heterogeneous data-rate traffic,
it could divide the time with different slot size and give more
transmission time to high data-rate traffic. This, however,
would reduce the quantization overhead if fixed time slots are
used for all traffic. In our current implementation, all these
signaling packets can be piggybacked in a tiny 8-byte header
attached to data packets to further reduce the overhead.

E. Packet Schedule

Packet transmissions are scheduled based on the channel
schedules. As mentioned earlier, each node maintains a per-
neighbor FIFO queue. Once an anchor learns a hopper’s
presence, it will schedule the queue that targets at that hopper.
If there are more than one hopper come to the same channel
and communicate with the anchor, the anchor schedules the
corresponding queues in a round robin manner. When a
hopper switches to a new channel, it can start to schedule the
queue to the corresponding anchor immediately after sending
out the broadcast prob packet. Packets in priority queue are
always scheduled before any data packets. Since nodes in
Dichotomy are located in different channels, traditional
broadcast is not supported. In current implementation, we
simple use multiple transmissions to emulate a broadcast.

V. EVALUATIONS

A. Test-bed Experiments

We have a 10-nodes wireless test-bed that spans on the 4
th

floor of our office building. These nodes are mainly located in
stuff cubicles with two of them located in office and a
conference room. Paths between nodes are between 1 and 5
hops in length. The data rate between each one-hop link is
between 3M to 20Mbps. The experiments in this section are
run on 802.11a with the channel set containing 8 channels
from 36 to 64. The layout of our test-bed is illustrated in
Figure 4. Each node in the test-bed is a small VIA EPIA mini-
ITX box with 1.2G processor. Each node attaches a NetGear
2.4/5GHz 802.11a/g card which is based on Atheros AR5212
chipset. The NICs are operating in a modified ad hoc mode
with RTS/CTS disabled by default. In this mode, the 802.11
beacon is disabled. We do so to prevent the driver to merge
the nodes with same SSID into one channel. Although
Dichotomy can support different routing protocols, in our
test-bed, we implement a very simple source routing, which
selects a shortest-path based on a pre-installed database of
measured link data rate.

1) Evaluations on Chain Topologies
Figure 5 shows the throughput with and without

Dichotomy over a multi-hop chain from 1 hop to 6 hops. We
add a greedy UDP traffic from the same sender and measure
the achieved throughput with different hops. When there are
only one or two hops, Dichotomy may decrease the
throughput a bit due to the system overhead. This is because

the single radio becomes the bottleneck. If the path has more
than three hops, with Dichotomy, the throughput of the flow
stays steadily at around 8Mbps. This is because different links
of the multi-hop chain can be scheduled over different
channels; thereby it mitigates interference among nearby links.
However, if all nodes along a multi-hop path work on a
common channel, the throughput continues to drop as the path
gets longer before the spatial reuse takes place. This
demonstrates that, by exploiting channel diversity, Dichotomy
can effectively mitigate the interference of multi-hop path.

2) Evaluations with Multiple Flows
We test Dichotomy with multiple flows. We add four

flows in the test-bed, as shown in Figure 4. One flow is along
a four-hop path, two flows are one-hop and one two-hop flow
crosses all three flows. The throughput of each flow is shown
in Figure 6, and the right most bars in the figure show the
aggregated throughput, both with/without Dichotomy
respectively. The results are measured in average over 60
seconds. We see that with more flows, Dichotomy can exploit
multiple channels better since there are more opportunities to
schedule transmissions on parallel channels even in
randomized manner. In this four flow case, Dichotomy yields
a 100% throughput gain compared to the case when all nodes
have to work in the same channel. Note that another benefit
can be shown is that Dichotomy also improves the network
fairness. This is a side-effect of spreading transmissions in
different channels. By doing so, the interference on each
channel is reduced. It is well understood that 802.11 MAC
can show severe unfairness in congested channel in a multi-
hop network [13].

B. Simulations

In the previous subsection we evaluated our actual
Dichotomy implementation in an indoor test-bed environment.
However, given the limited resource we have, we are not able
to evaluate our system in a very large scale setting. Moreover,
we could not compare our system to some previous multi-
channel designs, which may be difficult to be implemented
with existing software/hardware. We address these issues by
conducting packet-level simulation on NS2.

