
DigiMetro – An Application-Level Multicast System for
Multi-party Video Conferencing

Chong Luo, Jiang Li, and Shipeng Li

Microsoft Research Asia

Abstract:
 The increasing demand for multi-party video conferencing
has aroused the research interest in the underlying multicast
support. In this paper, we propose DigiMetro, an
application-level multicast system tailored to small and
impromptu video conferencing. Breaking through the
conventional wisdom to use shared overlay to handle multiple
data sources, DigiMetro organizes the data delivery routes as
source-specific trees, which are first constructed by a local
greedy algorithm and then gradually improved by a global
refinement procedure. Extensive simulation experiments
demonstrate the efficiency of both algorithms. Moreover,
DigiMetro is able to handle different video bit rates and
provides with different services over voice/video streams.

I. INTRODUCTION

The Internet has become an essential part of our daily
life. Many people are now stay connected through emails and
instant messenger (IM) services. However, with the
development of multimedia technologies, people can no
longer settle for the conventional text conversations. There
are increasing demands for real-time multi-party voice/video
conferencing. Similar requests also rise from long-distance
learning, telemedicine, and global business. They together
contribute to the demand for multicast support to such
small-scale video conferencing applications.

The most essential characteristic of this type of
application is the few-to-few semantic. In contrast to the
one-to-many content distribution systems, this type of video
conferencing is typically small, with fewer than ten
participants, and the membership usually changes rapidly:
any member may join, leave or invite other members to the
conference at any time. Besides, there are usually as many
data sources as the number of conference members. For each
data source, at least two types of media streams are involved,
voice and video, both of which are highly bandwidth
intensive. On the other hand, most Internet users have very
limited bandwidth, and the Internet connections are of great
diversity, including dial-up, DSL, cable modem and LAN. It
is very challenging to serve all these types of users.

The more critical challenge comes from the real-time
requirements. As we know, video conferencing is a real-time
application involving two-way communication. It has very
stringent requirements on end-to-end latency. This is different
from the media streaming application, which only has
one-way data transmission and allows a few seconds of
buffering time at the receiver side.

In this paper, we designed DigiMetro, an application
level multicast system that is tailored to the small-scale video
conferencing application. The rest of the paper is organized
as follows: Section II reviews the existing multicast systems
and discusses why the existing techniques do not suffice to
support the application we addressed. Section III gives an
overview of DigiMetro. The multicast routing algorithms and
protocols are described in Section IV. Section V presents
results from extensive simulation experiments. We conclude
and point out future directions in Section VI.

II. RELATED WORK

The evolution of multicast technology has experienced
two stages. The earlier stage is known as IP multicast. The
idea was first introduced by Steve Deering [1], who
suggested that multicast related functionalities should be
implemented at the network layer. However, some inherent
architectural problems have impeded the global deployment
of IP multicast, such as high complexity, poor scalability and
lack of security against malicious attacks. In such a condition,
some researchers made a detour by pushing the multicast
related functionalities to the application layer.

Research on application level multicast (ALM) usually
involves both protocol design and infrastructure planning.
The latter is the focus of some early work such as Scattercast
[2] and Overcast [3], two ALM systems designed for Internet
content distribution. They differ from other ALM systems in
that they purposely place a collection of nodes, at strategic
locations in the network. This additional cost may be
worthwhile for a large content distribution system. However,
it is definitely too expensive for small and impromptu video
conferences.

The majority of ALM systems are purely built on end
systems and do not require extra infrastructure support. They
are mostly targeting large-scale applications, involving
thousands of end systems. Some of them, such as NICE [4]
and SpreadIT [5], take the responsibility of node management
as well as building multicast trees for media streaming. Some
others employ the existing P2P systems for providing object
management and routing functions. Systems in this category
include SCRIBE [6], Bayeux [7] and CAN-multicast [8],
which are built on top of Pastry, Tapestry, and CAN,
respectively. For all the multicast systems listed in this
paragraph, the main objective is to reduce the network
resource usage and to balance the link stresses of the
underlying transmission routes. However, they do not put

much effort in optimizing the end-to-end delay performance,
which is very important for a real-time system.

Small-scale ALM systems provide a contrast to the
large-scale ALM systems. They normally do not rely on
hardware, nor do they have any specific configuration over
the infrastructure. Since the group size is small, the group
state maintenance can be realized simply by keeping a full
member list at a rendezvous point or on every multicast
participant. The focus of system design is on the multicast
routing. They differ from each other in the following aspects:
(1) centralized or distributed control over membership and
tree maintenance; (2) mesh-first or tree-first multicast tree
construction strategy; (3) share tree or source-specific tree for
data delivery.

