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ABSTRACT
We consider a multi-round auction setting motivated by pay-
per-click auctions for Internet advertising. In each round the
auctioneer selects an advertiser and shows her ad, which is
then either clicked or not. An advertiser derives value from
clicks; the value of a click is her private information. Ini-
tially, neither the auctioneer nor the advertisers have any
information about the likelihood of clicks on the advertise-
ments. The auctioneer’s goal is to design a (dominant strate-
gies) truthful mechanism that (approximately) maximizes
the social welfare.

If the advertisers bid their true private values, our prob-
lem is equivalent to the multi-armed bandit problem, and
thus can be viewed as a strategic version of the latter. In
particular, for both problems the quality of an algorithm can
be characterized by regret, the difference in social welfare
between the algorithm and the benchmark which always se-
lects the same“best” advertisement. We investigate how the
design of multi-armed bandit algorithms is affected by the
restriction that the resulting mechanism must be truthful.
We find that truthful mechanisms have certain strong struc-
tural properties – essentially, they must separate exploration
from exploitation – and they incur much higher regret than
the optimal multi-armed bandit algorithms. Moreover, we
provide a truthful mechanism which (essentially) matches
our lower bound on regret.
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1. INTRODUCTION
In recent years there has been much interest in under-

standing the implication of strategic behavior on the per-
formance of algorithms whose input is distributed among
selfish agents. This study was mainly motivated by the In-
ternet, the main arena of large scale interaction of agents
with conflicting goals. The field of Algorithmic Mechanism
Design [32] studies the design of mechanisms in computa-
tional settings (for background see the recent book [33] and
survey [35]).

Much attention has been drawn to the market for spon-
sored search (e.g. [25, 17, 36, 29, 3]), a billions dollar market
with numerous auctions running every second. Research on
sponsored search mostly focus on equilibria of the General-
ized Second Price (GSP) auction [17, 36], the auction that
is most commonly used in practice (e.g. by Google and Ya-
hoo), or on the design of truthful auctions [2]. All these
auctions rely on knowing the rates at which users click on
the different advertisements (a.k.a. Click-Through-Rates, or
CTRs), and do not consider the process in which these CTRs
are learned or refined over time by observing users’ behav-
ior. We argue that strategic agents would take this process
into account, as it influences their utility. Prior work [20] fo-
cused on the implication of click fraud on the methods used
to learn CTRs. We on the other hand are interested in the
implications of the strategic bidding by the agents. Thus, we
consider the problem of designing truthful sponsored search
auctions when the process of learning the CTRs is a part of
the game.

We are mainly interested in the interplay between the on-
line learning and the strategic aspects of the problem. To
isolate this issue, we consider the following setting, which is
a natural strategic version of the multi-armed bandit (MAB)
problem. In this setting, there are k agents. Each agent i
has a single advertisement, and a private value vi > 0 for
every click she gets. The mechanism is an online algorithm
that first solicits bids from the agents, and then runs for T
rounds. In each round the mechanism picks an agent (using
the bids and the clicks observed in the past rounds), dis-
plays her advertisement, and receives a feedback – if there



was a click or not. Payments are assigned after round T .
Each agent tries to maximize her own utility: the difference
between the value that she derives from clicks and the pay-
ment she pays. We assume that initially no information is
known about the likelihood of each agent to be clicked, and
in particular there are no Bayesian priors.

We are interested in designing mechanisms which are truth-
ful (in dominant strategies): every agent maximizes her util-
ity by bidding truthfully, for any bids of the others and for
any clicks that would have been received. The goal is to
maximize the social welfare.1 Since the payments cancel
out, this is equivalent to maximizing the total value derived
from clicks, where an agent’s contribution to that total is
her private value times the number of clicks she receives.
We call this setting the MAB mechanism design problem.

In the absence of strategic behavior this problem reduces
to a standard MAB formulation in which an algorithm re-
peatedly chooses one of the k alternatives (“arms”) and ob-
serves the associated payoff: the value-per-click of the corre-
sponding ad if the ad is clicked, and 0 otherwise. The crucial
aspect in MAB problems is the tradeoff between acquiring
more information (exploration) and using the current infor-
mation to choose a good agent (exploitation). MAB prob-
lems have been studied intensively for the past three decades
(see [12, 13, 18]). In particular, the above formulation is
well-understood [6, 7, 14] in terms of regret relative to the
benchmark which always chooses the same “best” alterna-
tive. This notion of regret naturally extends to the strategic
setting outlined above, the total payoff being exactly equal
to the social welfare, and the regret being exactly the loss
in social welfare. Thus one can directly compare MAB al-
gorithms and MAB mechanisms in terms of welfare loss (re-
gret).