In our simulations, we randomly place 100 nodes in
different sized area (200x200m, 500x500m and 800x800m) to
generate networks with different densities (dense, median,
and sparse) respectively. The transmission range is set to
100m. We randomly place 30 flows in the network and we
vary the load of each flow dynamically. The packet size of

each flow is 1024 bytes. In our evaluation, we mainly
compare Dichotomy with SSCH [2]. This is because SSCH is
a sort of Parallel Rendezvous approaches, which are known to
perform best among a wide range of multichannel solutions
[14]. Secondly, SSCH shares similar design principles with
Dichotomy that use localized and randomized algorithms in
channel and packet scheduling. So it is fair to compare them.
In SSCH, each node can change its slot schedule
independently, and it applies opportunistic synchronization
with its neighboring nodes. Note that SSCH relies on strict
global time synchronization of all nodes, while Dichotomy
does not require any time synchronization.

In our simulation, we set the channel switching overhead
to be 570us as stated in Section IV.B and the link speed is
54Mbps. For both SSCH and Dichotomy, the available
channel number is 11. We also compare single channel
802.11 as a baseline. For fair comparison, we set the slot time
of both SSCH and Dichotomy to be 10ms. In the simulation,
we simply synchronize each SSCH node in the network via a
“god”, thereby we do not count the potential time
synchronization overhead.

Figure 7 shows the network throughput with the increase
of load, which is an average over 5 runs in 3 random
topologies. As expected, both SSCH and Dichotomy yield
significant throughput gain compared to single channel
802.11. When the network is dense, SSCH slightly
outperforms Dichotomy. This is because that Dichotomy does
increase the length of some path (from one hop to two hops).
In a dense network, most of paths are very short. Therefore,
increasing path length by one may introduce considerable
overhead. However, such impact becomes less with the
increase of path length, such as in the median and sparse
network. SSCH generally has low performance when the
offered load is low on multi-hop paths as shown in Figure 7 (a)
and (b). This is because of two reasons. First, the slot in
SSCH has fixed time. So when the traffic is low, it wastes
transmission opportunities if the packets buffered are not
enough to sustain the slot time. Secondly, the opportunistic
synchronization could let some nodes out-of-sync with its
neighbors, which also wastes transmission opportunities when
the network is not highly multiplexed. Dichotomy does not
have these issues as anchors usually do not change their
channels. The slot time of Dichotomy is adaptive and a
hopper can always communicate to a neighboring anchor
anytime when it switches to the corresponding channel. When
the network has been highly overloaded, these two issues

 Figure 4. Layout of the test-bed. Figure 5 The performance over a multi-hop chain. We

show both the throughput and the gain.

Figure 6. Throughput of multiple flows

3

25

4 15

6

1

5

7

9

8

A
p

p
ro

.3
5
m

e
te

rs

-30

-20

-10

0

10

20

30

40

50

60

70

0

5

10

15

20

25

30

1 hop 2 hops 3 hops 4 hops 6 hops

Im
p

ro
v

em
en

t o
v

er
 8

0
2

.1
1

 (
%

)

E
n

d
-t

o
-e

n
d
 th

ro
u

g
h

p
u
t (

M
b

p
s)

Time(seconds)

Throughput(802.11) Throughput(Dichotomy) Improvement of Dichotomy(%)

0

5

10

15

20

25

30

35

Flow 5 ->25 (4h) Flow 6 ->8 (2h) Flow 8 ->9 (1h) Flow 6 ->1 (1h) Total

E
n

d
-t

o
-e

n
d
 t
h

ro
u

g
h

p
u
t
(M

b
p

s)

802.11

Dichotomy

become less significant for SSCH, where each node along a
path has eventually got many packets buffered. When load is
high, SSCH and Dichotomy yields similar throughput gain
compared to 802.11. Note that the throughput gain in our tests
does not increase proportionally to the channel used. This is
because we measure the end-to-end throughput of multi-hop
flows and these flows are not disjointed.

