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Abstract
Application-level protocol specifications are useful for

many security applications, including intrusion preven-
tion and detection that performs deep packet inspection
and traffic normalization, and penetration testing that
generates network inputs to an application to uncover po-
tential vulnerabilities. However, current practice in de-
riving protocol specifications is mostly manual. In this
paper, we present Discoverer, a tool for automatically
reverse engineering the protocol message formats of an
application from its network trace. A key property of
Discoverer is that it operates in a protocol-independent
fashion by inferring protocol idioms commonly seen in
message formats of many application-level protocols.
We evaluated the efficacy of Discoverer over one text
protocol (HTTP) and two binary protocols (RPC and
CIFS/SMB) by comparing our inferred formats with true
formats obtained from Ethereal [5]. For all three proto-
cols, more than 90% of our inferred formats correspond
to exactly one true format; one true format is reflected
in five inferred formats on average; our inferred formats
cover over 95% of messages, which belong to 30-40% of
true formats observed in the trace.

1 Introduction

Application-level protocol specifications are useful for
many security applications. Penetration testing can lever-
age protocol specifications to generate network inputs to
an application to uncover potential vulnerabilities. For
network management, protocol specifications can also be
used to identify protocols and tunnelings in monitored
network traffic. Generic protocol analyzers (GAPA [1]
and binpac [16]) are important mechanisms for intrusion
detection or firewall systems to perform deep packet in-
spection. These analyzers take protocol specifications as

input for their analyses.
To date, protocol specifications for the above applica-

tions are specified from documentation or reverse engi-
neered manually. Such efforts are painstakingly time-
consuming and error-prone. It took the open-source
SAMBA project 12 years to manually reverse engineer
the Microsoft SMB protocol [18]. In another exam-
ple, the Yahoo messenger protocol has also been persis-
tently reverse engineered, despite which, the open source
clients [6] regularly require patching to support propri-
etary changes in the Yahoo protocol. Sometimes, the pe-
riod between the availability of an official client and an
open-source client has been a month, with some open-
source projects simply abandoning the effort due to the
frequent changes initiated by Yahoo.

To address this pain, we tackle the problem of auto-
matic protocol reverse engineering. There can be two
sources of given input for the reverse-engineering task:
network traces and application code. In this paper,
we present our tool, Discoverer, which performs au-
tomatic reverse engineering from network traces. We
leave application-code-based reverse engineering as fu-
ture work.

In Discoverer, we focus on reverse engineering the
message format specification and leave the protocol state
machine inference to our future work. To automatically
reverse engineer message formats for a wide range of
protocols, we face three main challenges: (1) We have
very few hints from the network trace. The only evi-
dent information from the trace is the directionality of
byte streams. (2) Protocols are significantly different
from each other. (3) Protocol message formats are often
context-sensitive where earlier fields dictate the parsing
of the subsequent part of the message.

To make our tool general, we base our design on infer-
ring protocol idioms commonly seen in message formats
of many protocols. To cope with the few hints, we dissect



the formless byte streams into text and binary segments
or tokens as a starting point for clustering messages with
similar patterns, where each cluster approximates a mes-
sage format. By comparing messages in a cluster and
observing the characteristics of known cross-field de-
pendencies (such as a length field followed by a string
of the length), we infer additional properties for the to-
kens, which in turn can be leveraged to refine and divide
the clusters of messages, where each subcluster approxi-
mates a more precise format. This process continues re-
cursively until we can no longer divide up any message
clusters based on the newly finished inference. After this
recursive clustering phase, we look at all message clus-
ters globally through a type-based sequence alignment
algorithm, and merge similar clusters into one. This way,
we can produce more concise message formats.

We have evaluated Discoverer over traces of a repre-
sentative set of protocols consisting of one text protocol
(HTTP) and two binary protocols (RPC and CIFS/SMB).
We calibrated our design over some of these traces, and
used the remaining for validation. The three main met-
rics for our tool are correctness (“does one inferred for-
mat correspond to exactly one true format?”), concise-
ness (“how many inferred formats is a single true format
reflected in?”), and coverage (“how many messages are
covered by the inferred formats?”). Across all protocols
we tested, more than 90% inferred formats correspond
to exactly one true format; one true format is reflected
in five inferred formats on average; our inferred formats
cover over 95% messages, which belong to 30-40% of
true formats observed in the trace. Such significant dif-
ference between message and format coverage is due to
the heavy-tail distribution of message format popularity
commonly seen in practice.

Although our reverse-engineered message formats are
imperfect, we anticipate them to be still practical for
the aforementioned applications. For instance, penetra-
tion testing guided by our reverse-engineered formats is
likely to be much more effective than that with random
inputs. Protocol fingerprinting and tunneling detection
probably do not require perfect protocol specifications.
For applications like firewalls which would err with im-
perfect specifications, our tool could still serve as a help
to ease the manual protocol specification process.

We organize the rest of the paper as follows. We dis-
cuss common protocol idioms and the scope of Discov-
erer in Section 2. We describe the design of Discoverer in
detail in Section 3. We present our evaluation methodol-
ogy and results in Section 4. We discuss related work in
Section 5, and limitations and future work in Section 6.
Finally, we summarize the paper in Section 7.

2 Problem Statement

Many application-level protocols share common pro-
tocol idioms which correspond to the essential compo-
nents in a protocol specification. To make our reverse-
engineering algorithm applicable to many protocols, we
base our design on inferring the common protocol id-
ioms. In this section, we first describe these idioms and
then explain the scope of Discoverer.