Broadly, we ask how the design of MAB algorithms is
affected by the restriction of truthfulness: what is the dif-
ference between the best algorithms and the best truthful
mechanisms? We are interested both in terms of the struc-
tural properties and the gap in performance (in terms of
regret). We are not aware of any prior work that character-
izes truthful learning algorithms or proves negative results
on their performance.

Our contributions. We present two main contributions.
First, we present a characterization of (dominant-strategy)
truthful mechanisms. Second, we present a lower bound on
the regret that such mechanisms must suffer. This regret is
significantly larger than the regret of the best MAB algo-
rithms.

Formally, a mechanism for the MAB mechanism design
problem is a pair (A,P), where A is the allocation rule (es-
sentially, an MAB algorithm), and P is the payment rule.
Note that regret is completely determined by the allocation
rule. As is standard in the literature, we focus on mecha-
nisms in which each agent’s payment (averaged over clicks)
is between 0 and her bid; such mechanisms are called nor-
malized, and they satisfy voluntary participation.

The setting we study is a single-parameter auction, the
most studied and well-understood type of auctions. For such

1Social welfare includes both the actioneer’s revenue and the
agents’ utility. Since in practice different sponsored search
platforms compete against one another, taking into account
the agents’ utility increases the platform’s attractiveness to
the advertisers.

settings truthful mechanisms are fully characterized [30, 4]:
a mechanism is truthful if and only if the allocation rule is
monotone (by increasing her bid an agent cannot cause a
decrease in the number of clicks she gets), and the payment
rule is defined in a specific and (essentially) unique way. Yet,
this characterization is not the right characterization for the
MAB setting! The main problem is that in our setting click
information for any agent that is not chosen at a given round
is not available to the mechanism, and thus cannot be used
in the computation of payments. Thus, the payment cannot
depend on any unobserved clicks. We show that this has
severe implications on the structure of truthful mechanisms.

The first notable property of a truthful mechanism is a
much stronger version of monotonicity:

Definition 1.1. A realization consists of click informa-
tion for all agents at all rounds (including unobserved ones).
An allocation rule is pointwise monotone if for each realiza-
tion, each bid profile and each round, if an agent is played
at the round, then she is also played after increasing her bid
(fixing everything else).

Let us consider allocation rules that satisfy the following
two natural conditions. First, an allocation rule is scale-
free if it is invariant under multiplying all bids by the same
positive number (essentially, changing the currency unit).
Second, it is Independent of Irrelevant Alternatives (IIA, for
short) if for any given realization, bid profile and round, a
change of bid of agent i cannot transfer the allocation in this
round from agent j to agent l, where these are three distinct
agents. (Note that the second condition trivially holds if
there are only two agents.)

We show that any truthful mechanism must have a strict
separation between exploration and exploitation. A crucial
feature of exploration is the ability to influence the allocation
in forthcoming rounds. To make this point more concrete,
we call a round influential for a given realization if for some
bid profile changing the realization for this round can affect
the allocation in some future round. We show that in any
such round, the allocation can not depend on the bids. Thus,
influential rounds are essentially useless for exploitation.

Definition 1.2. An allocation rule A is called exploration-
separated if for any given realization, the allocation in any
influential round for that realization does not depend on the
bids.

We are now ready to present our main structural result,
which is in fact a complete characterization.

Theorem 1.3. Consider the MAB mechanism design prob-
lem. Let A be a non-degenerate2 deterministic allocation
rule which is scale-free and satisfies IIA. Then mechanism
(A,P) is normalized and truthful for some payment rule

2Non-degeneracy is a mild technical assumption, formally
defined in “preliminaries”, which ensures that (essentially)
if a given allocation happens for some bid profile (bi, b−i)
then the same allocation happens for all bid profiles (x, b−i),
where x ranges over some non-degenerate interval. With-
out this assumption, all structural results hold (essentially)
almost surely w.r.t the k-dimensional Lebesgue measure on
the bid vectors. Exposition becomes significantly more cum-
bersome, yet leads to the same lower bounds on regret. For
clarity, we assume non-degeneracy throughout this version
of the paper.



P if and only if A is pointwise monotone and exploration-
separated.

