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Abstract: 
 The increasing demand for multi-party video conferencing 
has aroused the research interest in the underlying multicast 
support. In this paper, we propose DigiMetro, an 
application-level multicast system tailored to small and 
impromptu video conferencing. Breaking through the 
conventional wisdom to use shared overlay to handle multiple 
data sources, DigiMetro organizes the data delivery routes as 
source-specific trees, which are first constructed by a local 
greedy algorithm and then gradually improved by a global 
refinement procedure. Extensive simulation experiments 
demonstrate the efficiency of both algorithms. Moreover, 
DigiMetro is able to handle different video bit rates and 
provides with different services over voice/video streams. 
 

I. INTRODUCTION 

The Internet has become an essential part of our daily 
life. Many people are now stay connected through emails and 
instant messenger (IM) services. However, with the 
development of multimedia technologies, people can no 
longer settle for the conventional text conversations. There 
are increasing demands for real-time multi-party voice/video 
conferencing. Similar requests also rise from long-distance 
learning, telemedicine, and global business. They together 
contribute to the demand for multicast support to such 
small-scale video conferencing applications.  

The most essential characteristic of this type of 
application is the few-to-few semantic. In contrast to the 
one-to-many content distribution systems, this type of video 
conferencing is typically small, with fewer than ten 
participants, and the membership usually changes rapidly: 
any member may join, leave or invite other members to the 
conference at any time. Besides, there are usually as many 
data sources as the number of conference members. For each 
data source, at least two types of media streams are involved, 
voice and video, both of which are highly bandwidth 
intensive. On the other hand, most Internet users have very 
limited bandwidth, and the Internet connections are of great 
diversity, including dial-up, DSL, cable modem and LAN. It 
is very challenging to serve all these types of users. 

The more critical challenge comes from the real-time 
requirements. As we know, video conferencing is a real-time 
application involving two-way communication. It has very 
stringent requirements on end-to-end latency. This is different 
from the media streaming application, which only has 
one-way data transmission and allows a few seconds of 
buffering time at the receiver side.  

In this paper, we designed DigiMetro, an application 
level multicast system that is tailored to the small-scale video 
conferencing application. The rest of the paper is organized 
as follows: Section II reviews the existing multicast systems 
and discusses why the existing techniques do not suffice to 
support the application we addressed. Section III gives an 
overview of DigiMetro. The multicast routing algorithms and 
protocols are described in Section IV. Section V presents 
results from extensive simulation experiments. We conclude 
and point out future directions in Section VI. 

II. RELATED WORK 

The evolution of multicast technology has experienced 
two stages. The earlier stage is known as IP multicast. The 
idea was first introduced by Steve Deering [1], who 
suggested that multicast related functionalities should be 
implemented at the network layer. However, some inherent 
architectural problems have impeded the global deployment 
of IP multicast, such as high complexity, poor scalability and 
lack of security against malicious attacks. In such a condition, 
some researchers made a detour by pushing the multicast 
related functionalities to the application layer.  

Research on application level multicast (ALM) usually 
involves both protocol design and infrastructure planning. 
The latter is the focus of some early work such as Scattercast 
[2] and Overcast [3], two ALM systems designed for Internet 
content distribution. They differ from other ALM systems in 
that they purposely place a collection of nodes, at strategic 
locations in the network. This additional cost may be 
worthwhile for a large content distribution system. However, 
it is definitely too expensive for small and impromptu video 
conferences.  

The majority of ALM systems are purely built on end 
systems and do not require extra infrastructure support. They 
are mostly targeting large-scale applications, involving 
thousands of end systems. Some of them, such as NICE [4] 
and SpreadIT [5], take the responsibility of node management 
as well as building multicast trees for media streaming. Some 
others employ the existing P2P systems for providing object 
management and routing functions. Systems in this category 
include SCRIBE [6], Bayeux [7] and CAN-multicast [8], 
which are built on top of Pastry, Tapestry, and CAN, 
respectively. For all the multicast systems listed in this 
paragraph, the main objective is to reduce the network 
resource usage and to balance the link stresses of the 
underlying transmission routes. However, they do not put 



much effort in optimizing the end-to-end delay performance, 
which is very important for a real-time system.  