2.1 Common Protocol Idioms
Most application-level protocols involve the concept

of an application session, which consists of a series of
messages (also known as Application-level Data Units
or ADUs) between two hosts that accomplishes a spe-
cific task. The structure of an application session is de-
termined by the application’s protocol state machine, an
essential component in a protocol specification that char-
acterizes all possible legitimate sequences of messages.
The structure of an application message is determined by
the application’s message format specification, another
essential component in a protocol specification. A mes-
sage format specifies a sequence of fields and their se-
mantics. Common field semantics include length (re-
flecting the size of a subsequent field with a variable
length), offset (determining the byte offset of another
field from a certain point like the start of the message),
pointer (a special offset that specifies the index of a field
in an array of arbitrary items), cookie (session-specific
opaque data that appears in messages from both sides of
the application session; session IDs are an example of
cookie fields), endpoint-address (encoding IP addresses
or port numbers in some form), and set (a group of fields
that can be put in an arbitrary order).

One particular type of fields is the Format Distin-
guisher (FD) field. The value of this field serves to differ-
entiate the format of the subsequent part of the message,
which reflects the context-sensitive nature in the gram-
mar of many application-level protocols. A message may
have a sequence of FD fields, particularly when multiple
protocols are encapsulated. For instance, a CIFS/SMB
message consists of a NetBIOS header encapsulating an
SMB header, which in turn may encapsulate a RPC mes-
sage. This implies that the applications need to scan a
message from left-to-right, decoding a FD field before
parsing the subsequent part of the message.

2.2 Scope of Discoverer
In this paper, we focus on deriving the message format

specification and leave protocol state machine inference
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Figure 1: Overview of Discoverer’s architecture. In the example, we assume there is a single true message format
which has two fields: the first binary field of a single byte represents the length of the second text field. There are two
token patterns because, when the text field is shorter than a threshold, it is treated as binary. In the merging phase, this
kind of tokenization errors is corrected.

to our future work. We assume synchronous protocols to
identify message boundaries. A message is a consecu-
tive chunk of application-level data sent in one direction.
It spans one or more packets in a TCP or UDP connec-
tion, where a UDP connection is a pair of unidirectional
UDP flows that are matched on source/destination IP ad-
dress/port number. We only aim to deal with applications
that do not obfuscate their payloads. We do not aim to
capture timing semantics (e.g., “message 1 usually fol-
lows message 2 within 10 seconds”).

3 Design

In this section, we first present an overview of Discov-
erer, then describe the three main phases of Discoverer in
detail, and finally give a concrete example of a message
format inferred by Discoverer.

3.1 Overview
The basic idea of Discoverer is to cluster messages

with the same format together and infer the message
format by comparing messages in a single cluster. We
achieve this in three main phases (illustrated in Figure 1).

• Tokenization and Initial Clustering: This phase
operates on the raw packets, and helps in identifying
field boundaries in a message and giving the first or-
der structure to the unlabeled messages. We first re-
assemble the packets into messages, and then break
up a message into a sequence of tokens which is an

approximation to a sequence of fields. Tokens be-
long to one of two token classes: binary or text. We
then classify messages into various clusters based
on each message’s token pattern, which is simply
represented by the message direction and classes of
its tokens.

• Recursive Clustering: Since messages with the
same token pattern do not necessarily have the same
format, this phase further divides clusters of mes-
sages so that messages in each cluster have the same
format, and infers the message format by compar-
ing messages in each single cluster. To do so, we
mimic the left-to-right recursive parsing of applica-
tions processing messages by recursively repeating
the following steps. We first infer the message for-
mat that captures the content of all messages in a
cluster. Then we identify the first FD field (which
decides the format of the subsequent part of the
message) in a left-to-right scan and use the values
of this FD field to divide the cluster into subclus-
ters.

• Merging: This phase mitigates the over-
classification problem, namely, messages of
the same format may be scattered into multiple
clusters. To do so, we merge similar message
formats by using a type-based sequence alignment
algorithm that compares the field structure of two
inferred message formats.



A key design rationale for Discoverer is to be conser-
vative: it may scatter messages of the same format into
more than one cluster, but it should not collate messages
of different formats into the same cluster. This rationale
is to ensure the correctness of inferred formats because,
if there are messages of more than one format in a clus-
ter, the inferred format might be too general by trying to
capture multiple message formats at once.

3.2 Tokenization and Initial Clustering
3.2.1 Tokenization

A token is a sequence of consecutive bytes likely to
belong to the same application-level field. We require
that the tokenization process works without any particu-
lar distinction between text and binary protocols, since
our tool is intended to be fully automatic and we wish
to spare the user from the manual effort required to dis-
tinguish between text and binary protocols. Further, it
is hard to declare a protocol as purely text or purely bi-
nary, since text protocols can contain binary bytes (e.g.,
an image file transferred over HTTP) and most binary
protocols contain a few text fields (e.g., the name of a
file).

Our tokenization procedure generates two classes of
tokens: text and binary. A text token is intended to span
the several bytes of a single message field representing
some text (such as “GET” in an HTTP request). Our pro-
cedure for finding text tokens is as follows: we first iden-
tify text bytes by comparing them with the ASCII val-
ues of printable characters, and then consider a sequence
of text bytes sandwiched between two binary bytes as
a text segment. To avoid mistaking binary bytes for
text bytes, we require this sequence to have a minimum
length. Then we use a set of delimiters (e.g., space and
tab) to divide a text segment into tokens. We also look
for Unicode encodings in messages. For binary fields,
identifying field boundaries is very hard; so we instead
simply declare a single binary byte to be a binary to-
ken in its own right. Note that this procedure can admit
errors: consecutive binary bytes with ASCII values of
printable characters are wrongly marked as a text token;
a text string shorter than the minimum length is wrongly
marked as binary tokens; a text field consisting of some
white space characters is wrongly divided into multiple
text tokens. We correct this kind of errors in the merging
phase (see Section 3.4).

3.2.2 Initial Clustering by Token Patterns

Byte-wise sequence alignment based on the
Needleman-Wunsch algorithm [15] has been used

in previous studies [3,11,17] for aligning and comparing
messages. We find that byte-wise sequence alignment,
while ideally suited to align messages with similar byte
patterns, is not suitable for aligning messages with the
same format. For instance, fields with variable lengths
may lead to mis-alignment of two messages of the
same format. Further, parameter selection for sequence
alignment is also hard as shown in [3].