We also obtain a similar (but somewhat more compli-
cated) characterization without assuming that allocations
are scale-free and satisfy IIA (Theorem 3.8). We use it then
to derive Theorem 1.3. We emphasize that our character-
ization results hold regardless of whether the auctioneer’s
goal is to maximize welfare or revenue or any other objec-
tive.

In view of Theorem 1.3, we present a lower bound on
the performance of exploration-separated algorithms. We
consider a setting, termed the stochastic MAB mechanism
design problem, in which each click on a given advertise-
ment is an independent random event which happens with
a fixed probability, a.k.a. the CTR. The expected “payoff”
from choosing a given agent is her private value times her
CTR. For the ease of exposition, assume that the bids lie
in the interval [0, 1]. Then the non-strategic version is the
stochastic MAB problem in which the payoff from choosing
a given arm i is an independent sample in [0, 1] with a fixed
mean µi. In both versions, regret is defined with respect to
a hypothetical allocation rule (resp. algorithm) that always
chooses an arm with the maximal expected payoff. Specif-
ically, regret is the expected difference between the social
welfare (resp. total payoff) of the benchmark and that of
the allocation rule (resp. algorithm). The goal is to mini-
mize R(T ), worst-case regret over all problem instances on
T rounds.

We show that the worst-case regret of any exploration-
separated mechanism is larger than that of the optimal MAB
algorithm: Ω(T 2/3) vs O(

√
T log T ) for a fixed number of

agents. We obtain an even more pronounced difference if
we restrict our attention to the δ-gap problem instances:
instances for which the best agent is better than the second-
best by a (comparatively large) amount δ, that is µ1v1 −
µ2v2 = δ · (maxi vi), where arms are arranged such that
µ1v1 ≥ µ2v2 ≥ · · · ≥ µkvk. Such instances are known to
be easy for the MAB algorithms. Namely, an algorithm
can achieve the optimal worst-case regret O(

√
kT log T ) and

regret O( k
δ

log T ) on δ-gap instances [26, 6]. However, for
exploration-separated mechanisms the worst-case regret Rδ(T )
over the δ-gap instances is polynomial in T as long as worst-
case regret is even remotely non-trivial (i.e., sublinear). Thus,
for the δ-gap instances the gap between algorithms and truth-
ful mechanisms in the worst-case regret is exponential in T .

Theorem 1.4. Consider the stochastic MAB mechanism
design problem with k agents. Let A be a deterministic allo-
cation rule that is exploration-separated. Then A has worst-
case regret R(T ) = Ω(k1/3 T 2/3). Moreover, if R(T ) =
O(T γ) for some γ < 1 then for every fixed δ ≤ 1

4
and

λ < 2(1 − γ) the worst-case regret over the δ-gap instances
is Rδ(T ) = Ω(δ T λ).

We note that our lower bounds holds for a more general
setting in which the values-per-click can change over time,
and the advertisers are allowed to change their bids at every
time step.

To complete the picture, we present a very simple (deter-
ministic) mechanism that is truthful and normalized, and

matches the lower bound R(T ) = Ω(k1/3 T 2/3) up to loga-
rithmic factors.

We also provide a number of extensions. First, we prove
a similar (but slightly weaker) regret bound without the
scale-free assumption. Second, we extend some of our re-
sults to randomized mechanisms; in this setting, (dominant-
strategy) truthfulness means “truthfulness for each realiza-
tion of the private randomness”. Third, we consider a weaker
notion of truthfulness for randomized mechanisms – for each
realization of the clicks, but in expectation over the random
seed, and use this notion to provide algorithmic results for
the version of the MAB mechanism design problem in which
clicks are chosen by an adversary. Fourth, we discuss an
even more permissive notion of truthfulness – truthfulness
in expectation over the clicks.

Other related work and discussion. The question of
how the performance of a truthful mechanism compares to
that of the optimal algorithm for the corresponding non-
strategic problem has been considered in the literature in a
number of other auction settings. Performance gaps have
been shown for various scheduling problems [4, 32, 16] and
for online auction for expiring goods [28]. Other papers pre-
sented approximation gaps due to computational constraints,
e.g. for combinatorial auctions [27, 16] and combinatorial
public projects [34], showing a gap via a structural result
for truthful mechanisms.

The study of MAB mechanisms has been initiated by Go-
nen and Pavlov [19]. The authors present a MAB mecha-
nism which is claimed to be truthful in a certain approxi-
mate sense. Unfortunately, this mechanism does not satisfy
the claimed properties; this was also confirmed with the au-
thors through personal communication (see also a similar
note in [15]).