Small-scale ALM systems provide a contrast to the 
large-scale ALM systems. They normally do not rely on 
hardware, nor do they have any specific configuration over 
the infrastructure. Since the group size is small, the group 
state maintenance can be realized simply by keeping a full 
member list at a rendezvous point or on every multicast 
participant. The focus of system design is on the multicast 
routing. They differ from each other in the following aspects: 
(1) centralized or distributed control over membership and 
tree maintenance; (2) mesh-first or tree-first multicast tree 
construction strategy; (3) share tree or source-specific tree for 
data delivery. 

In End System Multicast [9], end systems self-organize 
into an overlay structure using a fully distributed protocol 
named Narada. Narada adopts a mesh-first strategy in 
constructing multicast trees. It forms a rich connect graph 
(called a mesh) and then generates source-specific data 
distribution trees based on the mesh. The disadvantage of 
Narada is that there is no control over the resulting spanning 
tree for a given mesh. The concerns come from two aspects: 
(1) A high quality mesh does not necessarily result in 
efficient multicast trees for all data sources; (2) Narada does 
not consider the effect of multiple trees over the same mesh. 
Thus, in their later work [10] on using Narada for 
videoconferencing, they assume a single source at any point 
in time. 

Differing from Narada, ALMI [11] is a centralized 
protocol. Each ALMI session has a session controller which 
takes all the responsibility of membership registration and 
multicast tree maintenance. The multicast tree is a shared tree 
constructed with a tree-first strategy. The session controller 
periodically re-calculates a new tree based on the end-to-end 
measurements collected by session members. Although a 
shared tree is easy to manage, it does not have as good delay 
properties as source-specific trees. The centralized design 
also causes two problems: (1) if the controller fails, the 
multicast tree has to stay unchanged and thus is vulnerable to 
network changes; (2) During the switch of multicast trees, 
there will be evident turbulence in performance.  

The protocol for multi-sender 3D video conferencing 
[12] uses a hybrid approach of the above two systems. It 
adopts a centralized approach similar to ALMI for tree 
management and uses a mesh-first strategy similar to Narada 
for tree generation. The novel idea in this protocol is to use a 
double-algorithm approach for participant joining. If the local 
algorithm fails to attach a new receiver, the global algorithm 
will be used to investigate a rearrangement of all trees. 
However, it still has the following shortcomings that prevent 
it from practical deployment: (1) it suffers from the 
one-point-failure problem just as ALMI does; (2) it does not 
take the dynamic nature of the Internet into consideration and 
assumes static available bandwidth in calculating multicast 

trees; (3) The second algorithm re-arranges all trees without 
considering their original topologies, thus there will be 
inevitable jitters and long latencies during the switching of 
the trees.  

To sum up, despite the great number of application level 
multicast systems, none of them are purposely designed or 
practically employable for video conferencing systems with 
few-to-few semantics. 

III. DIGIMETRO FOR SMALL-SCALE VIDEO CONFERENCING  

In this paper, we propose DigiMetro, an application 
level multicast system tailored to support small-scale 
multi-party video conferencing. 

DigiMetro is a fully distributed protocol. All the 
members are logically equal: each of them maintains a 
complete member list and takes full charge of its own 
multicast tree. DigiMetro makes a clear distinction between 
the concept of a conference and that of a multicast session. 
While a conference is made up of a group of members, a 
multicast session is composed of a single data source and a 
number of receivers. Thus, in a multi-party conference, there 
are multiple multicast sessions, since every conference 
member is a data source.  

To deal with the multiple data sources, the conventional 
wisdom is to use shared overlay as data delivery trees for all 
the multicast sessions. The management cost is much less 
than that of using multiple source-specific trees. However, 
shared overlay does not have as good delay properties as 
source-specific trees do [13]. In a small-scale real-time 
conferencing application, we argue that the better delay 
properties should prevail over the management considerations. 
Thus, DigiMetro opts for source-specific multicast trees to 
deliver media data.  