To avoid aligning messages, we cluster mes-
sages based on their token patterns. The to-
ken pattern assigned to a message is a tuple,
(dir, class of token 1, class of token 2, · · · ), where
dir is the direction of the message (client to server
or vice versa), followed by the classes of all tokens
in the message. We consider the message direction
because messages in opposite directions tend to have
different formats. An example of a token pattern is
(client to server, text, binary, text).

Note that this initial clustering is coarse-grained since
messages with different formats may have the same to-
ken pattern. For instance, SMTP commands typically
have two text tokens (“MAIL receiver”, “RCPT sender”,
“HELO server-name”). In the recursive clustering phase,
we improve the granularity of this clustering by recur-
sively identifying FD tokens and dividing clusters.

3.3 Recursive Clustering

Our recursive clustering relies on identifying format
distinguisher (FD) tokens. To find FD tokens, we need
to invoke both format inference and format comparison.
In this section, we first explain these procedures before
describing how we recursively identify FD tokens and
divide clusters.

3.3.1 Format Inference

The format inference phase takes as input a set of mes-
sages and infers a format that succinctly captures the
content of the set of messages. Our inferred message
format is defined to be a sequence of token specifica-
tions which include not only token semantics but also to-
ken properties. We introduce token properties because
we cannot infer the semantic meaning for every token
and certain token properties are useful for describing the
message format. Token properties currently cover two
perspectives: binary vs. text and constant vs. variable.
The first property reflects the token class, and the second
decides if a token takes the same value across all mes-
sages of the same format (i.e., constant token) or differ-
ent values in different application sessions (i.e., variable



token). We also define the type of a token to be the sum
of its semantic and property.

We now describe how token properties and semantics
are derived.

Property Inference: Token class is already identified
during the tokenization phase. Constant or variable to-
kens can also be easily identified. Since the set of mes-
sages come from a single token-pattern cluster, tokens
in one message can be directly compared against their
counterparts in another message by simply using the to-
ken offset. Thus, constant tokens are those that take the
same value across the entire set of messages, and variable
tokens are those that take more than one value.

Semantic Inference: We currently support three se-
mantics: length, offset, and cookie (see Section 2.1 for
definitions). We will discuss how it may be possible to
support other semantics in Section 6. We identify cookie
fields at the end of the merging phase since it requires
correlating multiple messages in the same session. We
employ the heuristics in RolePlayer [3] for doing this.
Our heuristics for identifying length and offset fields are
an extension of those in RolePlayer. The intuition for
identifying length fields is that, for a specific pair of
messages, the difference in the values of potential length
fields (at most four consecutive binary tokens or a text to-
ken in the decimal or hex format) reflects the difference
of the sizes of the messages or some subsequent tokens.
We thus simply check for a match between the value dif-
ference and the size difference. If a match holds for all
pairs of messages in the cluster, the potential length field
is declared to be a length field. For offset fields, we com-
pare the value difference with the difference of the offsets
of some subsequent tokens.

3.3.2 Format Comparison

The goal of this procedure is to decide if two in-
ferred message formats are the same. Given two formats,
it scans these two formats token-by-token from left-to-
right and matches the inferred type (i.e., semantic and
property) of a token from one format against its counter-
part from the other. If all tokens match, the two formats
are considered to be the same.

Ideally, two tokens can be considered to match if their
semantics match. However, since there are always tokens
that we do not have semantics for, we need to compare
their values (they have the same token class since the two
formats have the same token pattern). We allow a con-
stant token to match with a variable token if the latter
takes the value of the former at least once. We also al-
low a variable token to match with another if there is an
overlap in the two sets of values taken by them. Note that

these policies are conservative, which is in line with our
design rationale.

3.3.3 Recursive Clustering by Format Distinguish-
ers

We identify FD tokens with the following algorithm.
First, we invoke format inference on the set of messages
in a cluster. Then, we scan the format token by token
from left to right to identify FD tokens. We use three
criteria in determining if a token is a FD:

1. We first check if the number of unique values taken
by this token across the set of messages is less than
a threshold, referred to as the maximum distinct val-
ues for a FD token. This is because a FD token typ-
ically takes a few values corresponding to the num-
ber of different formats.

2. For tokens satisfying the first criterion, we perform
a second test as follows. The cluster is divided into
subclusters, one for each unique value taken by this
token. Each subcluster consists of messages where
the candidate FD token takes a specific value. We
then require that the size of the largest subcluster ex-
ceeds a threshold, referred to as the minimum clus-
ter size. This is to guarantee that we can make a
meaningful format inference in at least one subclus-
ter. Otherwise, we gain nothing by continuing this
splitting.

3. If the potential FD token passes the second crite-
rion, we invoke format comparison across subclus-
ters to see if their formats are different from each
other. We then merge those that manifest the same
formats and leave others intact.

This process is recursively performed on each of the
subclusters because a message may have more than one
FD token. We find the next FD token by scanning further
down the message towards the right (end) of the message.
It is necessary to scan all the way to the end because we
need to recognize all FDs to obtain a good clustering and
format inference.

When looking for the next FD token, the format in-
ference is invoked again on the set of messages in each
subcluster. This is because the inferred token properties
and semantics might change because the set of messages
has become smaller, and it is possible for stronger prop-
erties to hold. For instance, a previously variable token
might now be a constant token; a previously variable to-
ken might now be identified as a length field.



3.4 Merging with Type-Based Sequence
Alignment

In the tokenization and recursive clustering phases, we
are conservative to ensure that the format inference pro-
cedure operates correctly on a set of messages of the
same format. However, this leads to a new problem of
over-classification, namely, messages of the same format
may be scattered into more than one cluster. This prob-
lem can be quite severe; for instance, over a CIFS/SMB
trace of almost four million messages, there are about
7,000 clusters/formats as input to this phase, while the to-
tal number of true formats is 130. The goal of the merg-
ing process is to coalesce similar formats from different
clusters into a single one.

