Visual DSD Tutorial

Background

Visual DSD is a programming language for designing, simulating and analysing systems of DNA
molecules that interact via strand displacement. The tool is intended for use by researchers and
students with an understanding of basic concepts in DNA computing.

Preliminaries: Installing Visual DSD

1.
2.

Navigate to http://research.microsoft.com/dna and click on the “Web Simulator” link.

Visual DSD requires Silverlight 4 to be installed on your machine. If this is not the case, you
should receive a notification in your browser together with installation instructions.
Silverlight 4 is available for Windows and Mac as a plugin for most major web browsers.

In the top-right corner, click on the “Install” button. This will install the software to your
local machine for offline use. You will be presented with options to create shortcuts on the
Start menu and the Desktop. If you have already installed the tool, the “Install” button will
read “Update” and will check if a newer version of the tool is available to download.

I: Basic compilation and simulation

1.

Load the “Catalytic” example from the “Examples:” drop-down menu. The program code will
appear in the “Code” tab on the left-hand side. This system implements a catalytic gate
using DNA strand displacement, as described by Zhang et al. (Science 318:1121-1125, 2007).
The goal of the catalytic gate is to release large quantities of output if a particular catalyst

species is present.
The code describes a collection of DNA species which interact to produce the behaviour of a
catalytic gate. Use the “Compile” button to calculate all possible interactions between these

species and their products. This produces output in the various sub-tabs of the

“Compilation” tab on the right-hand side. In particular, observe the graphical representation
of the chemical reactions in the “Graph” sub-tab. The compilation also produces a graphical
representation of the input species in the “Input” tab on the left hand side. Use the top four
options in the “View” drop-down menu to modify the graphical presentation. The

“Complement” view is selected by default, which illustrates the binding of DNA strands

along complementary regions of their DNA sequence.

Having compiled the reactions we can now simulate them. Switch to the “Simulation” tab on
the right-hand side and select the “Plot” sub-tab. Use the “Simulate” button to run a
stochastic simulation of the catalytic gate system. This produces output in the sub-tabs of

the “Simulation” tab, including the time course “Plot”, a data “Table” and visualisations of
the “Initial state” and “Last state” of the system. In the time course, note that the
populations of the <6 3~ 4> and <1 2> strands increase over time as they are produced by
the catalytic cycle of the gate in response to the presence of the <4 57> catalyst species.
The first line of the program code controls the duration of the simulation run and the
number of population samples to take during that time. Modify the code to run for 2000

http://research.microsoft.com/dna

time units, with a sample taken every 4 time units, then re-compile the code and re-run the

stochastic simulation.

Visual DSD supports multiple levels of abstraction for compiling the interactions between
DNA species. These are selected from the “Compilation:” drop-down menu, where “Infinite”
is the most abstract semantics and “Detailed” is the most complex. Use the “Compilation:”

menu to switch between the different semantics and re-compile the program in each case.

Observe how the complexity of the reaction graph (in the “Graph” sub-tab) changes. You can
also use the “Text” sub-tab to compare the numbers of different species and reactions
produced in each case. Notice that in the simpler models, multiple reactions are condensed
into a single step. How many reactions are there in the “Detailed” model? (Count a

reversible reaction as two reactions.)

The DSD tool also includes a deterministic simulator which constructs and solves an Ordinary
Differential Equation representation of the system. Select “Deterministic” from the

“Simulation:” drop-down menu, then re-run the simulation. Run the deterministic and

stochastic simulations for the various compilation options, taking note of the difference in
performance.

I1: State space analysis and modular programming

1.

Load the “Two-domain transducer” example program and select the “Infinite” semantics

from the “Compilation:” menu. This simple example implements a DNA gate which converts

a “<t” x>” input strand into a “<t” y>” output strand. Compile the reactions and observe the
inputs and outputs on the reaction graph in the “Compilation” tab.
Visual DSD supports construction and visualisation of continuous-time Markov chains which

represent the “state space” of a system. This can be thought of as a state transition system
where the states represent a particular set of species populations and the transitions
correspond to reactions involving the DNA species. Switch to the “Analysis” tab on the right-
hand side and select the “Graph” sub-tab. Use the “Analyse” button to compute the state
space and investigate the resulting graphical visualisation. The “Graph” sub-tab includes

numerous options to adjust the layout of the graph. The “Visualise” sub-tab displays just the

IM

initial state and any states from which no further reactions are possible (“terminal” states).
This is helpful if the graph is too large to see clearly.