In constructing the multicast trees, many factors need to 
be considered, such as delay, bandwidth, jitter and cost. The 
problem of finding the best delivery routes subject to multiple 
metrics has proved to be NP-complete [14]. On the other 
hand, to use a single metric as the indicator in path selection 
is obviously not sufficient for supporting multimedia 
applications. Thus, we designed a two-step tree construction 
algorithm based on both delay and available bandwidth 
measurements.  

As is well known, the Internet is changing dynamically. 
The end-to-end delay and the available bandwidth between 
conference members are also not static. Thus, we need a 
mechanism to duly measure these two indicators in order to 
build efficient multicast trees. In DigiMetro, conference 
members periodically probe each other to obtain the 
end-to-end delay. The probing requests are also used for 
member failure detection: if member A does not receive a 
probing message from member B over a period of time, it 
diagnoses B as having a network failure. This is also referred 
to as the heart-beat mechanism. In DigiMetro, the heart-beat 



(probing) interval is 5 seconds, and the failure diagnostic 
threshold is 20 seconds.  

As another important metric for multicast routing, the 
available bandwidth along a delivery path should be 
examined. We adopt the Packet-Pair [15] method to measure 
the available bandwidth. In our current implementation, each 
member probes others in turn with a pair of 1.5 KB UDP 
packets at an interval of 10 seconds. Thus, in a typical 
five-member conference, the available bandwidth between 
every two members is determined every 40 seconds.  

For every 5 seconds, each member will broadcast its 
updated measurements in the conference. The network 
overhead associated with the three recurrent tasks is 
estimated in Table 1. We can see that the overall overhead is 
less than 4 kbps, which is affordable by most Internet users. 

TABLE 1 NETWORK OVERHEAD ESTIMATION 
Task Packet size Frequency Overhead
Delay measurement 52 bytes 8 pck/5 sec 0.665Kbps
Bandwidth measurement 1500 bytes 2 pck/10 sec 2.4Kbps 
Measurements update  84 bytes 4 pck/5 sec 0.538Kbps

In addition to basic multicast support, DigiMetro offers 
two special features at the QoS (Quality of Service) level. 

Accommodate different bit rate: This feature is designed 
in conformity to the diversity of current Internet connections. 
The access rates vary greatly from dial-up to broadband to 
LAN. In order to accommodate users of all types of 
connections in the same conference, we allow each user to 
use the affordable voice/video bit rate. DigiMetro is able to 
handle multiple data delivery trees of different bit rates.  

Differentiate service over media streams: In a typical 
video conference, both voice and video streams are involved. 
While video enriches a conference, audio is a necessity for 
efficient communication. DigiMetro offers a different service 
over different types of streams and the application can assign 
the priority for each stream type. This is realized by 
constructing separate multicast trees for different streams and 
providing a communication mechanism for them to negotiate 
bandwidth usage.  

IV. MULTICAST ROUTING ALGORITHMS AND PROTOCOLS  

DigiMetro adopts the tree-first strategy to construct the 
multicast trees. DigiMetro excels over other ALM systems by 
using a two-step process in multicast tree maintenance: the 
source-specific trees are first constructed by a local greedy 
algorithm and then gradually improved by a global 
refinement algorithm. Both schemes are based upon delay 
and bandwidth measurements and share the same goal to 
optimize the data transmission latency under the given 
bandwidth constraints. 

A. Multicast Tree Construction 

DigiMetro is a distributed protocol in which each data 
source takes care of its own data distribution tree. When a 

data source S receives a SUBSCRIBE request from another 
member M, it tries to attach M to its multicast tree using one 
of the following schemes: 
Scheme 0: Attach M to S directly; 
Scheme 1: Attach M to a selected tree node P (inner node or 
leaf node) and leave all the existing links unchanged;  
Scheme 2: M replaces the position of an existing node C and 
adds C to its own child set.  

The resulting topologies of the three schemes are shown in 
Fig. 1. 

