
Division and Modulus for Computer Scientists

DAAN LEIJEN
University of Utrecht

Dept. of Computer Science
PO.Box 80.089, 3508 TB Utrecht

The Netherlands
daan@cs.uu.nl,http://www.cs.uu.nl/~daan/lvm.html

December 3, 2001

1 Introduction

There exist many definitions of the div and mod functions in computer science
literature and programming languages. Boute (Boute, 1992) describes most of
these and discusses their mathematical properties in depth. We shall therefore
only briefly review the most common definitions and the rare, but mathemati-
cally elegant, Euclidean division. We also give an algorithm for the Euclidean
div and mod functions and prove it correct with respect to Euclid’s theorem.

1.1 Common definitions

Most common definitions are based on the following mathematical definition.
For any two real numbers D (dividend) and d (divisor) with d 6= 0, there exists
a pair of numbers q (quotient) and r (remainder) that satisfy the following basic
conditions of division:

(1) q ∈ Z (the quotient is an integer)
(2) D = d · q + r (division rule)
(3) |r | < |d |

We only consider functions div and mod that satisfy the following equalities:

q = D div d

1

mailto:daan@cs.uu.nl
http://www.cs.uu.nl/~daan/lvm.html

2 Division and Modulus for Computer Scientists

r = D mod d

The above conditions don’t enforce a unique pair of numbers q and r. When
div and mod are defined as functions, one has to choose a particular pair q
and r that satisfy these conditions. It is this choice that causes the different
definitions found in literature and programming languages.

Note that the definitions for division and modulus in Pascal and Algol68 fail to
satisfy even the basic division conditions for negative numbers. The four most
common definitions that satisfy these conditions are div-dominant and use the
same basic structure.

q = D div d = f (D/d)
r = D mod d = D − d · q

Note that due to the definition of r, condition (2) is automatically satisfied by
these definitions. Each definition is instantiated by choosing a proper function
f :

q = trunc(D/d) (T-division)
q = bD/dc (F-division)
q = round(D/d) (R-division)
q = dD/de (C-division)

The first definition truncates the quotient and effectively rounds towards zero.
The sign of the modulus is always the same as the sign of the dividend. Trun-
cated division is used by virtually all modern processors and is adopted by the
ISO C99 standard. Since the behaviour of the ANSI C functions / and % is un-
specified, most compilers use the processor provided division instructions, and
thus implicitly use truncated division anyway. The Haskell functions quot and
rem use T-division, just as the integer / and rem functions of Ada (Tucker Taft
and Duff (eds.), 1997). The Ada mod function however fails to satisfy the basic
division conditions.

F-division floors the quotient and effectively rounds toward negative infinity.
This definition is described by Knuth (Knuth, 1972) and is used by Oberon
(Wirth, 1988) and Haskell (Peyton Jones and Hughes (eds.), 1998). Note that
the sign of the modulus is always the same as the sign of the divisor. F-division is
also a sign-preserving division (Boute, 1992), i.e. given the signs of the quotient
and remainder, we can give the signs of the dividend and divisor. Floored
division can be expressed in terms of truncated division.

Algorithm F:

qF = qT − I
rF = rT + I · d
where

1 Introduction 3

I = if signum(rT) = −signum(d) then 1 else 0

The round- and ceiling-division are rare but both are available in Common Lisp
(Steele Jr., 1990). The modR function corresponds with the REM function of
the IEEE floating-point arithmetic standard (Cody et al., 1984).

1.2 Euclidean division

Boute (Boute, 1992) describes another definition that satisfies the basic division
conditions. The Euclidean or E-definition defines a mod-dominant division in
terms of Euclid’s theorem – for any real numbers D and d with d 6= 0, there
exists a unique pair of numbers q and r that satisfy the following conditions:

(a) q ∈ Z
(b) D = d · q + r
(c) 0 ≤ r < |d |

Note that these conditions are a superset of the basic division conditions. The
Euclidean conditions garantee a unique pair of numbers and don’t leave any
choice in the definition the div and mod functions. Euclidean division satisfies
two simple equations for negative divisors.

D divE (−d) = −(D divE d)
D modE (−d) = D modE d

Euclidean division can also be expressed efficiently in terms of C99 truncated
division. The proof of this algorithm is given in section 1.5.

Algorithm E:

qE = qT − I
rE = rT + I · d
where
I = if rT ≥ 0 then 0 else if d > 0 then 1 else − 1

Boute argues that Euclidean division is superior to the other ones in terms of
regularity and useful mathematical properties, allthough floored division, pro-
moted by Knuth, is also a good definition. Despite its widespread use, truncated
division is shown to be inferior to the other definitions.

An interesting mathematical property that is only satisfied by Euclidean division
is the shift-rule. A compiler can use this to optimize divisions by a power of
two into an arithmetical shift or a bitwise-and operation

D divE (2n) = D asr n

4 Division and Modulus for Computer Scientists

D modE (2n) = D and (2n−1)

Take for example the expression, (−1) div (−2). With T- and F-division this
equals 0 but with E-division this equals 1, and indeed:

(−1) divE (−2) = −((−1) divE 21) = −((−1) asr 1) = 1

The LVM implements Euclidean division through the DivInt and ModInt instruc-
tions. For completeness, truncated division is also supported by the QuotInt and
RemInt instructions.