In End System Multicast [9], end systems self-organize
into an overlay structure using a fully distributed protocol
named Narada. Narada adopts a mesh-first strategy in
constructing multicast trees. It forms a rich connect graph
(called a mesh) and then generates source-specific data
distribution trees based on the mesh. The disadvantage of
Narada is that there is no control over the resulting spanning
tree for a given mesh. The concerns come from two aspects:
(1) A high quality mesh does not necessarily result in
efficient multicast trees for all data sources; (2) Narada does
not consider the effect of multiple trees over the same mesh.
Thus, in their later work [10] on using Narada for
videoconferencing, they assume a single source at any point
in time.

Differing from Narada, ALMI [11] is a centralized
protocol. Each ALMI session has a session controller which
takes all the responsibility of membership registration and
multicast tree maintenance. The multicast tree is a shared tree
constructed with a tree-first strategy. The session controller
periodically re-calculates a new tree based on the end-to-end
measurements collected by session members. Although a
shared tree is easy to manage, it does not have as good delay
properties as source-specific trees. The centralized design
also causes two problems: (1) if the controller fails, the
multicast tree has to stay unchanged and thus is vulnerable to
network changes; (2) During the switch of multicast trees,
there will be evident turbulence in performance.

The protocol for multi-sender 3D video conferencing
[12] uses a hybrid approach of the above two systems. It
adopts a centralized approach similar to ALMI for tree
management and uses a mesh-first strategy similar to Narada
for tree generation. The novel idea in this protocol is to use a
double-algorithm approach for participant joining. If the local
algorithm fails to attach a new receiver, the global algorithm
will be used to investigate a rearrangement of all trees.
However, it still has the following shortcomings that prevent
it from practical deployment: (1) it suffers from the
one-point-failure problem just as ALMI does; (2) it does not
take the dynamic nature of the Internet into consideration and
assumes static available bandwidth in calculating multicast

trees; (3) The second algorithm re-arranges all trees without
considering their original topologies, thus there will be
inevitable jitters and long latencies during the switching of
the trees.

To sum up, despite the great number of application level
multicast systems, none of them are purposely designed or
practically employable for video conferencing systems with
few-to-few semantics.

III. DIGIMETRO FOR SMALL-SCALE VIDEO CONFERENCING

In this paper, we propose DigiMetro, an application
level multicast system tailored to support small-scale
multi-party video conferencing.

DigiMetro is a fully distributed protocol. All the
members are logically equal: each of them maintains a
complete member list and takes full charge of its own
multicast tree. DigiMetro makes a clear distinction between
the concept of a conference and that of a multicast session.
While a conference is made up of a group of members, a
multicast session is composed of a single data source and a
number of receivers. Thus, in a multi-party conference, there
are multiple multicast sessions, since every conference
member is a data source.

To deal with the multiple data sources, the conventional
wisdom is to use shared overlay as data delivery trees for all
the multicast sessions. The management cost is much less
than that of using multiple source-specific trees. However,
shared overlay does not have as good delay properties as
source-specific trees do [13]. In a small-scale real-time
conferencing application, we argue that the better delay
properties should prevail over the management considerations.
Thus, DigiMetro opts for source-specific multicast trees to
deliver media data.

In constructing the multicast trees, many factors need to
be considered, such as delay, bandwidth, jitter and cost. The
problem of finding the best delivery routes subject to multiple
metrics has proved to be NP-complete [14]. On the other
hand, to use a single metric as the indicator in path selection
is obviously not sufficient for supporting multimedia
applications. Thus, we designed a two-step tree construction
algorithm based on both delay and available bandwidth
measurements.

As is well known, the Internet is changing dynamically.
The end-to-end delay and the available bandwidth between
conference members are also not static. Thus, we need a
mechanism to duly measure these two indicators in order to
build efficient multicast trees. In DigiMetro, conference
members periodically probe each other to obtain the
end-to-end delay. The probing requests are also used for
member failure detection: if member A does not receive a
probing message from member B over a period of time, it
diagnoses B as having a network failure. This is also referred
to as the heart-beat mechanism. In DigiMetro, the heart-beat

(probing) interval is 5 seconds, and the failure diagnostic
threshold is 20 seconds.

