Dialog State Tracking Challenge: Information for prospective participants

Jason D. Williams
Alan Black
Deepak Ramachandran
Antoine Raux

IEEE SLT
December 2012
What is dialog state tracking?

• In a spoken dialog system, given dialog history up to t, predict the user’s goal at time t

• A simple baseline: choose the top ASR result, perhaps thresholded by a confidence score

• But it’s possible to do better...
Why a challenge task?

• Work over the past 10+ years has shown that it is possible to outperform the ASR 1-best using statistical techniques ...
 ... but in some cases rules still perform better

• Variety of techniques have been proposed ...
 ... but different research sites use their own systems, so there have been virtually no comparative evaluations – we need a common testbed
Fixed corpus of dialogs

• A fixed corpus, not an end-to-end evaluation
 – Lower barrier to entry
 – No need to develop ASR, TTS, etc.
 – Facilitates direct comparisons of dialog state tracking algorithms, independent of other modules
Limitations of a fixed corpus

1. Experiments on a fixed corpus may not predict performance in deployment
 – Develop tracker on training data drawn from a particular distribution
 – Deploy tracker into system
 – Tracker causes system to follow a different distribution
 – Problem: train/test mismatch
 – We explicitly create train/test mismatch in the challenge

2. Does not directly measure improvement in whole-dialog performance (e.g., task completion)
 – The ultimate quantity of interest are whole-dialog measures like task completion
 – However, measuring whole-dialog performance precludes evaluation on a corpus
Challenge schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 July - 3 August 2012</td>
<td>Announced at SigDial; comment period on labeling and evaluation metrics</td>
</tr>
<tr>
<td>31 August 2012</td>
<td>Evaluation metrics and labeling guide published; labeling begins</td>
</tr>
<tr>
<td>12 November 2012</td>
<td>Pre-release of train3 data and helper scripts, for comment</td>
</tr>
<tr>
<td>~ 10 December 2012</td>
<td>Training data available; challenge begins (14 weeks)</td>
</tr>
<tr>
<td>22 March 2013</td>
<td>Test data available; evaluation begins</td>
</tr>
<tr>
<td>29 March 2013</td>
<td>Test results due to organizers</td>
</tr>
<tr>
<td>5 April 2013</td>
<td>Notification of results to teams</td>
</tr>
<tr>
<td>3 May 2013</td>
<td>SigDial 2013 deadline (4 weeks)</td>
</tr>
<tr>
<td>23-24 August 2013</td>
<td>SigDial conference, Metz, France</td>
</tr>
</tbody>
</table>
Data: Spoken Dialog Challenge

- Hosted by Dialog Research Center at CMU in 2010 and 2011-2012
- Bus timetables in Pittsburgh
- Systems from 3 research groups: A, B, C
- Real users
- Multiple time periods and system requirements
- Non-trivial scale: over 20K dialogs
Example call

Welcome to the Let's Go bus information system. To get help at any time, just say Help or press zero.

#noise#
Leaving from COAL. Did I get that right?
no
What can I do for you?
61c leaving downtown
The 61C. Did I get that right?
yes
Right Leaving from DOWNTOWN. Did I get that right?
yes
Alright Where do you wanna go?
McKeesport
Going to MCKEESPORT. When would you like to travel?
now
The next bus. Just a minute. Let me check that for you. The next 61C leaves FIFTH AVENUE AT MARKET at 11 oh 7 p.m. and arrives at MCKEESPORT TRANSPORTATION CENTER AT BAY NUMBER 2 at 12 oh 5 a.m.. To get more information about buses related to this trip, you can say, when is the next bus, or, when is the previous bus. To ask about a different trip, you can say, start a new query. If you are finished, you can say goodbye.
5 “slots”

• Bus routes: ~100
• From location: ~1K – 10K
 – Split into “desc”, “neighborhood”, “monument”
• To location: ~1K – 10K
 – Split into “desc”, “neighborhood”, “monument”
• Dates: ~100
• Times: ~1K
<table>
<thead>
<tr>
<th>Dataset</th>
<th>Source</th>
<th>Calls</th>
<th>Time period</th>
<th>Transcribed?</th>
<th>Labeled?</th>
</tr>
</thead>
<tbody>
<tr>
<td>train1a</td>
<td>Group A</td>
<td>1761</td>
<td>September 2009</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>train1c</td>
<td>Group A</td>
<td>1765</td>
<td>August 2009</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>train1b *</td>
<td>Group A</td>
<td>14,545</td>
<td>16 Months (2008-2009)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>train2</td>
<td>Group A</td>
<td>678</td>
<td>Summer 2010</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>train3</td>
<td>Group B</td>
<td>779</td>
<td>Summer 2010</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>test1</td>
<td>Group A</td>
<td>765</td>
<td>Winter 2011-12</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>test2</td>
<td>Group A</td>
<td>983</td>
<td>Winter 2011-12</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>test3</td>
<td>Group B</td>
<td>1037</td>
<td>Winter 2011-12</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>test4</td>
<td>Group C</td>
<td>451</td>
<td>Summer 2010</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* will be available approx Jan 1, 2013
What is provided?