The key observation behind our merging phase is that,
while sequence alignment [15] cannot be used for clus-
tering messages of the same format, it can be used to
align formats for identifying similar ones across differ-
ent clusters. This is because we can leverage the rich to-
ken types (i.e., semantics and properties) inferred in the
recursive clustering phase. For instance, knowing that a
particular token is a length field in a format necessitates
that its counterpart in another format is also a length field
for these two formats to be considered a match. We re-
fer to our algorithm for aligning formats as type-based
sequence alignment.

In our type-based sequence alignment, we only allow
two tokens of the same class (binary or text) to align with
each other. We claim two aligned tokens are matched if
they either have the same semantic or share at least one
value (see Section 3.3.2 for details).

To compensate for tokenization errors, we allow gaps
in our type-based sequence alignment. In addition to us-
ing gap penalties to control gaps, we introduce extra con-
straints to avoid excessive gaps. First, consecutive binary
tokens in one message format are allowed to align with
gaps if they precede or follow a text token in the other
message format in the alignment, and the number of bi-
nary tokens is at most the size of the text token if the text
token is aligned with a gap, or the size difference if it
is aligned with another text token. This constraint is for
handling the case of mistaking a sequence of binary to-
kens to be a text token or vice versa. Second, a text token
is allowed to align with a gap, but we allow at most two
gaps of this kind. This constraint is for handling the case
that a text field consisting of some white space characters
is mistakenly divided into multiple tokens.

When we align and compare two message formats to
decide whether to merge them, we first check if the gap
constraints can be satisfied. If no, we stop and claim the
two formats are mismatched; otherwise, we continue to

check the number of mismatches. If there is at most one
pair of aligned tokens mismatched, we claim the two for-
mats are matched and merge them. Note that this is con-
servative because the mismatched token can be treated as
a variable token that takes values from a new set covering
both formats.

Since we use the gap constraints and the number of
mismatches to decide whether to merge two message for-
mats, our merging performance is insensitive to sequence
alignment parameters—scores for match, mismatch and
gap.

3.5 An Example
For better understanding, here we present a concrete

example based on the SMB “Tree Connect AndX Re-
quest” message format to explain the design and output
of Discoverer. We obtain the true message format from
Ethereal (see Figure 2 and Figure 3). The final inferred
format by Discoverer is shown in Table 1.

We can see that the inferred format is a sequence of
tokens with token properties (binary vs. text, constant
vs. variable) and semantics (e.g., length fields). For to-
kens with unknown semantics, their possible values are
also taken into account in the format. Before the merg-
ing step, messages of this true format were scattered into
24 clusters in 18 different token patterns. Different token
patterns are due to the “smb.signature” field. Since this
field may take any random values, we will have a differ-
ent token pattern when more than three consecutive bytes
at a different offset take values from the printable ASCII
range and are wrongly treated as a text token. Messages
in some token patterns were further split into fine-grained
clusters in the recursive clustering phase due to our con-
servative approach. Our merging technique mitigates this
over-classification problem effectively. At the end, all of
the 24 clusters were merged into a single one.

This example also shows the possibility of imprecise
field boundaries. For example, the first null byte of the
field “smb.nt status” was treated as the null terminator
for the text token before it. However, we believe this
kind of imprecision will not affect the effectiveness of
the inferred format but instead create some extra inferred
formats with different values for “smb.nt status”.

4 Evaluation

We implemented Discoverer in 5,700 lines of C++
code on Windows. The tool takes a network capture file
either in the libpcap [12] or Netmon [14] format as in-
put and outputs inferred message formats: a sequence of
tokens with the inferred properties and semantics. Our



<proto name="nbss" showname="NetBIOS Session Service" size="4" pos="54">
<field name="nbss.type" showname="Message Type: Session message" size="1" pos="54" show="0" value="00"/>
<field show="Length: 156" size="3" pos="55" value="00009c"/>
</proto>
<proto name="smb" showname="SMB (Server Message Block Protocol)" size="156" pos="58">
<field show="SMB Header" size="32" pos="58">
<field show="Server Component: SMB" size="4" pos="58" value="ff534d42"/>
<field name="smb.cmd" showname="SMB Command: Tree Connect AndX (0x75)" size="1" pos="62" show="0x75"

value="75"/>
<field name="smb.nt_status" showname="NT Status: STATUS_SUCCESS (0x00000000)" size="4" pos="63"

show="0x00000000" value="00000000"/>
<field show="Flags: 0x18" size="1" pos="67" value="18">
<field show="Flags2: 0xc807" size="2" pos="68" value="07c8">
<field name="smb.pid.high" showname="Process ID High: 0" size="2" pos="70" show="0" value="0000"/>
<field name="smb.signature" showname="Signature: 05A09637B7419166" size="8" pos="72"

show="05:a0:96:37:b7:41:91:66" value="05a09637b7419166"/>
<field name="smb.reserved" showname="Reserved: 0000" size="2" pos="80" show="00:00" value="0000"/>
<field name="smb.tid" showname="Tree ID: 0" size="2" pos="82" show="0" value="0000"/>
<field name="smb.pid" showname="Process ID: 65279" size="2" pos="84" show="65279" value="fffe"/>
<field name="smb.uid" showname="User ID: 2048" size="2" pos="86" show="2048" value="0008"/>
<field name="smb.mid" showname="Multiplex ID: 128" size="2" pos="88" show="128" value="8000"/>