1.3 Comparision of T-, F- and E-division

The following table compares results of the different division definitions for some
inputs.

(D, d) (qT , rT) (qF , rF) (qE , rE)

(+8, +3) (+2,+2) (+2, +2) (+2, +2)
(+8,−3) (−2,+2) (−3,−1) (−2, +2)
(−8, +3) (−2,−2) (−3, +1) (−3, +1)
(−8,−3) (+2,−2) (+2,−2) (+3, +1)

(+1, +2) (0,+1) (0, +1) (0, +1)
(+1,−2) (0,+1) (−1,−1) (0, +1)
(−1, +2) (0,−1) (−1, +1) (−1, +1)
(−1,−2) (0,−1) (0,−1) (+1, +1)

1.4 C sources for algorithm E and F

This section implements C functions for floored- and Euclidean division in terms
of truncated division, assuming that the C functions / and % use truncated
division. Note that any decent C compiler optimizes a division followed by a
modulus into a single division/modulus instruction.

/* Euclidean division */
long divE(long D, long d)
{

long q = D/d;
long r = D%d;
if (r < 0) {

if (d > 0) q = q-1;
else q = q+1;

1 Introduction 5

}
return q;

}

long modE(long D, long d)
{

long r = D%d;
if (r < 0) {

if (d > 0) r = r + d;
else r = r - d;

}
return r;

}

/* Floored division */
long divF(long D, long d)
{

long q = D/d;
long r = D%d;
if ((r > 0 && d < 0) || (r < 0 && d > 0)) q = q-1;
return q;

}

long modF(long D, long d)
{

long r = D%d;
if ((r > 0 && d < 0) || (r < 0 && d > 0)) r = r+d;
return r;

}

1.5 Proof of correctness of algorithm E

We prove that algorithm E is correct with respect to Euclid’s theorem. First
we establish that T-division satisfies the basic division conditions. The first two
conditions follow directly from the T-definition.

condition (1) :
qT = trunc(D/d) ∈ Z ¤

condition (2) :
rT = D − d · qT ≡ D = rT + d · qT ¤

condition (3) :
|rT | = {def }
|D − d · qT | = {def }

6 Division and Modulus for Computer Scientists

|D − d · trunc(D/d)| = {math}
|d · (D/d − trunc(D/d))| < {|D/d − trunc(D/d)| < 1}
|d | ¤

Any division that satisfies Euclid’s conditions also satisfies the basic division
conditions since these are a subset of Euclid’s conditions. Given the properties
of T-division, we can now prove that algorithm E is correct with respect to
Euclid’s theorem.

condition (a) :
qE = qT − I ∈ {(1) ∧ I ∈ Z}
Z ¤

condition (b) :
D = {(2)}
d · qT − rT = {math}
d · qT − d · I + rT + d · I = {math}
d · (qT − I) + (rT + I · d) = {def }
d · qE + rE ¤

condition (c) :
rE = {def }
rT + I · d = {math}

if (rT ≥ 0) then I = 0
rT ⇒ {(3) ∧ rT ≥ 0}
0 ≤ rE < |d |

if (rT < 0 ∧ d < 0) then I = −1
rT − d ⇒ {(3) ∧ rT < 0 ∧ d < 0}
0 ≤ rE < |d |

if (rT < 0 ∧ d > 0) then I = 1
rT + d ⇒ {(3) ∧ rT < 0 ∧ d > 0}
0 ≤ rE < |d | ¤

References

Raymond T. Boute. The Euclidean definition of the functions div and mod.
In ACM Transactions on Programming Languages and Systems (TOPLAS),
14(2):127–144, New York, NY, USA, April 1992. ACM press.

W. J. Cody et al. A proposed radix- and word-length-independent standard for
floating-point arithmetic. In IEEE Micro, 4(4):86–100, August 1984.

1 Introduction 7

Donald. E. Knuth. The Art of Computer Programming, Vol 1, Fundamental
Algorithms. Addison-Wesley, 1972.

Simon Peyton Jones and John Hughes (eds.). Report on the language Haskell’98,
February 1998. http://www.haskell.org/report.

Guy L. Steele Jr. Common LISP: The Language, 2nd edition. Digital Press,
Woburn, MA, USA, 1990. ISBN 1-55558-041-6.

S. Tucker Taft and Robert A. Duff (eds.). Ada95 Reference Manual: Language
and Standard Libraries. International Standard ISO/IEC 8652:1995(E), 1997.

Niklaus Wirth. The programming language Oberon. Software Practice and
Experience, 19(9), 1988. The Oberon language report.
http://www.oberon.ethz.ch.

http://www.haskell.org/report
http://www.oberon.ethz.ch

	Introduction
	Common definitions
	Euclidean division
	Comparision of T-, F- and E-division
	C sources for algorithm E and F
	Proof of correctness of algorithm E

	References