• Parsed system log files, in an easily readable format
• Offline recognition result with NBest result, for systems which did not produce online NBest lists
• Utterance transcriptions (training set)
• User goal labels (training set)

• The scoring tool that will be used in the evaluation stage
• Bus timetable database
• Challenge handbook (transcription and labeling guides)

• For the very keen: Raw system log files and utterance audio are available from dialrc.org
Tour of data

[see challenge handbook]
Labels

• For each utterance, the label files include:
 – Transcription of the words spoken
 – Indication of the correctness of each SLU hypothesis
Tour of labels

[see challenge handbook]
Evaluation overview

- **Assumption 1**: User’s goal is fixed, except when they “start over”
- **Assumption 2**: Guessing a value that hasn’t been observed on an N-Best list would give trivial improvements in accuracy

- With these assumptions, tracker output is a list of the form
 - (observed SLU hyp, score)
Example tracker output (route slot)

Sys transcript: Which bus route?
Sys dialog acts: request(route)

Sorry, which bus route?
sorry(), request(route)

SLU hyps:
- inform(route=61c) 0.1
- inform(route=28x) 0.3
- inform(route=61b) 0.1

Tracker output (route slot):
- inform(route=61c) 0.1
- inform(route=28x) 0.3
- inform(route=61b) 0.1
- none 0.5

- inform(route=56u) 0.1
- inform(route=61d) 0.6

- none 0.1
10 tracker output lists at each turn:

- At each turn t, the tracker outputs:
 - List of (route, score)
 - List of (from.desc, score)
 - List of (from.neighborhood, score)
 - List of (from.monument, score)
 - List of (to.desc, score)
 - List of (to.neighborhood, score)
 - List of (to.monument, score)
 - List of (day, score)
 - List of (time, score)
 - List of (route, from.*, to.*, day, time, score)
What metrics are measured?

• 1-best hypothesis accuracy
• Mean reciprocal rank (mrr)
• Average probability assigned to correct item (avgp)
• Score calibration (L2 norm)
• ROC performance
 – Equal error rate (EER)
 – Correct accept at a false accept rate of 5% (ca05)
 – Correct accept at a false accept rate of 10% (ca10)
 – Correct accept at a false accept rate of 20% (ca20)
When are metrics measured?

<table>
<thead>
<tr>
<th>schedule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>schedule1</td>
<td>Include all turns (regardless of dialog context)</td>
</tr>
<tr>
<td>schedule2</td>
<td>Include a turn for a given concept only if:</td>
</tr>
<tr>
<td></td>
<td>• Concept appears on the SLU N-Best list in that turn, OR</td>
</tr>
<tr>
<td></td>
<td>• The system’s action references that concept in that turn (e.g., an explicit or implicit confirmation)</td>
</tr>
<tr>
<td>schedule3</td>
<td>Include only the last turn of the dialog</td>
</tr>
</tbody>
</table>
Datasets

<table>
<thead>
<tr>
<th>dataset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>train3.sessions</td>
<td>All calls in train3</td>
</tr>
<tr>
<td>train3.half1.sessions</td>
<td>First half of calls in train3</td>
</tr>
<tr>
<td>train3.half2.sessions</td>
<td>Second half of calls in train3</td>
</tr>
<tr>
<td></td>
<td>(encourage participants to report performance by training on half1 and testing on half2)</td>
</tr>
<tr>
<td>train3.call1.sessions</td>
<td>The first call (for testing)</td>
</tr>
</tbody>
</table>

All datasets are here: installpath/config
For the very keen

• You *can* re-run SLU (or ASR) if you want to, but...
 – You can’t guess a SLU hyp that’s not in the data
 – Please make it clear you’ve re-run ASR/SLU in your paper/system description
For the mischievous

• We’ve designed the challenge to have the low barriers to entry. We recognize it is possible for participants to exploit this design to overstate performance.