</field>
<field show="Tree Connect AndX Request (0x75)" size="124" pos="90">
<field name="smb.wct" showname="Word Count (WCT): 4" size="1" pos="90" show="4" value="04"/>
<field show="AndXCommand: No further commands (0xff)" size="1" pos="91" value="ff"/>
<field name="smb.reserved" showname="Reserved: 00" size="1" pos="92" show="00" value="00"/>
<field name="smb.andxoffset" showname="AndXOffset: 156" size="2" pos="93" show="156" value="9c00"/>
<field name="smb.connect.flags" size="2" pos="95" value="0c00">
<field name="smb.pwlen" showname="Password Length: 1" size="2" pos="97" show="1" value="0100"/>
<field name="smb.bcc" showname="Byte Count (BCC): 113" size="2" pos="99" show="113" value="7100"/>
<field name="smb.password" showname="Password: 00" size="1" pos="101" show="00" value="00"/>
<field name="smb.path" showname="Path: \\SP-SIN-DCF-01.SOUTHPACIFIC.CORP.MICROSOFT.COM\IPC$"

size="106" pos="102" show="\\\\SP-SIN-DCF-01.SOUTHPACIFIC.CORP.MICROSOFT.COM\\IPC$" value="5c005c00..../>
<field name="smb.service" showname="Service: ?????" size="6" pos="208" show="?????" value="3f3f3f3f3f00"/>

</field>
</proto>

Figure 2: Ethereal’s XML output of an example SMB “Tree Connect AndX Request” message (edited for better
presentation).

current un-optimized implementation takes about 6-12
hours for a trace of several million messages (the merg-
ing procedure is the slowest due to the need of pairwise
comparisons of all inferred formats). Before discussing
the experimental results, we first describe our data sets
and evaluation methodology.

4.1 Data Sets
We tested Discoverer on traces from two different

sites: a honeyfarm site [2] (which responds to un-
solicited, mostly malicious traffic) and a busy enterprise
(which has diverse and high-volume traffic). The hon-
eyfarm trace consists of CIFS/SMB only. The enterprise
trace includes HTTP, CIFS/SMB, and RPC. The honey-
farm trace and the HTTP trace were used as the calibra-
tion data to help guide the design process and set tunable
parameters. Our results are presented based on the output
of our tool on the traces from the enterprise site, which
served as the evaluation data. Thus, CIFS/SMB can be
seen as the evaluation case where the tool was trained on
the trace from a different site, whereas RPC is the case

where the tool is evaluated over a new protocol. Though
CIFS/SMB messages may encapsulate the RPC layer, the
RPC trace consists of RPC traffic exclusively. The HTTP
trace was used for both calibration and evaluation, but we
hardly tailored our tool to HTTP.

In our experiment, the CIFS/SMB and RPC trace from
the enterprise site contains traffic in one direction only.
This will not affect our evaluation because the proto-
col formats in both directions are equally complicated
based on Ethereal’s parsing results of the honeyfarm
CIFS/SMB trace. This is not to say that if we can infer
the format in one direction, we are guaranteed to infer the
format in the other direction; but the performance in one
direction does give an indication of the performance in
the other direction. In addition, since we do not put mes-
sages in different directions into the same cluster, uni-
directional traffic does not make the problem any easier.

For the HTTP trace, our tool reassembled consecu-
tive data sent in one direction into a message. For the
CIFS/SMB and RPC traces, we leveraged Ethereal to
parse them and identify message boundaries. A summary
of these traces is shown in Table 2.



nbss.type;Length;Server Component;smb.cmd;smb.nt_status;smb.flags;smb.flags2;smb.pid.high;
smb.signature;smb.reserved; smb.tid;smb.pid;smb.uid;smb.mid;smb.wct;AndXCommand;smb.reserved;
smb.andxoffset;smb.connect.flags;smb.pwlen;smb.bcc;smb.password;smb.path;smb.service

Figure 3: The “name” of the true format for the example message in Figure 2 concatenates the human readable names
of all the fields.

Token True Field Token True Field Token True Field Token True Field
C(b,00) nbss.type C(b,00) smb.pid.high C(b,00) smb.tid C(b,00)
C(b,00) Length C(b,00) C(b,00) V(b,2) smb.connect.flags
C(b,00) V(b,256) smb.signature C(b,ff) smb.pid C(b,00)
L(b) V(b,256) C(b,fe) C((b,01) smb.pwlen
C(b,ff) Server Component V(b,256) V(b,33) smb.uid C(b,00)
C(tn,SMBu) smb.cmd V(b,256) V(b,32) L(b) smb.bcc
C(b,00) smb.nt status V(b,256) V(b,13) smb.mid C(00)
C(b,00) V(b,256) V(b,211) C(00) smb.password
C(b,00) V(b,256) C(b,04) smb.wct V(tun,664) smb.path
C(b,18) smb.flags V(b,256) C(b,ff) AndXCommand C(tn,?????) smb.service
C(b,07) smb.flags2 C(b,00) smb.reserved C(b,00) smb.reserved
C(b,c8) C(b,00) L(b) smb.andxoffset

Table 1: Discoverer’s inferred format for the true format in Figure 3. For C(x,y), C means constant, x means binary
(“b”) or text (“t”; in text tokens, “u” means Unicode and “n” means it is null terminated), y is the hex value or string
of the token; for V(x,z), z is the number of different values for the token.

Protocol Source Size (B) # Messages # True Formats
HTTP Enterprise 4.6G 5,950,453 2,696
RPC Enterprise 179M 351,818 50
CIFS/SMB Enterprise 1.0G 3,818,267 301
CIFS/SMB Honeyfarm 1.1G 1,439,744 1220

Table 2: Summary of network traces used in the evaluation.

4.2 Evaluation Methodology
Our evaluation methodology is to compare the quality

of our output with the set of true message formats. To ob-
tain the true format, instead of trying to manually extract
it from documentation and RFCs, we used the protocol
analyzers in Ethereal [5]. Ethereal can parse a network
trace and produce, for each message in the trace, an XML
output that includes the list of fields in the message, the
values of those fields, some human readable names and
their sizes. Based on this output, we assign every mes-
sage a true format “name”, which is simply the concate-
nation of the human readable names of all the fields. An
example of Ethereal’s XML output and the true format
name is shown in Figure 2 and Figure 3.