MAB algorithms were used in the design of Cost-Per-
Action sponsored search auctions in Nazerzadeh et al. [31],
where the authors construct a mechanism with approximate
properties of truthfulness and individual rationality. Ap-
proximately truthful mechanisms are reasonable assuming
the agents would not lie unless it leads to significant gains.
However, this solution concept is weaker than the exact no-
tion and it may still be rational for the agents to deviate
(perhaps significantly) from being truthful. Moreover, as
truthful bidding is not a Nash equilibrium, agents might
have an increased incentive to deviate if they speculate that
others are deviating. All of that may result in unpredictable,
and possibly highly suboptimal outcomes. In this paper we
focus on understanding what can be achieved with the exact
truthfulness, mainly proving results of structural and lower-
bounding nature. We note in passing that providing similar
results for the approximately truthful setting such as the one
in [31] is a worthy and challenging open question.

Independently and concurrently, Devanur and Kakade [15]
have studied truthful MAB mechanisms with focus on maxi-
mizing the revenue. They present a lower bound of Ω(T 2/3)
on the loss in revenue with respect to the VCG (Vickrey-
Clarke-Groves) payment, as well as a truthful mechanism
that matches the lower bound. (This mechanism is almost
identical to the one that we present in order to match the
lower bound in Theorem 4.1.)

Our lower bounds use (a novel application of) the relative
entropy technique from [26, 7], see [23] for an account. For
other application of this technique, see e.g. [14, 21, 24, 10].

Our work focuses on regret in a prior-free setting in which
the algorithm has no prior on CTRs. This is in contrast to



the recent line of work on dynamic auctions [11, 5] which
considers fully Bayesian settings in which there is a known
prior on CTRs, and VCG-like social welfare-maximizing mech-
anisms are feasible. In our prior-free setting VCG-mechanisms
cannot be applied as such mechanisms require the allocation
to exactly maximize the expected social welfare, which is im-
possible (and not well-defined) without a prior.

We require the mechanisms to satisfy a strong notion of
truthfulness: bidding truthful is optimal for every possible
realization. This is desirable as it does not require the agents
to be risk neutral. Moreover, such notion does not require
agents to consider the process that generates the clicks. In
particular, even in the presence of click spamming by others
an agent’s best strategy is still to bid truthfully. Finally, an
agent never regrets in retrospect that she has been truthful.

Map of the paper. Section 2 is preliminaries. Truthful-
ness characterization is developed and proved in Section 3.
The lower bounds on regret and the simple mechanism that
matches them are in Section 4. Extensions and open ques-
tions are in Section 5. Due to the page limit, some of the
proofs are deferred to the full version [8]

2. DEFINITIONS AND PRELIMINARIES
In the MAB mechanism design problem, there is a set K

of k agents numbered from 1 to k. Each agent i has a value
vi > 0 for every click she gets; this value is known only to
agent i. Initially, each agent i submits a bid bi > 0, possibly
different from vi.

3 The “game” lasts for T rounds, where
T is the given time horizon. A realization represents the
click information for all agents and all rounds. Formally,
it is a tuple ρ = (ρ1 , . . . , ρk) such that for every agent
i and round t, the bit ρi(t) ∈ {0, 1} indicates whether i
gets a click if played at round t. An instance of the MAB
mechanism design problem consists of the number of agents
k, time horizon T , a vector of private values v = (v1, . . . , vk),
a vector of bids (bid profile) b = (b1, . . . , bk), and realization
ρ.

A mechanism is a pair (A,P), where A is allocation rule
and P is the payment rule. An allocation rule is represented
by a function A that maps bid profile b, realization ρ and a
round t to the agent i that is chosen (receives an impression)
in this round: A(b; ρ; t) = i. We also denote Ai(b; ρ; t) =
1{A(b;ρ;t)=i}. The allocation is online in the sense that at
each round it can only depend on clicks observed prior to
that round. Moreover, it does not know the realization in
advance; in every round it only observes the realization for
the agent that is shown in that round. A payment rule is
a tuple P = (P1 , . . . ,Pk), where Pi(b; ρ) ∈ R denotes
the payment charged to agent i when the bids are b and the
realization is ρ. 4 The payment can only depend on observed

3One can also consider a more realistic and general model in
which the value-per-click of an agent changes over time and
the agents are allowed to change their bid at every round.
The case that the value-per-click of each agent does not
change over time is a special case. In that case truthful-
ness implies that each agent basically submits one bid as in
our model (the same bid at every round), thus our main re-
sults (necessary conditions for truthfulness and regret lower
bounds) also hold for the more general model.
4We allow the mechanism to determine the payments at
the end of the T rounds, and not after every round. This
makes that task of designing a truthful mechanism easier
and thus strengthen our necessary condition for truthfulness

clicks. A mechanism is called normalized if for any agent i,
bids b and realization ρ it holds that Pi(b; ρ) is non-negative
and at most bi times the number of clicks agent i got.