VI. RELATED WORK

There is a rich literature on using channel diversity to
improve the capacity of wireless multi-hop networks. Many
research focus on using multiple radios to exploit multi-
channel capability [9][10][11]. But Dichotomy is designed to
utilize multiple channels with a single radio.

Several approaches for single radio WMNs in previous
work propose enhanced MAC assuming fast channel
switching is available in hardware. In [15], the authors
proposed a Receiver Directed Transmission Protocol (RDT)
in which each node returns to a quiescent channel after each
transmission. If a node wants to send a frame to a neighbor, it
will switch to the quiescent channel of its neighbor and
transmit the frame. As mentioned earlier, RDT may cause
Multichannel Hidden Terminal as well as the Deafness
problem. To mitigate these problems, an extended RDT is
proposed that exploits a second tone radio [16]. McMAC [5]
further extends the idea with parallel rendezvous. Instead of
maintaining a quiescent channel, McMAC assigns each node
a home random hopping sequence. If a node wants send data
to a neighbor, it will synchronize to the home hopping
sequence of that neighbor. McMAC introduces random
channel assignment thereby reliefs the burden of selecting the
quiescent channels. But it needs pair-wise clock
synchronization. Similarly, McMAC still suffers from the
deafness problem. All these three schemes require packet-
level channel switching. Given the practical switching
overhead, these schemes may only be suitable for low speed
communications. In contrast, Dichotomy schedules channel at
link level. Thereby it amortizes the switching overhead even
in high data rate wireless networks like IEEE 802.11a. Further,
Dichotomy assigns anchors on almost fixed channels, which
effectively prevents the deafness problem.

MMAC [1] and SSCH [2] are link level multichannel
solutions based on IEEE 802.11. MMAC extends the 802.11
Power Saving Mode (PSM) and allocates fixed predefined
time frame for control and data communication respectively.
It leverages the default 100ms 802.11 super-frame as a slot. It
requires tight clock synchronization among the networked

nodes as communication parties need to return to control
channel simultaneously in the control time to negotiate, and
simultaneously jump to data channel to transmit. MMAC
proposes to use IEEE 802.11 beacons to achieve the clock
synchronization. However, it is well known that IEEE 802.11
TSF does not scale well with large multi-hop networks [12].
Using 802.11 TSF, MMAC schedules the channel in a coarse
unit, say 100ms, which cause a few drawbacks: 1) it is
possible to under utilize the channel if traffics are
heterogeneous; 2) the scheduling delay is large when a node
serves multiple flows; 3) it uses one channel for control, and
the control channel could be a potential bottleneck.

SSCH [2], on the other hand, uses randomized channel
hopping and optimistic synchronization. SSCH designs a
scheduling time unit of 10ms. It assumes an 80us switching
overhead, which seems to be too optimistic after considering
the practical overhead like guard-time. SSCH divides time
into slots and each slot has a separate pseudo-random hopping
sequence, with which SSCH can synchronize to different
nodes simultaneously. SSCH requires clock synchronization
among all nodes and every node needs to align its slot edges
with other nodes. It is not specified how to achieve so in the
original paper of SSCH, and it is recently shown that
achieving such global synchronization is very difficult [5].

Both MMAC an SSCH have not been implemented. But
our goal is to design a practical multi-channel link-level
protocol that can be implemented easily. The beauty of
Dichotomy is that it removes the complexity of global clock
synchronization and at the same time largely mitigates the
practical switching overhead by removing the guard-time.
This property actually makes Dichotomy implementable with
software modifications on COTS hardware. Dichotomy
schedules channels in an adaptive manner with a maximal
length of 30ms, with which Dichotomy can flexibly allocate
transmission time to heterogeneous traffic.

There is also a class of approaches that schedule channel
at session-level, such as MCRP [7] and CBCA [8], which
assign the nodes along one path to a same channel. The
difference between MCRP and CBCA lies in that MCRP still
allows nodes to switching channels if they are at the
intersecting points of two flows; while CBCA will force all
nodes to be in one channel which belong to a component
formed by intersecting routes. Such approaches miss the
opportunity to utilize the multi-channel within a path or a
component, and therefore have least flexibility to exploit
channel diversity. Moreover, although session-level
approaches ease the design in link layer, they actually

(a) Sparse Network (b) Median Network (c) Dense Network

Figure 7. Network throughput vs offered load in ns2 simulation with 54Mbps channel in networks with different density.