We characterize the performance of our tool and high-
light the results in the following metrics:

• Correctness: If a cluster contains messages from
more than one true format, then Discoverer will

make incorrect inference. Thus we measure the cor-
rectness by checking the number of different true
formats followed by the messages in a cluster. For
all three protocols, over 90% clusters contain mes-
sages from a single true format.

• Conciseness: Our conservative clustering may
cause multiple inferred formats to cover subsets of
a single true format. A large number of redundant
formats will affect the conciseness of the protocol
specifications generated by our tool. Thus we mea-
sure conciseness by the ratio from the number of
inferred formats to the number of true formats fol-
lowed by their messages. For all three protocols, we
achieved a low 5 to 1 ratio.

• Coverage: We measure the trace coverage from two
perspectives: the fraction of messages covered by
our inferred formats and the fraction of true formats



Parameter Value
Maximum message prefix 2048 bytes
Minimum length of text segments 3 letters
Minimum cluster size 20 messages
Maximum distinct values for FD 10
Alignment match score 1
Alignment mismatch score 0
Alignment gap score -2

Table 3: Summary of parameters.

followed by covered messages. For all the three pro-
tocols, our message coverage is above 95% while
our format coverage is around 30-40%.

As for the semantic inference, all the length fields in-
ferred by Discoverer are correct; certain length fields are
missed due to the trace limitation. For instance, some
true formats in CIFS/SMB have a fixed message size. In
this case, Discoverer will treat the length fields that re-
flect the message size as constant tokens, and it will not
affect parsing messages of these formats in practice.

4.3 Tunable Parameters

Discoverer has just a few tunable parameters (see Ta-
ble 3). For a message larger than 2048 bytes, we only
consider the first 2048 bytes, referred to as the maximum
message prefix. The minimum length of text segments
controls the tokenization procedure (Section 3.2.1). The
minimum cluster size and the maximum distinct values
for FD are used in the recursive clustering phase (see
Section 3.3.3). The match/mismatch/gap scores are pa-
rameters for sequence alignment [15]. We observed that
the performance of Discoverer is not sensitive to the set-
tings of these parameters. For instance, we saw similar
performance when we changed the maximum prefix size
from 2048 bytes to 1024 bytes or changed the minimum
cluster size from 20 messages to 10 messages. In ad-
dition, our type-based sequence alignment is not sensi-
tive to the match/mismatch/gap scores as we discussed
in Section 3.4. Thus we take the same parameters for our
evaluations on all three protocols.

In the rest of this section, we present the experi-
mental results on the enterprise traces for HTTP, RPC,
and CIFS/SMB. Note that we use the inferred format
and cluster interchangeably because we infer one format
from each cluster.
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Figure 4: Heavy-tail distribution of message format pop-
ularity in HTTP.
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Figure 5: Correctness for HTTP: CDF of the number of
true formats followed by messages of a cluster for all
clusters before the merging phase.

4.4 HTTP

The HTTP protocol allows an arbitrary number of “pa-
rameter: value” pairs in an arbitrary order. We refer this
to be the “set” semantic. Currently we are unable to iden-
tify this set semantic. So we treat each ordering of the set
elements as a distinct format. By doing so, we observed
2,696 formats from the parsing results of Ethereal. We
leave the identification of set semantic to be future work
(see Section 6).

In Figure 4, we show the number of messages of each
true format in the HTTP trace. Note that the y-axis is
in logarithmic scale. This clearly reveals the heavy-tail
distribution; most messages (more than 99%) fall in the
first top 1000 true formats. We observed a similar trend
in the RPC and CIFS/SMB trace as well. The implica-
tion for our tool is that the format coverage and message



coverage are likely to be very different; the latter will
be much higher compared to the former. In HTTP, we
inferred 3,926 formats, which covered 5,938,511 out of
5,950,453 messages (99.8%). The covered messages be-
long to 865 out of 2,696 true formats (32%). Since we
have a hard requirement on the minimum size of a clus-
ter, we conjecture that the coverage ratio in terms of true
formats will improve when the trace grows and each for-
mat has more messages.

Figure 5 plots the CDF of the number of true formats
followed by messages of a cluster for all clusters before
the merging phase. This reflects the correctness of our
tool. This figure shows that about 90% of our inferred
clusters are correct. They correspond to only one true
format. The number rises to over 95% if we include in-
ferred formats that match two true formats.

By manually inspecting the results, we found that the
clustering errors are mainly due to the inaccuracy in
Ethereal parsing. For example, in some message for-
mats, Discoverer infers that there is a token that can be
either “Connection” or “Proxy-Connection”. Discoverer
does not treat it as a FD because both may be followed
by the same set of values such as “Close” or “Keep-
Alive”. However, Ethereal does not recognize “Proxy-
Connection” as a parameter for HTTP, and returns a null
string for this field in its parsing result, while it returns
“http.connection” for “Connection”. So we will have two
true formats for a cluster that contains both “Connection”
and “Proxy-Connection”. Thus, our conciseness number
may improve if Ethereal has more accurate parsing.

The merging phase reduced 4,465 clusters to 3,926
clusters. Since the covered messages belong to 865 true
formats, this gives us a 5 to 1 ratio. In fact, almost 80%
true formats are scattered into at most five clusters. On
one hand, our conservative strategy eliminated false pos-
itives (i.e., wrongly merging two clusters that correspond
to two different true formats). On the other hand, it did
not help much in merging clusters for HTTP. The rea-
son is as follows. HTTP allows many parameters in the
form of “parameter: value”. We treat the “parameter:”
and “value” as separate tokens because of the space in
between. Since the “value” token for certain parameters
such as “PROXY” may be arbitrary strings, it is likely
for such “value” tokens in two clusters to not have over-
lapped values. In this case, we will treat them as a mis-
match. If two clusters happen to have more than one such
mismatch, we will not merge them based on our conser-
vative policy.
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Figure 6: Effectiveness of merging for RPC: Number of
inferred formats into which messages of a single true for-
mat are “scattered”: before and after merging.