 
Fig. 1. Possible topologies of a multicast tree after the 

new subscription request is accepted 

To be descriptive, the construction algorithm will attach 
M to the root of the tree if the available bandwidth of S 
allows. Otherwise, it compares the cost of the other two 
schemes and chooses the one with less cost. Here, the cost of 
a scheme is defined as the largest transmission latency from S 
to M or M’s descendants in the multicast tree produced by 
this scheme.  

In practice, we have a preference for scheme 1 over 
scheme 2, because scheme 1 does not bring any change to the 
existing transmission routes and results in better stability. 
Thus, we choose scheme 2 only when its profit gain over 
scheme 1 exceeds a given threshold. Fig. 1 shows the three 
possible topologies after M joins the multicast tree rooted at 
node S. 

If no member has available bandwidth, the subscription 
request will be queued in a wait list and the multicast tree will 
stay unchanged. Remember that we offer different services 
over different streams and favor voice streams. Thus, when 
an audio subscription request is not fulfilled, the video tree 
controller will sacrifice itself by stop feeding one of its 
subscribers, so that the audio request can be accommodated.  

Since the multicast trees are maintained in a distributed 
manner, it is necessary to define a set of conventions, or 
so-called protocol, to regulate the behavior of changing 
routes: when a data source intends to change its multicast tree, 
it sends a new CHILDRENSET to the member P whose children 
set should be updated. On receiving this message, P accepts 
as many children as its available bandwidth allows. If there 
are some unfulfilled nodes due to the concurrent actions, it 
returns a SATURATED message to S, bringing along its current 
bandwidth capacity as well as the list of unattached nodes, so 
that S is able to rearrange these nodes based on the updated 
bandwidth information.  
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Relative to the SUBSCRIBE request, if a member M does 
not want to receive a certain stream anymore, it can send an 
UNSUBSCRIBE message to the data source S. Then S will 
remove M from the multicast tree and rearrange M’s children 
if it has any.  

B. Multicast Tree Refinement  

The tree construction algorithm is a local greedy 
algorithm. Each data source tends to use its bandwidth 
resource to transmit its own data. This results in unbalanced 
bandwidth usage amongst multicast trees. Fig.2. shows two 
multicast trees in a five-member conference before and after 
the refinement process. The real lines represent the multicast 
tree rooted at member A, while the dashed lines represent the 
tree rooted at member B. Before refinement (as Fig.2a. 
shows), member A distributes its data in Unicast way, which 
uses up its bandwidth resource. Thus, it is unable to relay 
data for member E in the multicast tree of member B. As a 
result, the transmission route from B to E (i.e. B→C→D→E) 
is extremely long. 

 

Fig. 2. An example of the multicast tree adjustment in 
the refinement algorithm 

Moreover, the membership in each multicast session 
changes rapidly, as does the network dynamics. There is a 
need to constantly refine the multicast trees to get better 
performance without bringing perceptible jitters. The 
refinement scheme calls for cooperation among data sources, 
so that more subscription requests can be accommodated and 
the end-to-end latency on the high side can be shortened.  

The refinement procedure is a five-step process. It is 
triggered when there are unsatisfied requests in the waiting 
list, or there are extremely long transmission routes that are 
caused by irrational topology. The pseudo code for the first 
two steps, simplified for clarity, is shown in Fig. 3. 

The entire refinement procedure can be described as 
follows: 

Step 1: Data source S generates and broadcasts an ASKHELP 
message which is a parent candidate list for L. Each node N 
on the list, if it has enough available bandwidth to adopt L as 
a child, can improve the transmission latency from S to L.  

 
Fig. 3. Multicast tree refinement algorithm (partial) 

Step 2: Upon receiving the ASKHELP message, other tree 
controllers T will examine whether they can reduce the 
bandwidth usage of any of the nodes on the list, and then 
reply with an ANSWERHELP message, carrying along the cost 
of the rearrangement.  

Step 3: After node S has collected all the answers from other 
members, it compares the proposed schemes and selects the 
one that has the minimum cost. S will send a HELP message to 
the member B that offers the best scheme.  