0

5

10

15

20

25

30

35

40

45

50

1 5 10 15 20 25

N
et

w
o

rk
 t

h
ro

u
gh

p
u

t
(M

b
p

s)

Offered per flow load (Mbps)

SSCH Dichotomy 802.11

0

5

10

15

20

25

30

35

40

45

1 5 10 15 20 25

N
et

w
o

rk
 t

h
ro

u
gh

p
u

t
(M

b
p

s)

Offered Per flow load (Mbps)

SSCH Dichotomy 802.11

0

20

40

60

80

100

120

140

160

180

200

1 5 10 15 20 25

N
et

w
o

rk
 t

h
ro

u
gh

p
u

t(
M

b
p

s)

Offered Per flow load (Mbps)

SSCH Dichotomy 802.11

complicate the design in routing layer. To the best of our
knowledge, we are not aware of any implementation of
session-based approaches in real systems.

VII. CONCLUSIONS

In single-radio 802.11 wireless mesh networks, capacity is
limited if all nodes have to communicate using the same
channel. To enable nodes to exploit multi-channel diversity,
we design Dichotomy, which is a practical architecture that
operates at link-layer and performs channel scheduling at fine
granularity. Dichotomy is designed to operate without clock
synchronization, using commercial-off-the-shelf hardware.
We implement Dichotomy as a software shim layer lying
between IP and MAC layer. Dichotomy avoids clock
synchronization by strategically selecting nodes as anchors
whose channels seldom change. We design a localized
assignment algorithm that maximizes channel diversity.

We deploy and evaluate Dichotomy both on a real test-
bed and in NS2 simulator. Our results demonstrate that
Dichotomy handles practical overhead well and effectively
boosts network throughput. Our experience suggests that
performing multi-channel scheduling at link-level is actually
practical in existing computer systems.

REFERENCES

[1] Jungmin So and Nitin H. Vaidya. A multi-channel MAC protocol for
ad hoc wireless networks. Technical report, UIUC, 2003.

[2] P. Bahl, R. Chandra, and J. Dunagan. Ssch: Slotted seeded channel
hopping for capacity improvement in ieee 802.11ad-hoc wireless
networks. In MobiCom, 2004.

[3] S.-L. Wu, C. Y. Lin, Y. C. Tseng and J. P. Sheu. A New Multi-
Channel MAC Protocol with On-Demand Channel Assignment for
Mobile Ad Hoc Networks. I-SPAN 2000.

[4] H. So, G. Nguyen, and J. Walrand. Practical Synchronization
Techniques for Multi-Channel MAC. In MobiCom 2006.

[5] H. So. Design of a Multi-Channel Medium Access Control Protocol
for Ad-Hoc Wireless Networks. UCB/EECS-2006-54, 2006

[6] A. Tzamaloukas and J.J. Garcia-Luna-Aceves. Channel-Hopping
Multiple Acess. In IEEE ICC 2000.

[7] P. Kyasanur and N. Vaidya. A routing protocol for utilizing multiple
channels in multi-hop wireless networks with a single transceiver. In
International Conference on Quality of Service in Heterogeneous
Wired/Wireless Networks (QSHINE). Aug 2005.

[8] R. Vedantham, S. Kakumanu, S. Lakshmanan and R. Sivakumar.
Component Based Channel Assignment in Single Radio, Multi-
channel Ad Hoc Networks. In Mobicom 2006.

[9] A. Raniwala T. Chiueh. Architecture and Algorithms for an IEEE
802.11-Based Multi-Channel Wireless Mesh Network. Infocom 2005.

[10] K. N. Ramachandran, E. M. Belding, K. C. almeroth, and M.
Buddhikot. Interference-aware Channel Assignment in Multi-radio
Wireless Mesh Networks. IEEE Infocom 2006.

[11] P. Kyasanur and N. Vaidya. Routing and interface assignment in multi-
channel multi-interface wireless networks. Technical Report, 2004.