4.5 RPC
The RPC trace consists of exclusively RPC traffic.

Though the trace size is 179MB, one order less than
the HTTP and CIFS/SMB trace, we observed the simi-
lar trend in the distribution of the number of messages in
each true format. Overall, we inferred 33 formats, which
covered 340,624 out of 351,818 messages (96.8%). The
covered messages belong to 18 out of 50 true formats
(36%).

The recursive clustering generated 83 clusters, among
which 78 clusters contain messages from a single true
format, and the rest five clusters have messages from
two true formats. The merging phase helped reduce the
overall clusters from 83 to 33 without introducing false
positives. This shows that our merging phase compen-
sates the tokenization errors well by recognizing wrongly
classified binary and text tokens. From Figure 6 we can
see that, for each of 11 true formats, its messages were
merged into in a single cluster.

4.6 CIFS/SMB
CIFS/SMB is a fairly complex binary protocol which

includes several layers of protocols: it consists of the
NetBIOS Session Service (NBSS) headers which en-
capsulate a SMB header which in turn is layered over
RPC. Overall, we inferred 679 formats, which covered
3,640,239 out of 3,818,267 messages (95.3%). The cov-
ered messages belong to 130 out of 301 true formats
(43%).

In Figure 7, we plot the CDF of the number of true
formats followed by messages of a cluster for all clus-
ters before the merging phase. We can see that 57%
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Figure 8: Merging effectiveness for CIFS/SMB: Number
of inferred formats into which messages of a single true
format are “scattered”: before and after merging

clusters contain messages from a single true format, and
35% clusters have messages from two true formats. We
manually checked these clusters and found that it is due
to the imprecise parsing of Ethereal. It recognized the
last field as a “dcerpc.nt.close.frame” field for some mes-
sages and as a stub data for other messages while those
messages have the same format according to our manual
inspection. If we take into account this factor, more than
90% clusters contain messages from a single true format,
which is consistent with HTTP.

We further inspected the clusters consisting of mes-
sages from more than two formats and found that, for
many of such clusters, the only difference in the true for-
mats followed by their messages is the last field. It is in
the form of “Stub data (XX bytes)”, and the difference is
in “XX” which says the size of the stub data. Based on

our manual inspection, we conjecture that these stub data
likely follow the same format and the size difference is
due to a text field with a variable length embedded in the
stub data. Therefore, 90% is a conservative measure on
the correctness.

In Figure 8, we plot the number of inferred formats
into which messages of a single true format are scattered
before and after merging. Like RPC, the merging tech-
nique is effective on CIFS/SMB. Overall, we reduced the
number of clusters from 7180 to 679 without introducing
false positives, which gives us a 5 to 1 ratio against the
130 true formats.

5 Related Work

We divide related work into three categories. First,
we discuss the state of the art in protocol reverse en-
gineering. Second, we present the previous work that
was geared towards a specific application rather than per-
forming all-purpose protocol reverse engineering. Fi-
nally, we discuss grammar inference.

To date, most protocol reverse engineering appears to
be a painstaking manual process, which involves looking
at available documentation, source code, and traces. Two
popular examples in the community include the SAMBA
project [18] and the messenger clients [6]. Automatic
protocol reverse engineering appears to have received
much less attention. The most closely related work to
our paper that we are aware of is the Protocol Informatics
project [17]. It aims to employ sequence alignment tech-
niques to infer protocol formats from a trace of the pro-
tocol. Its main limitation is that the byte-wise sequence
alignment, while ideally suited to aligning messages with
similar byte sequences, is not suitable for aligning mes-
sages with similar formats. In addition, selecting weights
to tune the alignment is hard as shown in [3].

Previous studies have also performed some level of
protocol reverse engineering with a specific purpose
in mind, namely, application-level replay and protocol
identification.

RolePlayer [3] and ScriptGen [10, 11] both lever-
age byte-wise sequence alignment techniques to achieve
application-level replay by heuristically detecting and
adjusting some specific fields such as network ad-
dresses, lengths, and cookies. A driving applica-
tion for application-level replay is to build a protocol-
independent, application-level proxy to filter known at-
tacks in a honeyfarm. To improve the performance of
the Needleman-Wunsch algorithm [15], RolePlayer uses
the so-called pairwise constraint matrix, which specifies
whether the ith byte of the first message can or cannot be
aligned with the jth byte of the second message based on



the field semantic of the ith byte. However, if the seman-
tic of the ith byte in the first message is unknown, it can
be aligned with any byte in the second message, which
may lead to alignment errors. There are two key differ-
ences between Discoverer and these two systems. First,
RolePlayer and ScriptGen only discover the protocol for-
mat to the extent necessary for replay, while Discoverer
is aimed to discover the complete protocol format. Sec-
ond, instead of using the byte-wise sequence alignment,
we first cluster messages based on token patterns and
then use a novel type-based sequence alignment tech-
nique to align and compare message formats based on
token types. This represents a significant improvement:
on one hand, we can avoid byte-pattern alignment in the
recursive clustering phase to achieve a good performance
on correctness; on the other hand, we can mitigate over-
classification by merging similar inferred formats. Fur-
thermore, compared with ScriptGen which clusters mes-
sages by comparing the whole messages at once, our re-
cursive clustering technique performs better because we
not only look at the potential FD token itself but also look
into “the future” by comparing the subsequent tokens in
the messages. Some of our techniques for identifying
semantically important fields (such as length fields) are
borrowed from RolePlayer.