As another important metric for multicast routing, the
available bandwidth along a delivery path should be
examined. We adopt the Packet-Pair [15] method to measure
the available bandwidth. In our current implementation, each
member probes others in turn with a pair of 1.5 KB UDP
packets at an interval of 10 seconds. Thus, in a typical
five-member conference, the available bandwidth between
every two members is determined every 40 seconds.

For every 5 seconds, each member will broadcast its
updated measurements in the conference. The network
overhead associated with the three recurrent tasks is
estimated in Table 1. We can see that the overall overhead is
less than 4 kbps, which is affordable by most Internet users.

TABLE 1 NETWORK OVERHEAD ESTIMATION
Task Packet size Frequency Overhead
Delay measurement 52 bytes 8 pck/5 sec 0.665Kbps
Bandwidth measurement 1500 bytes 2 pck/10 sec 2.4Kbps
Measurements update 84 bytes 4 pck/5 sec 0.538Kbps

In addition to basic multicast support, DigiMetro offers
two special features at the QoS (Quality of Service) level.

Accommodate different bit rate: This feature is designed
in conformity to the diversity of current Internet connections.
The access rates vary greatly from dial-up to broadband to
LAN. In order to accommodate users of all types of
connections in the same conference, we allow each user to
use the affordable voice/video bit rate. DigiMetro is able to
handle multiple data delivery trees of different bit rates.

Differentiate service over media streams: In a typical
video conference, both voice and video streams are involved.
While video enriches a conference, audio is a necessity for
efficient communication. DigiMetro offers a different service
over different types of streams and the application can assign
the priority for each stream type. This is realized by
constructing separate multicast trees for different streams and
providing a communication mechanism for them to negotiate
bandwidth usage.

IV. MULTICAST ROUTING ALGORITHMS AND PROTOCOLS

DigiMetro adopts the tree-first strategy to construct the
multicast trees. DigiMetro excels over other ALM systems by
using a two-step process in multicast tree maintenance: the
source-specific trees are first constructed by a local greedy
algorithm and then gradually improved by a global
refinement algorithm. Both schemes are based upon delay
and bandwidth measurements and share the same goal to
optimize the data transmission latency under the given
bandwidth constraints.

A. Multicast Tree Construction

DigiMetro is a distributed protocol in which each data
source takes care of its own data distribution tree. When a

data source S receives a SUBSCRIBE request from another
member M, it tries to attach M to its multicast tree using one
of the following schemes:
Scheme 0: Attach M to S directly;
Scheme 1: Attach M to a selected tree node P (inner node or
leaf node) and leave all the existing links unchanged;
Scheme 2: M replaces the position of an existing node C and
adds C to its own child set.

The resulting topologies of the three schemes are shown in
Fig. 1.

Fig. 1. Possible topologies of a multicast tree after the

new subscription request is accepted

To be descriptive, the construction algorithm will attach
M to the root of the tree if the available bandwidth of S
allows. Otherwise, it compares the cost of the other two
schemes and chooses the one with less cost. Here, the cost of
a scheme is defined as the largest transmission latency from S
to M or M’s descendants in the multicast tree produced by
this scheme.

In practice, we have a preference for scheme 1 over
scheme 2, because scheme 1 does not bring any change to the
existing transmission routes and results in better stability.
Thus, we choose scheme 2 only when its profit gain over
scheme 1 exceeds a given threshold. Fig. 1 shows the three
possible topologies after M joins the multicast tree rooted at
node S.

If no member has available bandwidth, the subscription
request will be queued in a wait list and the multicast tree will
stay unchanged. Remember that we offer different services
over different streams and favor voice streams. Thus, when
an audio subscription request is not fulfilled, the video tree
controller will sacrifice itself by stop feeding one of its
subscribers, so that the audio request can be accommodated.

Since the multicast trees are maintained in a distributed
manner, it is necessary to define a set of conventions, or
so-called protocol, to regulate the behavior of changing
routes: when a data source intends to change its multicast tree,
it sends a new CHILDRENSET to the member P whose children
set should be updated. On receiving this message, P accepts
as many children as its available bandwidth allows. If there
are some unfulfilled nodes due to the concurrent actions, it
returns a SATURATED message to S, bringing along its current
bandwidth capacity as well as the list of unattached nodes, so
that S is able to rearrange these nodes based on the updated
bandwidth information.