Step 4: B checks whether the offer is still valid, if so, it 
replies with an ACKHELP message after it rearranges its 
distribution tree; if not, it sends a REFUSEHELP message 
indicating that some conditions have changed and it is not 
able to keep the promise.  

Step 5: If an ACKHELP message is returned, S rearranges L. 
Otherwise S aborts the current refinement session and waits 
for the next chance to improve the performance.  

We can see from Fig.2b. that after the refinement 
procedure, the end-to-end latency on the high side (i.e. the 
latency along B→C→D→E) is greatly shortened. The new 
transmission route B→A→E is achieved by balancing the 
bandwidth resource usage among the multicast trees.  

V. EXPERIMENTAL RESULTS 

In this section, we present the experimental results from 
extensive simulation tests to validate the tree management 
algorithms in DigiMetro. 

A. Simulation Setup 

In our simulation, we use NS-2 as the event simulator 
and adopt the transit-stub topology [16] to model the network. 
In each test run, we randomly pick a few nodes to which the 
end hosts are attached. We model the last hop uplink 
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T.ProcessAskHelp (parentCandidate, L.Depth ()) 
{ 
 for (each node N in ParentCandidates) 
  cost = N.ReArrangeChildren (); 
  if (cost < L.Depth ()) 
   OfferHelpCandidates.push (pair(N,cost));
 T.AnswerHelp (S, OfferHelpCandidates); 
} 

Input: data source S and node L whose latency needs to 
be improved 
Refine (S, L) 
{ 
 for (each node N in S.ReceiverList) 
  if (N.Depth () + Delay (N, L) < L.Depth ()) 
   ParentCandidates.push (N); 
 S.BroadcastAskHelp(ParentCandidates,L.Depth()); 
}

B 

E 

(a) before refinement (b) after refinement 



bandwidth for each host and use this value in constructing the 
multicast trees. This simplification will not affect the validity 
of our experiment, since the last-hop bandwidth is often the 
performance bottleneck for broadband users, and should be 
the most important consideration of applications such as 
overlay multicast [17].  

Reference [17] also indicates that the average uplink 
bandwidth is 212Kbps. Thus, we model the bandwidths of 
broadband users as a uniform distribution averaged at 
212Kbps. The lower bound is 80Kbps, which is 
approximately the sum of the voice and video bit rates 
(13Kbps and 56Kbps respectively). Besides broadband users, 
we consider LAN users as well. For them, the last hop 
bandwidth is not the transmission bottleneck, yet we limit 
their total upload bandwidth to 1Mbps.  

There are a few varying parameters that will affect the 
performance of DigiMetro. They are: 

1) Size of the topology (ST): the larger the size is, the better 
it simulates the real Internet. In our simulations, we used 
ST=100 and 600. 

2) Size of the conference (SC): we fix the number of 
conference members at 5 except for the scalability test. 

3) Percentage of LAN users (PL): the larger this percentage 
is the more abundant the bandwidth resources. In our 
experiments, PL=50% and 25% are used. \ 

B. Evaluation Metrics 

In order to evaluate the performance of the multicast 
trees produced by DigiMetro, we compared our multicast 
routes with that of IP-multicast and naïve Unicast on the 
following metrics:  

1) Relative Delay Penalty (RDP): the ratio of the delay 
between two members along the multicast tree to the 
unicast delay between them [9]. 

2) Rejection Rate: the percentage of rejected media 
(audio/video) subscription requests by a given routing 
algorithm [18]. 

By definition, both IP-multicast and naïve Unicast give 
the lower bound of RDP at 1.0. In terms of the rejection rate, 
IP-multicast gives the lower bound at 0% while Unicast 
reaches the upper bound for source-specific approaches. 
Other ALM systems also evaluate on relative resource usage 
and link stress [9]. However, these metrics are not important 
for a small-scale conferencing application. 

C. Experimental Results 

1) Tree construction algorithm  

The first experiment is conducted on four types of data 
sets. In each test run, five conference members join the 
conference at fixed intervals. Every member subscribes to all 
the other audio/video streams upon joining. After all the 

members have stabilized, we measure the rejection rate for 
every data source and the RDP for each source-receiver pair. 
Table 2 summarizes the results.  