Ma et. al. [13] perform protocol identification, that is,
they classify the set of sessions in a trace into various
protocols without relying on port numbers. They develop
three techniques for profiling messages exchanged in a
protocol: product distributions of byte offsets, Markov
models of byte transitions, and common substring graphs
of message strings. The main difference between their
work and ours is that we have different goals. They aim
to characterize a protocol based on the first n (e.g., 64)
bytes in sessions of the protocol; we leverage the format
inference and type-based sequence alignment techniques
to decipher the message formats of the entire session.

The problem of protocol reverse engineering is re-
lated to the theoretical problem of grammar inference,
which aims to deduce the grammar given a set of sam-
ple strings drawn from it. This problem is unfortunately
theoretically unsolvable, even when the grammar is in
the simplest form of Chomskian grammar, the regular
language [7]. Since even a regular language can be po-
tentially infinite and the sample set cannot be, it turns
out that this task is impossible. The language implicit
in application-level protocols is often substantially more
complex than a regular language, involving fields such
as length fields. Because of this complexity, we were un-
able to directly apply any results from the grammar infer-
ence community. There have been extensions based on
Kolmogorov complexity [4] to learn the simplest finite

language from only positive examples, but once again,
they appear too complicated to apply to the context sen-
sitive grammars that network protocols involve.

Techniques used in the speech recognition community,
such as, probabilistic Markov chain analysis [8], were
not applied in our work, since the correlation between
protocol fields makes it difficult for the byte sequence in
a message to be modeled as independent samples from a
Markov process.

6 Limitations and Future Work

In this section, we discuss the limitations of our ap-
proach. We categorize our limitations into two cate-
gories: ones that are fundamental to the problem we want
to solve and those that are due to the heuristics in our
tool. We will also describe future research directions for
solving these limitations.

There are two main fundamental limitations.

• Trace Dependency: The format generated by any
tool that operates only on the trace is limited by the
diversity of traffic seen in the trace. If certain mes-
sage formats never occur in the trace, or if certain
variable fields never take more than one value in the
trace, it is impossible for such a tool to infer those
message formats or identify those fields as variable
fields.

• Pre-Defined Semantics: Only a set of pre-defined
semantics can be inferred. Since it is not possible
to find all the possible semantics of all fields just
from a trace, the best one can hope for is to have an
extensible framework where new semantic modules
can be added as desired.

We now move on to the imprecision problems that are
directly related to the design of our tool. The following
are the major imprecisions in our inferred message for-
mats:

• Semantics: At present, we cannot capture the fol-
lowing semantics. (a) Set semantics: For instance,
HTTP allows an arbitrary number of parameters to
be specified in any order. Identifying this list of sup-
ported parameters as a set that allows re-ordering
during encoding would considerably improve our
performance. (b) Pointer field: This is a field whose
value is the offset of another field in an array of
some arbitrary items. Such fields occur in DNS.
(c) Array length: This is a field whose value is the
number of items in an array of some arbitrary items
(e.g., DNS). We plan to study the inference of these
semantics in the future.



• Coalescing Fields: We identify a binary field as a
sequence of binary tokens each spanning a single
byte. This is a limitation since ideally we would
want such a field identified as a single binary to-
ken. Unlike text fields, no clue may be available in
delimiting binary fields. The only way out is tech-
niques based on frequency analysis (e.g., does this
byte vary as much as the other one?). However, this
kind of techniques tend to be unreliable. For in-
stance, in a two-byte process ID field, the more sig-
nificant byte may change much less frequently than
the less significant one since an operating system
usually issues process IDs incrementally from zero.
Thus we chose to list such fields as a series of single
byte tokens. Our plan is to enrich our semantic in-
ference modules so that a sequence of binary bytes
with a common semantic can be identified as a sin-
gle field. For example, a length field spanning four
bytes will be identified as a single field because of
the semantic module for detecting length fields.

• Asynchronous Protocols: With asynchronous pro-
tocols, it is difficult to even delimit messages from
network packets. This is because messages in one
direction may be interrupted by those in the other
direction, and messages in one direction may be de-
layed allowing two back-to-back messages in the
other direction. We have not experimented with any
asynchronous protocols so far.

• Application Sessions: Currently, our tool analyzes
each connection in isolation. However, if we had
a good session description of the various connec-
tions and various hosts involved, it would be trivial
to process the trace with such session knowledge,
and derive formats for the whole session. A previ-
ous study [9] aimed to semi-automatically discover
session structures.

• State Machine Inference: Currently, we only en-
vision a state machine constructed from the trace
by using the inferred message formats to assign a
type to each message, and then simply inferring the
FSA that captures the sequences of messages in all
sessions in the trace. However, this is hardly the
compact FSA that the application developer had in
mind. In such case, using FSA minimization tech-
niques [19] may simplify the FSA considerably.

Many of the limitations above are due to the limited in-
formation available from network traces. To tackle these
limitations and achieve a better reverse-engineered pro-
tocol specification, we can use program analysis to gain

more information and insight into the parsing and pro-
cessing of the input in the program. For instance, we
may easily identify two consecutive bytes as a WORD
(i.e., a two-byte integer) from run-time analysis by ob-
serving that they are processed as a WORD throughout
the execution.

We have focused on reverse engineering network pro-
tocols in Discoverer; it would be useful to reverse engi-
neer the input specifications for file-based applications,
since we have seen a significant growth in file-based at-
tacks.

7 Conclusion

Protocol reverse engineering is a highly manual pro-
cess today, which is still suffered through because of the
immense value of protocol knowledge. We have devel-
oped Discoverer, a tool that aims to automate this re-
verse engineering process. Discoverer leverages recur-
sive clustering and type-based sequence alignment to in-
fer message formats. We have demonstrated Discoverer
can infer message formats effectively for three network
protocols, CIFS/SMB, RPC, and HTTP. In the future, we
plan to enrich our semantic inference, research on the
protocol state machine inference, explore the direction of
using program analysis to reverse engineer the specifica-
tions of both network and file input, and apply reverse-
engineered protocol specifications to real world applica-
tions.
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