S S S S

M

M
M

Relative to the SUBSCRIBE request, if a member M does
not want to receive a certain stream anymore, it can send an
UNSUBSCRIBE message to the data source S. Then S will
remove M from the multicast tree and rearrange M’s children
if it has any.

B. Multicast Tree Refinement

The tree construction algorithm is a local greedy
algorithm. Each data source tends to use its bandwidth
resource to transmit its own data. This results in unbalanced
bandwidth usage amongst multicast trees. Fig.2. shows two
multicast trees in a five-member conference before and after
the refinement process. The real lines represent the multicast
tree rooted at member A, while the dashed lines represent the
tree rooted at member B. Before refinement (as Fig.2a.
shows), member A distributes its data in Unicast way, which
uses up its bandwidth resource. Thus, it is unable to relay
data for member E in the multicast tree of member B. As a
result, the transmission route from B to E (i.e. B→C→D→E)
is extremely long.

Fig. 2. An example of the multicast tree adjustment in
the refinement algorithm

Moreover, the membership in each multicast session
changes rapidly, as does the network dynamics. There is a
need to constantly refine the multicast trees to get better
performance without bringing perceptible jitters. The
refinement scheme calls for cooperation among data sources,
so that more subscription requests can be accommodated and
the end-to-end latency on the high side can be shortened.

The refinement procedure is a five-step process. It is
triggered when there are unsatisfied requests in the waiting
list, or there are extremely long transmission routes that are
caused by irrational topology. The pseudo code for the first
two steps, simplified for clarity, is shown in Fig. 3.

The entire refinement procedure can be described as
follows:

Step 1: Data source S generates and broadcasts an ASKHELP
message which is a parent candidate list for L. Each node N
on the list, if it has enough available bandwidth to adopt L as
a child, can improve the transmission latency from S to L.

Fig. 3. Multicast tree refinement algorithm (partial)

Step 2: Upon receiving the ASKHELP message, other tree
controllers T will examine whether they can reduce the
bandwidth usage of any of the nodes on the list, and then
reply with an ANSWERHELP message, carrying along the cost
of the rearrangement.

Step 3: After node S has collected all the answers from other
members, it compares the proposed schemes and selects the
one that has the minimum cost. S will send a HELP message to
the member B that offers the best scheme.

Step 4: B checks whether the offer is still valid, if so, it
replies with an ACKHELP message after it rearranges its
distribution tree; if not, it sends a REFUSEHELP message
indicating that some conditions have changed and it is not
able to keep the promise.

Step 5: If an ACKHELP message is returned, S rearranges L.
Otherwise S aborts the current refinement session and waits
for the next chance to improve the performance.

We can see from Fig.2b. that after the refinement
procedure, the end-to-end latency on the high side (i.e. the
latency along B→C→D→E) is greatly shortened. The new
transmission route B→A→E is achieved by balancing the
bandwidth resource usage among the multicast trees.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results from
extensive simulation tests to validate the tree management
algorithms in DigiMetro.

A. Simulation Setup

In our simulation, we use NS-2 as the event simulator
and adopt the transit-stub topology [16] to model the network.
In each test run, we randomly pick a few nodes to which the
end hosts are attached. We model the last hop uplink

A A
B

C C
D D

E

T.ProcessAskHelp (parentCandidate, L.Depth ())
{
 for (each node N in ParentCandidates)
 cost = N.ReArrangeChildren ();
 if (cost < L.Depth ())
 OfferHelpCandidates.push (pair(N,cost));
 T.AnswerHelp (S, OfferHelpCandidates);
}

Input: data source S and node L whose latency needs to
be improved
Refine (S, L)
{
 for (each node N in S.ReceiverList)
 if (N.Depth () + Delay (N, L) < L.Depth ())
 ParentCandidates.push (N);
 S.BroadcastAskHelp(ParentCandidates,L.Depth());
}

B

E

(a) before refinement (b) after refinement

bandwidth for each host and use this value in constructing the
multicast trees. This simplification will not affect the validity
of our experiment, since the last-hop bandwidth is often the
performance bottleneck for broadband users, and should be
the most important consideration of applications such as
overlay multicast [17].

Reference [17] also indicates that the average uplink
bandwidth is 212Kbps. Thus, we model the bandwidths of
broadband users as a uniform distribution averaged at
212Kbps. The lower bound is 80Kbps, which is
approximately the sum of the voice and video bit rates
(13Kbps and 56Kbps respectively). Besides broadband users,
we consider LAN users as well. For them, the last hop
bandwidth is not the transmission bottleneck, yet we limit
their total upload bandwidth to 1Mbps.