In the graph, the initial state of the system is highlighted with a thick black outline, and any
terminal states are highlighted with a thick red outline. How many terminal states are there
in this case? Check that the “<t”* y>” output strand is produced in the terminal state(s) of this
system.

The DSD language supports modular programming to allow reuse of common design

patterns. In this example, the definition of the “T(N,x,y)” module produces N copies of a
transducer gate which turns “<t” x>” into “<t” y>". This is instantiated as “T(1,x,y)” in the
last line of the code. Add a second transducer of the form “T(1,y,z)” to the system, by placing

it within the parentheses on the final line, separated from the other transducer declaration

by a vertical bar (for parallel composition). The last line should now read (<t” x> | T(1,x,y) |

T(1,y,2)) The resulting system should turn “<t” x>” into “<t” y>” using the first transducer
and then turn “<t” y>” into “<t” z>” using the second transducer. To check this, recompute

the state space graph. Check that the “t z” output appears in the terminal state.

The “new a” declaration within the definition of the “T(N,x,y)” module ensures that each
instantiation of the transducer module chooses a fresh domain “a”. This prevents crosstalk
between gates and allows them to function correctly. Delete the “new a” declaration from

your modified program and re-compute the state space. How many terminal states (shown

in red) are there now? Use the “Visualise” sub-tab to investigate them and try to identify

which is the desired terminal state and which is the undesired one, bearing in mind the

functionality of the transducer gate (Hint: in the Terminal state, all of the colour (toehold)

domains in the gate complexes should be closed off, i.e. double-stranded).

III: Modelling interference

1.

Load the “Buffered Transducer” example program and set the compilation rules to “Default”

and the simulation to “Stochastic”. This program implements another kind of transducer

which receives “x” strands and outputs “y” strands.
Compile the program, view the reaction graph and note down the humber of species and

reactions (from the “Text” sub-tab of the “Compilation” tab). Run a stochastic simulation to

familiarise yourself with the correct behaviour.

Visual DSD allows the modelling of interference via “leak reactions”. These formalise a
particular kind of unwanted interaction between strands and gates. Enable leaks by checking

the “Leaks” checkbox in the “Options:” drop-down menu and recompile the program. How

do the compilation time and the size of the reaction graph compare to the non-leak case?

Run a simulation and compare the behaviour to the non-leak case. In this case, enabling

leaks has qualitatively changed the behaviour of this system by allowing spurious additional
“y” strands to be emitted.

Visual DSD supports a just-in-time (JIT) compilation and simulation algorithm which allows
larger systems to be simulated without pre-computing all of the possible reactions, which

can take a long time (as in the case of this leak example). Without disabling leaks, select “JIT”

from the “Simulation:” drop-down menu to enable the JIT simulator, then click “Compile” to

recompile the system. Note that the “Compilation” tab is not populated in this case, because

the JIT compiler does not pre-compute the full reaction network. Run the simulator and

check that the time series is similar to that produced by the stochastic simulator for this

example. When the simulation finishes, the “Compilation” tab will be populated as normal.
The JIT compiler only calculates new species and reactions as and when they are needed.
Compare the number of species and reactions in the reaction network produced by the “JIT”

compiler to the humbers from the full reaction network computed when “Stochastic”

simulation was selected. The discrepancy is due to the fact that leak reactions have very low

rates and hence many of the reactions in the full reaction network never actually occur. The
JIT simulator allows us to efficiently handle very large reaction networks, such as those
produced using leaks.

Answers
Part I, number 4: “directive duration 2000.0 points 500”.

Part I, number 5: There are 19 reactions, if you count a reversible reaction as 2 reactions.

Part |, number 6: The Detailed model runs really slowly under stochastic (because the explicit
migration reactions are very fast and bog down the simulation) but fairly well in deterministic mode.
The other models are simple enough to run very fast in both modes.

Part Il, number 3: There is 1 terminal state.

Part Il, number 5. There are 2 terminal states. Removing “new a” allows strands from the first
transducer gate to interfere with the second transducer gate, allowing it to produce its output
prematurely. Thus in the incorrect terminal state there are gates still waiting to receive input
whereas in the correct terminal state all the gate structures have been completely closed off (they
are totally double stranded).

Part lll, number 3: The graph will be much bigger with leaks enabled, and much slower to compile.

Part Ill, number 5: The numbers for the JIT case should be lower. The numbers are different for each
simulation run because the JIT simulation is stochastic, so the species and reactions encountered
may be different each time.