• Two obvious things not to do:
 – The tracker should *not* look ahead in the dialog
 – Don’t download the audio for the test data and label it
Example run with the baseline

> bin/baseline --dataset=train3.half2 \
 --dataroot=../data \
 --trackfile=track.json

The baseline is also a useful template for training and testing
What’s in a trackfile

[see challenge handbook]
Evaluating the baseline

> bin/score --dataset=train3.half2 \
 --dataroot=../data \
 --trackfile=track.json \
 --scorefile=score.csv
What’s in a score file

CSV with “slot, schedule, metric name, N utts, metric”

date,schedule1,accuracy,4459,0.891231217762
date,schedule1,avgp,4459,0.892024676833
date,schedule1,l2,4459,0.0797279581255
date,schedule1,mrr,4459,0.933393137475
date,schedule1,roc.ca05,4459,0.846602377215
date,schedule1,roc.ca10,4459,0.883606189729
date,schedule1,roc.ca20,4459,0.891231217762
date,schedule1,roc.eer,4459,0.0681767212379
date,schedule2,accuracy,189,0.820105820106
date,schedule2,avgp,189,0.660067010582
date,schedule2,l2,189,0.172862696576
date,schedule2,mrr,189,0.888888888889
date,schedule2,roc.ca05,189,0.470899470899
...

246 rows in total
Create a report

> bin/report --scorefile=score.csv

schedule1

<table>
<thead>
<tr>
<th>route</th>
<th>from.d</th>
<th>from.m</th>
<th>from.n</th>
<th>to.des</th>
<th>to.mon</th>
<th>to.nei</th>
<th>date</th>
<th>time</th>
<th>joint</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>4459</td>
<td>4459</td>
<td>4459</td>
<td>4459</td>
<td>4459</td>
<td>4459</td>
<td>4459</td>
<td>4459</td>
<td>4459</td>
</tr>
</tbody>
</table>

accuracy	0.7540	0.7899	1.0000	1.0000	0.8143	1.0000	1.0000	0.8912	0.9551	0.4532
avgp	0.6686	0.7226	1.0000	1.0000	0.7840	1.0000	1.0000	0.8920	0.9401	0.3843
l2	0.2341	0.1729	0.0000	0.0000	0.1454	0.0000	0.0000	0.0797	0.0441	0.5463
mrr	0.7947	0.8595	1.0000	1.0000	0.8663	1.0000	1.0000	0.9334	0.9597	0.4741
roc.ca05	0.3292	0.4927	1.0000	1.0000	0.6152	1.0000	1.0000	0.8466	0.9551	0.1390
roc.ca10	0.4898	0.6185	1.0000	1.0000	0.7600	1.0000	1.0000	0.8836	0.9551	0.2166
roc.ca20	0.7392	0.7813	1.0000	1.0000	0.8143	1.0000	1.0000	0.8912	0.9551	0.2808
roc.eer	0.2523	0.2671	0.0000	0.0000	0.1698	0.0000	0.0000	0.0682	0.1070	0.3409

basic stats

- dataset: train3.half2
- scorer_version: 0.3
- sessions: 344
- total_wall_time: 2.72199988365
- turns: 4459
- wall_time_per_turn: 0.000610450747623
Where is ...

• Pointers to everything here:

 research.microsoft.com/events/dstc

• Handbook
• Training data (next week)
 – Two packages – one from MSR, one from Honda
• Helper scripts + baseline system
• Mailing list

• Test data (in March)
Thanks to ... our advisory board

- Daniel Boies, Microsoft, Canada
- Paul Crook, Microsoft, USA
- Maxine Eskenazi, Carnegie Mellon University, USA
- Milica Gasic, University of Cambridge, UK
- Dilek Hakkani-Tur, Microsoft, USA
- Helen Hastie, Heriot Watt University, UK
- Kee-Eung Kim, KAIST, Korea
- Ian Lane, Carnegie Mellon University, USA
- Sungjin Lee, Carnegie Mellon University, USA
- Teruhisa Misu, NICT, Japan
- Olivier Pietquin, SUPELEC, France
- Joelle Pineau, McGill University, Canada
- Blaise Thomson, University of Cambridge, UK
- David Traum, USC Institute for Creative Technologies, USA
- Luke Zettlemoyer, University of Washington, USA
Thanks to ... our sponsors

- Honda research institute
- Microsoft
Thanks to ... SigDial and DialRC

• The dialog state tracking challenge is endorsed by SigDial

• Raw data and labeling support provided by Dialog Research Center
Dialog State Tracking Challenge

research.microsoft.com/events/dstc

Jason D. Williams
Alan Black
Deepak Ramachandran
Antoine Raux