There are a few varying parameters that will affect the
performance of DigiMetro. They are:

1) Size of the topology (ST): the larger the size is, the better
it simulates the real Internet. In our simulations, we used
ST=100 and 600.

2) Size of the conference (SC): we fix the number of
conference members at 5 except for the scalability test.

3) Percentage of LAN users (PL): the larger this percentage
is the more abundant the bandwidth resources. In our
experiments, PL=50% and 25% are used. \

B. Evaluation Metrics

In order to evaluate the performance of the multicast
trees produced by DigiMetro, we compared our multicast
routes with that of IP-multicast and naïve Unicast on the
following metrics:

1) Relative Delay Penalty (RDP): the ratio of the delay
between two members along the multicast tree to the
unicast delay between them [9].

2) Rejection Rate: the percentage of rejected media
(audio/video) subscription requests by a given routing
algorithm [18].

By definition, both IP-multicast and naïve Unicast give
the lower bound of RDP at 1.0. In terms of the rejection rate,
IP-multicast gives the lower bound at 0% while Unicast
reaches the upper bound for source-specific approaches.
Other ALM systems also evaluate on relative resource usage
and link stress [9]. However, these metrics are not important
for a small-scale conferencing application.

C. Experimental Results

1) Tree construction algorithm

The first experiment is conducted on four types of data
sets. In each test run, five conference members join the
conference at fixed intervals. Every member subscribes to all
the other audio/video streams upon joining. After all the

members have stabilized, we measure the rejection rate for
every data source and the RDP for each source-receiver pair.
Table 2 summarizes the results.

TABLE 2
EXPERIMENTAL RESULTS ON TREE CONSTRUCTION ALGORITHM

Rejection rate RDP
Unicast DigiMetro Unicast DigiMetro Data set

(TS-ST-PL) A & V Audio Video A & V Audio Video
TS-100-50% 0.17 0 0.01 1.0 1.05 1.14
TS-600-50% 0.17 0 0.01 1.0 1.06 1.25
TS-100-25% 0.27 0 0.09 1.0 1.12 1.43
TS-600-25% 0.27 0 0.09 1.0 1.11 1.39

In this table, the first column describes the data set. They
are featured by the topology size and LAN user percentage.
On each data set, 100 tests are conducted and the average
results are listed. We can see that DigiMetro can achieve a
very low rejection rate at small RDP, even when the
bandwidth resource is limited.

The table also shows that the topology size does not have
much influence on the rejection rate and RDP performance.
However, the availability of bandwidth resource plays an
important role in both evaluation metrics.

We do not compare the performance of our
source-specific trees with that of a shared overlay as used in
ALMI [11]. The reason is that, on more than half of the data
sets, the shared overlay cannot even be constructed because
of the great heterogeneity of the last-hop bandwidths.

Besides, DigiMetro discriminates in favor of the audio
stream. It guarantees zero rejection rates for audio
subscription requests and keeps a low RDP for audio
transmission.

2) Refinement algorithm

We did 100 tests on the TS-100-25% data set. After all
members have joined the conference, each member randomly
unsubscribes from an audio and a video stream. Then, the
conference members are allowed to start the refinement
procedure. We compared the performance metrics before and
after the refinement procedure.

The results show that the refinement procedure can
reduce the RDP of the member that has the maximal
end-to-end delay to data source by 21.5% and 26.6% for
voice and video respectively. The improvement over the
maximal absolute end-to-end latency is 6.3% and 7.5% for
voice and video respectively.

3) Varied bit rate

DigiMetro is able to handle multiple bit rates in the same
conference so as to fit different types of network users. In this
experiment, we demonstrate the advantages of
accommodating varied bit rate by offering three options for
the video bit rate: 28.8Kbps, 56Kbps and 128Kbps. Each
member selects the bit rate according to its bandwidth
capacity, e.g. LAN users choose 128Kbps; users having less

than 140Kbps bandwidth choose 28.8Kbps and others pick
56Kbps.

We did 100 tests on the TS-100-25% data to compare
our varied bit rate scheme with the conventional fixed bit rate
(56Kbps) scheme. The rejection rate of video subscription
requests is reduced from 9% to 7%, the average RDP of a
video distribution tree is reduced from 1.43 to 1.26, and the
average video throughput is increased from 208.8Kbps to
265.7Kbps.