[12] J. Elson and K. Romer. Wireless Sensor Networks: A New Regime for
Time synchronization. ACM SIGCOMM CCR, 2002.

[13] S. Xu and T. Saadawi. Does the IEEE 802.11 MAC Protocol Work
Well in Multihop Wireless Ad hoc Networks? IEEE Communications
Magazine, 2001.

[14] J. Mo, H. So, and J. Walrand. Comparison of multi-channel mac
protocols. International Symposium on Modeling, Analysis and
Simulation of Wireless and Mobile Systems, October, 2005.

[15] N. Shacham and P. King. Architectures and performance of
multichannel multihop packet radio networks. IEEE Journal on
Selected Areas of Communication, SAC-5(6):1013–1025, 1987.

[16] R. Maheshwari, H. Gupta and S. Das. Multichannel MAC Protocols
for Wireless Networks. IEEE SECON 2006.

[17] K. Tan, H. Wu, L, Li, Q. Zhang, Y. Zhang. Dichotomy: A Practical
Architecture for Multi-channel IEEE 802.11 Multi-hop Networks.
http://www.research.microsoft.com/~kuntan/index_files/dichotomy-
tr.pdf

APPENDIX

A. Proof of Theorem 1
The reduction is from vertices coloring, which is to decide whether

a given Graph can be K-colorable. We construct a graph G′ =
(V′, E′) as follows. For each node u, we add u, pu to V′. We add

(u, pu) to E′. For each edge u, v ∈ E, we add a node nuv to V′, and

add edge (u, nuv) , (v, nuv) to E′ . Assume each edge e has a

capacity c(e). For each node u, we create a flow destined to its

pu with data rate equals the edge capacity. We assume two edges

interfere with each other iff an edge exists between the two

transmitters. Since there is only one path between u and pu , traffic

will be sent directly. In order for all flows to be active

simultaneously at all times, for all u, v ∈ E , they must

communicate with pu and pv using different channels respectively.

Such an edge channel assignment corresponds to a valid Dichotomy

assignment. For example, for all u ∈ V, assign all pu as hoppers,

and assign all u as anchors which takes the channel used in
 u, pu communication. Further assign all nuv nodes to hoppers. It

is easy to see that the two properties are satisfied. Thus, a

Dichotomy assignment that achieves the maximum throughput c(e)

for each flow on edge e = (u, pu) exists iff G is K colorable. ∎

B. Proof of Theorem 2
Due to the space limitation, we only sketch the proof here. We need

to show the following three cases cannot happen.

1. Suppose hopper and anchor assignment converges. However,

there exists a node whose channel assignment keeps changing;

2. Suppose there is a node whose role keeps changing, i.e. from

hopper to anchor to hopper.

3. Suppose there is no assignment changes committed. However,

there exists at least one node who keeps declare a role change,

then aborts.

We proof by contradiction. The intuition for the convergence is that,

once invariant ℓ is satisfied at a node. The only changes might

happen is Rule 5 and Rule 6 which tries to prevent either too many

anchors or hoppers. As we maintain the invariant and impose

ordering on which node should change first, Rule 5 and 6 does not

result in loops. For a complete proof, please refer [17] ∎

C. Proof of Theorem 3
We look at each edge u, v ∈ E0. There are the following cases:

(1) one is a hopper, the other is an anchor; (2) both are hoppers; (3)

both are anchors with the same channel; (4) both are anchors with

different channels. For the first and third case, u, v ∈ E. For case

(2), there must be a common neighbor w such that w is an anchor.

Otherwise, according to Rule 3, u or v will change to an anchor.

This contradicts to the fact that the assignment is converged. Thus,

for case (2), u, v is connected by a 2-hop path (u, w) and (v, w) in E.

For case (4), they must share a common hopper w . Otherwise,

according to Rule 4, u or v will change channels. This contradicts to

the fact that the assignment is converged. Thus, u, v is connected by

a 2-hop path (u, w) and (v, w) in E . Since each edge in G0 is

connected either directly in G or through a 2-hop path, this

completes the proof. ∎