TABLE 2 
EXPERIMENTAL RESULTS ON TREE CONSTRUCTION ALGORITHM 

Rejection rate RDP 
Unicast DigiMetro Unicast DigiMetro Data set 

(TS-ST-PL) A & V Audio Video A & V Audio Video
TS-100-50% 0.17 0 0.01 1.0 1.05 1.14 
TS-600-50% 0.17 0 0.01 1.0 1.06 1.25 
TS-100-25% 0.27 0 0.09 1.0 1.12 1.43 
TS-600-25% 0.27 0 0.09 1.0 1.11 1.39 

In this table, the first column describes the data set. They 
are featured by the topology size and LAN user percentage. 
On each data set, 100 tests are conducted and the average 
results are listed. We can see that DigiMetro can achieve a 
very low rejection rate at small RDP, even when the 
bandwidth resource is limited.  

The table also shows that the topology size does not have 
much influence on the rejection rate and RDP performance. 
However, the availability of bandwidth resource plays an 
important role in both evaluation metrics.  

We do not compare the performance of our 
source-specific trees with that of a shared overlay as used in 
ALMI [11]. The reason is that, on more than half of the data 
sets, the shared overlay cannot even be constructed because 
of the great heterogeneity of the last-hop bandwidths.  

Besides, DigiMetro discriminates in favor of the audio 
stream. It guarantees zero rejection rates for audio 
subscription requests and keeps a low RDP for audio 
transmission. 

2) Refinement algorithm 

We did 100 tests on the TS-100-25% data set. After all 
members have joined the conference, each member randomly 
unsubscribes from an audio and a video stream. Then, the 
conference members are allowed to start the refinement 
procedure. We compared the performance metrics before and 
after the refinement procedure. 

The results show that the refinement procedure can 
reduce the RDP of the member that has the maximal 
end-to-end delay to data source by 21.5% and 26.6% for 
voice and video respectively. The improvement over the 
maximal absolute end-to-end latency is 6.3% and 7.5% for 
voice and video respectively.  

3) Varied bit rate 

DigiMetro is able to handle multiple bit rates in the same 
conference so as to fit different types of network users. In this 
experiment, we demonstrate the advantages of 
accommodating varied bit rate by offering three options for 
the video bit rate: 28.8Kbps, 56Kbps and 128Kbps. Each 
member selects the bit rate according to its bandwidth 
capacity, e.g. LAN users choose 128Kbps; users having less 



than 140Kbps bandwidth choose 28.8Kbps and others pick 
56Kbps.  

We did 100 tests on the TS-100-25% data to compare 
our varied bit rate scheme with the conventional fixed bit rate 
(56Kbps) scheme. The rejection rate of video subscription 
requests is reduced from 9% to 7%, the average RDP of a 
video distribution tree is reduced from 1.43 to 1.26, and the 
average video throughput is increased from 208.8Kbps to 
265.7Kbps.  

The result indicates that by serving different users with 
different bit rates, we can greatly reduce the average RDP 
and rejection rate while achieving even larger throughput.  

VI. CONCLUSION AND FUTURE WORK 

In this paper, we introduced the system architecture and 
protocol design of DigiMetro, an application-level multicast 
system for multi-party real-time communication applications. 
We broke through the conventional wisdom to use shared 
overlay to handle multiple data sources and adopted 
source-specific trees for each voice/video source. The 
multicast trees are constructed by a local greedy algorithm 
followed by a global refinement process.  

In view of the heterogeneity of the Internet connections, 
DigiMetro offers differentiated service over different streams 
and discriminates in favor of audio data. In addition, 
DigiMetro is able to handle different bit rates, thus allows 
low bandwidth users to participate in a video conference with 
a transmission rate they can afford. 

Directions for future work may include auto-adjustment 
of voice/video bit rate in response to the dynamic changes of 
network conditions and multicast membership. 
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