The result indicates that by serving different users with
different bit rates, we can greatly reduce the average RDP
and rejection rate while achieving even larger throughput.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced the system architecture and
protocol design of DigiMetro, an application-level multicast
system for multi-party real-time communication applications.
We broke through the conventional wisdom to use shared
overlay to handle multiple data sources and adopted
source-specific trees for each voice/video source. The
multicast trees are constructed by a local greedy algorithm
followed by a global refinement process.

In view of the heterogeneity of the Internet connections,
DigiMetro offers differentiated service over different streams
and discriminates in favor of audio data. In addition,
DigiMetro is able to handle different bit rates, thus allows
low bandwidth users to participate in a video conference with
a transmission rate they can afford.

Directions for future work may include auto-adjustment
of voice/video bit rate in response to the dynamic changes of
network conditions and multicast membership.

REFERENCES

[1] S. Deering, “Multicast routing in internetworks and
extended LANs,” in Proceedings of the ACM SIGCOMM 88,
pp. 55-64, August 1988.
[2] Y. Chawathe, S. McCanne, and E. Brewer, "An
architecture for Internet content distribution as an
infrastructure service," Ph.D. Thesis, University of California,
Berkeley, December 2000.
[3] J. Jannotti, D.K. Gifford, K.L. Johnson, M.F. Kaashoek,
and J.W. O'Toole, Jr. "Overcast: Reliable Multicasting with
an Overlay Network," In Proceedings of the Fourth
Symposium on Operating System Design and Implementation
(OSDI), October 2000
[4] S. Banerjee, B. Bhattacharjee, and C. Kommareddy,
"Scalable application layer multicast," Technical report,
UMIACS TR-2002

[5] H. Deshpande, M. Bawa, and H. Garcia-Molina,
"Streaming live media over peer-to-peer network," Technical
report, Stanford University, 2001

[6] M. Castro, P. Druschel, A.M. Kermarrec, and A.
Rowstron, "SCRIBE: A large-scale and decentralized
application-level multicast infrastructure," IEEE Journal on
Selected Areas in communications (JSAC), 2002

[7] S.Q. Zhuang, B.Y. Zhao, A.D. Joseph, R.H. Katz, and J.
Kubiatowicz, "Bayeux: an architecture for scalable and
fault-tolerant wide-area data dissemination," In Proc. of
NOSSDAV’01, June 2001

[8] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker,
“Application-level multicast using content-addressable
networks,” In Proc. of NGC '01, London, England, 2001.

[9] Y. Chu, S. Rao, and H. Zhang, "A case for end system
multicast," in Proceedings of ACM SIGMETRICS, pp. 1-12,
June 2000.

[10] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang. “Enabling
conferencing applications on the Internet using an overlay
multicast architecture,” In Proc. ACM SIGCOMM 2001, San
Diago, CA, August 2001.

[11] D. Pendarakis, S. Shi, D. Verma and M. Waldvogel,
"ALMI: an application level multicast infrastructure," in
Proceedings of the 3rd Usenix Symposium on Internet
Technologies & Systems (USITS), March 2001.

[12] M. Hosseini, N. Georganas, "Design of a multi-sender
3D videoconferencing application over an end system
multicast protocol," in Proc. of ACM Multimedia, November
2003.

[13] L. Wei and D. Estrin, “The trade-offs of multicast trees
and algorithms,” in Proc. of ICCCN '94, 1994

[14] Z. Wang and J. Crowcroft, "Bandwidth-delay based
routing algorithms," pp. 2129-2133, GLOBECOM'95, 1995.

[15] K. Lai, M. Baker, "Measuring link bandwidths using a
deterministic model," ACM SIGCOMM'00, vol. 30, issue 4,
Auguest 2000

[16] E. Zegura, K. Calvert, S. Bhattacharjee, "How to model
an internetwork," in Proc. of INFOCOM'96, pp594-602,
vol.2, March 1996.

[17] K. Lakshminarayanan, V.N. Padmanabhan, "Some
findings on the network performance of broadband hosts," in
Proc. of IMC'03, Oct 2003.

[18] S. Shi and J. Turner, “Routing in overlay multicast
networks,” in Proc. of INFOCOM’02, vol. 3, pp. 1200-1208,
June 2002.