For given realization ρ and bid profile b, the number of
clicks received by agent i is denoted Ci(b; ρ). Call C =
(C1 , . . . , Ck) the click-allocation for A. The utility that
agent i with value vi gets from the mechanism (A,P) when
the bids are b and the realization is ρ is Ui(vi; b; ρ) = vi ·
Ci(b; ρ) − Pi(b; ρ) (quasi-linear utility). The mechanism is
truthful if for any agent i, value vi, bid profile b and realiza-
tion ρ it is the case that Ui(vi; vi, b−i; ρ) ≥ Ui(vi; bi, b−i; ρ).

In the stochastic MAB mechanism design problem, an ad-
versary specifies a vector µ = (µ1 , . . . , µk) of CTRs (con-
cealed from A), then for each agent i and round t, realization
ρi(t) is chosen independently with mean µi. Thus, an in-
stance of the problem includes µ rather than a fixed realiza-
tion. For a given problem instance I, let i∗ ∈ argmaxi µi vi,
then regret on this instance is defined as

RI(T ) = T vi∗µi∗ − E

"

T
X

t=1

k
X

i=1

µi vi Ai(b; ρ; t)

#

. (2.1)

For a given parameter vmax, the worst-case regret5 R(T ; vmax)
denotes the supremum of RI(T ) over all problem instances
I in which all private values are at most vmax. Similarly, we
define Rδ(T ; vmax), the worst-case δ-regret, by taking the
supremum only on instances with δ-gap.

Most of our results are stated for non-degenerate alloca-
tion rules, defined as follows. An interval is called non-
degenerate if it has positive length. Fix bid profile b, realiza-
tion ρ, and rounds t and t′ with t ≤ t′. Let i = A(b; ρ; t) and
ρ′ be the allocation obtained from ρ by flipping the bit ρi(t).
An allocation rule A is non-degenerate w.r.t. (b, ρ, t, t′) if
there exists a non-degenerate interval I ∋ bi such that

• Ai(x, b−i; ϕ; s) = Ai(b; ϕ; s)
• for each ϕ ∈ {ρ, ρ′}, each s ∈ {t, t′}, and all x ∈ I .

An allocation rule is non-degenerate if it is non-degenerate
w.r.t. each tuple (b, ρ, t, t′).

3. TRUTHFULNESS CHARACTERIZATION
Before presenting our characterization we begin by de-

scribing some related background. The click allocation C is
non-decreasing if for each agent i, increasing her bid (and
keeping everything else fixed) does not decrease Ci. Prior
work has established a characterization of truthful mecha-
nisms for single-parameter domains (domains in which the
private information of each agent is one-dimensional), relat-
ing click allocation monotonicity and truthfulness (see be-
low). For our problem, this result is a characterization of
MAB algorithms that are truthful for a given realization ρ,
assuming that the entire realization ρ can be used to com-
pute payments (when computing payments one can use click
information for every round and every agent, even if the
agent was not shown at that round.) One of our main con-
tributions is a characterization of MAB allocation rules that
can be truthfully implemented when payment computation
is restricted to only use clicks information of the actual im-
pressions assigned by the allocation rule.

An MAB allocation rule A is truthful with unrestricted
payment computation if it is truthful with a payment rule

(the condition used to derive the lower bounds on regret.)
5By abuse of notation, when clear from the context, the
“worst-case regret” is sometimes simply called “regret”.



that can use the entire realization ρ in it computation. We
next present the prior result characterizing truthful mecha-
nisms with unrestricted payment computation.

Theorem 3.1 (Myerson [30], Archer and Tardos [4]).
Let (A,P) be a normalized mechanism for the MAB mech-
anism design problem. It is truthful with unrestricted pay-
ment computation if and only if for any given realization
ρ the corresponding click-allocation C is non-decreasing and
the payment rule is given by6

Pi(bi, b−i; ρ) = bi · Ci(bi, b−i; ρ) −
R bi

0
Ci(x, b−i; ρ) dx. (3.1)

We can now move to characterize truthful MAB mech-
anisms when the payment computation is restricted. The
following notation will be useful: for a given realization ρ,
let ρ⊕1(i, t), be the realization that coincides with ρ every-
where, except that the bit ρi(t) is flipped.

The first notable property of truthful mechanisms is a
stronger version of monotonicity. Recall (see Definition 1.1)
that an allocation rule A is pointwise monotone if for each re-
alization ρ, bid profile b, round t and agent i, if Ai(bi, b−i; ρ; t) =
1 then Ai(b

+
i , b−i; ρ; t) = 1 for any b+

i > bi. In words, in-
creasing a bid cannot cause a loss of an impression.

Lemma 3.2. Consider the MAB mechanism design prob-
lem. Let (A,P) be a normalized truthful mechanism such
that A is a non-degenerate deterministic allocation rule. Then
A is pointwise-monotone.

Proof. For a contradiction, assume not. Then there is
a realization ρ, a bid profile b, a round t and agent i such
that agent i loses an impression in round t by increasing
her bid from bi to some larger value b+

i . In other words,
we have Ai(b

+
i , b−i; ρ; t) < Ai(bi, b−i; ρ; t). Without loss of

generality, let us assume that there are no clicks after round
t, that is ρj(t

′) = 0 for any agent j and any round t′ > t
(since changes in ρ after round t does not affect anything
before round t).

Let ρ′ = ρ ⊕ 1(i, t). The allocation in round t cannot
depend on this bit, so it must be the same for both real-
izations. Now, for each realization ϕ ∈ {ρ, ρ′} the mecha-
nism must be able to compute the price for agent i when
bids are (b+

i , b−i). That involves computing the integral
Ii(ϕ) =

R

x≤b+
i

Ci(x, b−i; ϕ) dx from (3.1). We claim that

Ii(ρ) 6= Ii(ρ
′). However, the mechanism cannot distinguish

between ρ and ρ′ since they only differ in bit (i, t) and agent
i does not get an impression in round t. This is a contradic-
tion.

It remains to prove the claim. Without loss of generality,
assume that ρi(t) = 0 (otherwise interchange the role of ρ
and ρ′). We first note that Ci(x, b−i; ρ) ≤ Ci(x, b−i; ρ

′) for
every x. This is because everything is same in ρ and ρ′

until round t (so the impressions are same too), there are
no clicks after round t, and in round t the behavior of A on
the two realizations can be different only if that agent i gets
an impression, in which case she is clicked under ρ′ and not
clicked under ρ.

Since A is non-degenerate, there exists a non-degenerate
interval I containing bi such that changing bid of agent i

6Archer and Tardos [4] was the first paper in the Theoretical
Computer Science literature that presented a characteriza-
tion of truthful mechanisms for single-parameter domains,
in the context of machine scheduling.

to any value in this interval does not change the alloca-
tion at round t (both for ρ and for ρ′). For any x ∈ I
we have Ci(x, b−i; ρ) < Ci(x, b−i; ρ

′), where the difference is
due to the click in round t. It follows that Ii(ρ) < Ii(ρ

′).
Claim proved. Hence, the mechanism cannot be imple-
mented truthfully.

Recall (see Definition 1.2) that round t is influential for
a given realization ρ if for some bid profile b there exists a
round t′ > t such that A(b; ρ; t′) 6= A(b; ρ ⊕ 1(j, t); t′) for
j = A(b; ρ; t). In words: changing the relevant part of the
realization at round t affects the allocation in some future
round t′. An allocation rule A is called exploration-separated
if for any given realization ρ and round t that is influential
for ρ, it holds that A(b; ρ; t) = A(b′; ρ; t) for any two bid
vectors b, b′ (allocation at t does not depend on the bids).

The main structural implication is “truthful implies explo-
ration-separated”. To illustrate the ideas behind this impli-
cation, we first state and prove it for two agents.

Proposition 3.3. Consider the MAB mechanism design
problem with two agents. Let A be a non-degenerate scale-
free deterministic allocation rule. If (A,P) is a normal-
ized truthful mechanism for some P, then it is exploration-
separated.

Proof. Assume A is not exploration-separated. Then
there is a counterexample (ρ, t): a realization ρ and a round
t such that round t is influential and allocation in round
t depends on bids. We want to prove that this leads to a
contradiction.

Let us pick a counterexample (ρ, t) with some useful prop-
erties. Since round t is influential, there exists a realization
ρ and bid profile b such that the allocation at some round
t′ > t (the influenced round) is different under realization ρ
and another realization ρ′ = ρ ⊕ 1(j, t), where j = A(b; ρ; t)
is the agent chosen at round t under ρ. Without loss of gen-
erality, let us pick a counterexample with minimum value of
t′ over all choices of (b, ρ, t). For ease of exposition, from
this point on let us assume that j = 2. For the counterex-
ample we can also assume that ρ1(t

′) = 1, and that there
are no clicks after round t′, that is ρl(t

′′) = ρ′
l(t

′′) = 0 for
all t′′ > t′ and for all l ∈ {1, 2}.

We know that the allocation in round t depends on bids.
This means that agent 1 gets an impression in round t for
some bid profile b̂ = (b̂1, b̂2) under realization ρ, that is

A(b̂; ρ; t) = 1. As the mechanism is scale-free this means

that, denoting b+
1 = b̂1 b2/b̂2 we have A(b+

1 , b2; ρ; t) = 1.
Since A(b1, b2; ρ; t) = 2 and A(b+

1 , b2; ρ; t) = 1, pointwise
monotonicity (Lemma 3.2) implies that b+

1 > b1. We con-
clude that there exists a bid b+

1 > b1 for agent 1 such that
A(b+

1 , b2; ρ; t) = 1.
Now, the mechanism needs to compute prices for agent 1

for bids (b+
1 , b2) under realizations ρ and ρ′, that is P1(b

+
1 , b2; ρ)

and P1(b
+
i , b2; ρ

′). Therefore, the mechanism needs to com-
pute the integral I1(ϕ) =

R

x≤b+
1

C1(x, b2; ϕ) dx for both real-

izations ϕ ∈ {ρ, ρ′}.
First of all, for all x ≤ b+

1 and for all t′′ < t′, A(x, b2; ρ; t′′) =
A(x, b2; ρ

′; t′′), since otherwise the minimality of t′ will be
violated. The only difference in the allocation can occur in
round t′.

Let us assume A1(b1, b2; ρ; t′) < A1(b1, b2; ρ
′, t′) (other-

wise, we can swap ρ and ρ′). We make the claim that for all
bids x ≤ b+

1 of agent 1, the influence of round t on round t′



is in the same “direction”:

A1(x, b2; ρ; t′) ≤ A1(x, b2; ρ
′; t′) for all x ≤ b+

1 . (3.2)

Suppose (3.2) does not hold. Then there is an x < b+
1 such

that 1 = A1(x, b2; ρ; t′) > A1(x, b2; ρ
′; t′) = 0. (Note that

we have used the fact that the mechanism is deterministic.)
If x < b1 then pointwise monotonicity is violated under re-
alization ρ, since A1(x, b2; ρ; t′) > A1(b1, b2; ρ; t′); otherwise
it is violated under realization ρ′, giving a contradiction in
both cases. The claim (3.2) follows.

Since A is non-degenerate, there exists a non-degenerate
interval I containing bi such that if agent 1 bids any value
x ∈ I then A1(x, b2; ρ; t′) < A1(x, b2; ρ

′; t′). Now by (3.2) it
follows that I1(ρ) < I2(ρ

′). However, the mechanism cannot
distinguish between ρ and ρ′ when the bid of agent 1 is b+

1 ,
since the differing bit ρ1(t) is not observed. Therefore the
mechanism cannot compute prices, contradiction.

3.1 General Truthfulness Characterization
Let us develop the general truthfulness characterization

that does not assume that an allocation is scale-free and
IIA. We will later use it to derive Theorem 1.3.

Definition 3.4. Fix realization ρ and bid vector b. A
round t is called (b; ρ)-secured from agent i if A(b+

i , b−i; ρ; t) =
A(bi, b−i; ρ; t) for any b+

i > bi. A round t is called bid-
independent w.r.t. ρ if the allocation A(b; ρ; t) is a constant
function of b.

The following definitions elaborate on the notion of an
influential round.

Definition 3.5. A round t is called (b; ρ)-influential, for
bid profile b and realization ρ, if for some round t′ > t it
holds that A(b; ρ; t′) 6= A(b; ρ′; t′) for realization ρ′ = ρ ⊕
1(j, t) such that j = A(b; ρ; t). 7 In this case, t′ is called
the influenced round and j is called the influencing agent of
round t. The agent i is called an influenced agent of round
t if i ∈ {A(b; ρ; t′), A(b; ρ′; t′)}.

Note that a round is influential w.r.t. realization ρ if and
only if it is (b, ρ)-influential for some b. The central property
in our characterization is that each (b, ρ)-influential round
is (b, ρ)-secured.

Definition 3.6. A deterministic allocation is called weakly
separated if for every realization ρ and each bid vector b, it
holds that if round t is (b; ρ)-influential with influenced agent
i then it is (b; ρ)-secured from i.

We notice that exploration-separated is a stronger notion.

Observation 3.7. For a deterministic allocation, exploration-
separated implies weakly separated.8

We are now ready to state our general characterization.

7Note that realizations ρ and ρ′ are interchangeable.
8To see this, simply use the definitions. Fix realization ρ
and bid vector b, let t be a (b; ρ)-influential round with in-
fluenced agent i. We need to show that t is (b; ρ)-secured
from i. Round t is (b; ρ)-influential, thus influential w.r.t. ρ,
thus (since the allocation is exploration-separated) it is bid-
independent w.r.t. ρ, thus agent i cannot change allocation
in round t by increasing her bid.

Theorem 3.8. Consider the MAB mechanism design prob-
lem. Let A be a non-degenerate deterministic allocation rule.
Then mechanism (A,P) is normalized and truthful for some
payment rule P if and only if A is pointwise monotone and
weakly separated.

Proof. For the“only if”direction, A is pointwise-monotone
by Lemma 3.2, and the fact that A is weakly separated is
proved similarly to Proposition 3.3 (albeit with a few extra
details). We defer it to the full version [8].

We focus on the “if” direction. Let A be a determinis-
tic allocation rule which is pointwise monotone and weakly
separated. We need to provide a payment rule P such that
the resulting mechanism (A,P) is truthful and normalized.
Since A is pointwise monotone, it immediately follows that
it is monotone (i.e., as an agent increases her bid, the num-
ber of clicks that she gets cannot decrease). Therefore it
follows from Theorem 3.1 that mechanism (A,P) is truthful
and normalized if and only if P is given by (3.1). We need
to show that P can be computed using only the knowledge
of the clicks (bits from the realization) that were revealed
during the execution of A.

Assume we want to compute the payment for agent i in
bid profile (bi, b−i) and realization ρ. We will prove that we
can compute Ci(x) := Ci(x, b−i; ρ) for all x ≤ bi. To compute
Ci(x), we show that it is possible to simulate the execution
of the mechanism with bidi = x. In some rounds, the agent
i loses an impression, and in others it retains the impression
(pointwise monotonicity ensures that agent i cannot gain an
impression when decreasing her bid). In rounds that it loses
an impression, the mechanism does not observe the bits of
ρ in those rounds, so we prove that those bits are irrelevant
while computing Ci(x). In other words, while running with
bidi = x, if mechanism needs to observe the bit that was
not revealed when running with bidi = bi, we arbitrarily
put that bit equal to 1 and simulate the execution of A. We
want to prove that this computes Ci(x) correctly.

Let t1 < t2 < · · · < tn be the rounds in which agent
i did not get an impression while bidding x, but did get
an impression while bidding bi. Let ρ0 := ρ, and let us
define realization ρl inductively for every l ∈ [n] by setting
ρl := ρl−1 ⊕ 1(jl, tl), where jl = A(x, b−i; ρ

l−1; tl) is the
agent that got the impression at round tl with realization
ρl−1 and bids (x, b−i).

First, we claim that jl 6= i for any l. Indeed, suppose
not, and pick the smallest l such that jl+1 = i. Then tl is a
(x, b−i; ρl)-influential round, with influenced agent jl+1 = i.
Thus tl is (x, b−i; ρl)-secured from i. Since A(x, b−i; ρl; tl) =
A(x, b−i; ρl−1; tl) = jl 6= i by minimality of l, agent i does
not get an impression in round tl if she raises her bid to bi.
That is, A(b; ρl; tl) 6= i. However, the changes in realiza-
tions ρ0 , . . . , ρl−1 only concern the rounds in which agent
i is chosen, so they are not seen by the allocation if the bid
profile is b (to prove this formally, use induction). Thus,
A(b; ρl; tl) = A(b; ρ; tl) = i, contradiction. Claim proved.
It follows that A(b; ρ; tl) = i for each l. (This is because
by induction, the change from ρl−1 to ρl is not seen by the
allocation if the bid profile is b.)

We claim that Ai(x, b−i; ρ; t′) = Ai(x, b−i; ρ
n; t′) for every

round t′, which will prove the theorem. If not, then there
exists l such that Ai(x, b−i; ρ

l; t′) 6= