Type-based termination analysis with disjunctive invariants

Dimitrios Vytiniotis, MSR Cambridge
with Byron Cook (MSR Cambridge) and Ranjit Jhala (UCSD)

IFIP WG 2.8, Austin TX, March 2011
... or, what am I doing hanging out with these people?

termination and liveness of imperative programs, shape analysis and heap space bounds, ranking function synthesis

Program analysis, model checking and verification for systems code, refinement types, **liquid types**, decision procedures

And myself?

Functional programming, **type systems**, type inference, dependent types, semantics and parametricity, Coq, Haskell!
The jungle of termination/totality analysis

"Guarded recursion" (my own term)
- sized types [Hughes et al, Abel]
- modalities for recursion [eg Nakano]

Structural recursion
- Conor McBride
- offered in Coq and Agda
- also Bove & Capretta transformation

Dependent types
- programming with well-founded relations (think “ranking functions”)
- Coq, Agda, DML [Xi]

Size-change principle
- [Jones, Sereni, Bohr]
- a control flow analysis essentially

Terminator
- termination analysis for imperative programs
- “disjunctive invariants” and Ramsey’s theorem
- [Cook, Podelski, Rybalchenko]
A dichotomy?

“Guarded recursion”, structural recursion, dependent types

Terminator and disjunctive invariants, size-change

- 😊 Mostly fully automatic
- 😞 Not programmable
- 😊 No declarative specs
- 😊 Often easy for the tool to synthesize the termination argument

- 😊 Mostly fully manual
- 😊 Programmable
- 😊 Declarative specification
- 😞 Often tedious to come up with a WF relation or convince type checker (i.e. the techniques don’t make proving totality easier, they just make it possible!)

Today I will have a go at combining both worlds

WARNING: very fresh (i.e. airplane-fresh) ideas!
The idea: one new typing rule for totality

\[T_1 \ldots T_n \text{ well-founded binary relations} \]
\[dj(a, b) = a <_{T_1} b \lor \ldots \lor a <_{T_n} b \]

\[\Gamma, (old : T), (g : \{x : T \mid dj(x, old)\} \to U), \]
\[(x : \{y : T \mid dj(y, old) \lor y = old\}) \vdash e : U \]
\[\Gamma \vdash fix (\lambda g. \lambda x. e) : T \to U \]
Example

let rec flop (u,v) =
 if v > 0 then flop (u,v-1) else
 if u > 1 then flop (u-1,v) else 1

Terminating, by lexicographic pair order

Γ, (old: T), (g: {x: T | dj(x, old)} → U), (x: {y: T | dj(y, old) ∨ y = old}) ⊢ e: U
Γ ⊢ fix (λg. λx. e): T → U

Consider \(T_1 \ x \ y \equiv \text{fst} x < \text{fst} y \)
Consider \(T_2 \ x \ y \equiv \text{snd} x < \text{snd} y \) [NOTICE: No restriction on \(\text{fst} \) components!]

Subtyping constraints (obligations) arising from program

\((u, v) = (ou, ov), v > 0 \Rightarrow dj((u, v - 1), (ou, ov))\)
\((u, v) = (ou, ov), u > 1 \Rightarrow dj((u - 1, v), (ou, ov))\)
\(dj((u, v), (ou, ov)), v > 0 \Rightarrow dj((u, v - 1), (ou, ov))\)
\(dj((u, v), (ou, ov)), u > 1 \Rightarrow dj((u - 1, v), (ou, ov))\)
Or ... just call Liquid Types and it will do all that for you!

http://pho.ucsd.edu/liquid/demo/index2.php

... after you have applied a transformation to the original program that I will describe later on
Background

Structural and guarded recursion, dependent types and well-founded relations in Coq

We will skip these. You already know
Background: disjunctive invariants

Ramsey’s theorem

Every infinite complete graph whose edges are colored with finitely many colors contains an infinite monochromatic path.

Podelski & Rybalchenko characterization of WF relations

Relation R is WF iff there exist WF relations $T_1 \ldots T_n$ such that $R^+ \subseteq T_1 \cup \ldots \cup T_n$
Background: How Terminator works?

- Transform a program, and assert/infer invariants!

```java
int x = 50;
while (x > 0) do {
    ...
    x = x - 1;
}
```

- Invariant between x and oldx represents any point of R+

```java
bool copied = false;
int oldx;
int x = 50;
while (x > 0) do {
    if copied then
        assert (x <_{T_i} oldx)
    else
        if * then {
            copied=true; oldx=x;
        }
    ...
    x = x - 1;
}
```

- We need non-deterministic choice to allow the “start point” to be anywhere
In a functional setting: a first attempt

- Let’s consider only divergence from recursion
 - Negative recursive types, control ← Not well-thought yet
- The “state” is the arguments of the recursive function
- Hence:

  ```ml
  let rec f x =
  if x==0 then 41 else f (x-1) + 1
  ```

In particular f has to accept x ≤ oldx the first time. But in all subsequent calls it must be x < oldx

```ml
let rec f x =
  if * then
    if x==0 then 41 else f (x-1) + 1
  else
    f' x x
  f' oldx x =
  if x==0 then 41 else f' oldx (x-1) + 1
```

But where is the ASSERT?
In a functional setting: a better attempt

- Just inline the **first** call to \(f' \) to expose subsequent calls:

```ocaml
let rec f x =  
  if x==0 then 41 else f (x-1) + 1
```

```ocaml
let rec f x =   
  if * then   
    if x==0 then 41 else f (x-1) + 1 
  else   
    f' x x if x==0 then 41 else f' x (x-1) + 1

let rec f' oldx x =   
  assert (oldx <= T_i x)  
  if x==0 then 41 else f' oldx (x-1) + 1
```

Starts to look like something a refinement type system could express ... but can we dispense with rewriting?
A special typing rule, to avoid rewriting

\[
\Gamma, (\text{old}: T), (g: \{x: T \mid dj(x, \text{old})\} \rightarrow U), (x: \{y: T \mid dj(y, \text{old}) \lor y = \text{old}\}) \vdash e: U
\]

\[
\Gamma \vdash \text{fix} (\lambda g. \lambda x. e): T \rightarrow U
\]

- A declarative spec of termination with disjunctive invariants

- Given the set \(T_i \) the typing rule can be checked or inferred
 - E.g. inference via Liquid Types [Ranjit]

- It’s a cool thing: programmer needs to come up with simple WF relations (which are also easy to synthesize [Byron])
Bumping up the arguments

```
let rec flop (u,v) =
    if v > 0 then flop (u,v-1) else
    if u > 1 then flop (u-1, big) else 1
```

\[
\Gamma, (old:T), (g:\{x:T \mid dj(x, old)\} \to U), (x:\{y:T \mid dj(y, old) \lor y = old\}) \vdash e:U
\]

\[
\Gamma \vdash fix (\lambda g. \lambda x.e):T \to U
\]

Consider \(T_1(x, y) \equiv fst x < fst y \)
Consider \(T_2(x, y) \equiv snd x < snd y \)
Subtyping constraints (obligations) arising from program

\[
(u, v) = (ou, ov) \land v > 0 \implies dj((u, v - 1), (ou, ov))
\]

\[
(u, v) = (ou, ov) \land u > 1 \implies dj((u - 1, \textbf{big}), (ou, ov))
\]

\[
dj((u, v), (ou, ov)) \land v > 0 \implies dj((u, v - 1), (ou, ov))
\]

\[
dj((u, v), (ou, ov)) \land u > 1 \implies dj((u - 1, \textbf{big}), (ou, ov))
\]
One way to strengthen the rule with invariants

let rec flop (u,v) =
 if v > 0 then flop (u,v-1) else
 if u > 1 then flop (u-1, big) else 1

Consider $T_1(x,y) \equiv \text{fst } x < \text{fst } y$
Consider $T_2(x,y) \equiv \text{snd } x < \text{snd } y$ [NOTICE: No restriction on fst!]
Consider $P(x,y) \equiv \text{fst } x \leq \text{fst } y$ [Synthesized or provided]

Subtyping constraints (obligations) arising from program:

$P((u,v),(ou,ov)) \land (u,v) = (ou,ov) \land v > 0 \Rightarrow P((u,v-1),(ou,ov)) \land dj((u,v-1),(ou,ov))$

$P((u,v),(ou,ov)) \land (u,v) = (ou,ov) \land u > 1$
\[\Rightarrow P((u-1, big),(ou,ov)) \land dj((u-1, big),(ou,ov)) \]

$P((u,v),(ou,ov)) \land dj((u,v),(ou,ov)) \land v > 0 \Rightarrow P((u,v-1),(ou,ov)) \land dj((u,v-1),(ou,ov))$

$P((u,v),(ou,ov)) \land dj((u,v),(ou,ov)) \land u > 1$
\[\Rightarrow P((u-1, big),(ou,ov)) \land dj((u-1, big),(ou,ov)) \]
Scrap your lexicographic orders? ...

\[P \text{ reflexive} \]
\[\Gamma, (\text{old}: T), (g: \{x: T \mid P(x, \text{old}) \land dj(x, \text{old})\} \rightarrow U), \]
\[(x: \{y: T \mid P(y, \text{old}) \land (dj(y, \text{old}) \lor y = \text{old})\}) \vdash e : U \]
\[\Gamma \vdash \text{fix} (\lambda g. \lambda x. e) : T \rightarrow U \]

It is arguably very simple to see what \(T_1 \ldots T_n \) are but not as simple to provide a strong enough invariant \(P \)

But the type-system approach may help find this \(P \) interactively from the termination constraints?

... or Liquid Types can infer it for us
What next?

- More examples. Is it easy for the programmer?
- Formal soundness proof
 - Move from trace-based semantics (Terminator) to denotational?
- Integrate in a refinement type system or a dependently typed language
 - Tempted by the Program facilities for extraction of obligations in Coq
 - Is there a constructive proof of (some restriction of) disjunctive WF theorem? If yes, use it to construct the WF ranking relations in Coq
 - Applicable to Agda, Trellys?
 - Liquid types. Demo works for many examples via the transformation
- Negative recursive datatypes, mutual recursion ...
A new typing rule for termination based on disjunctive invariants

New typing rule serves as:

- a declarative specification of that method, or
- the basis for a tool that could potentially increase the programmability of totality checking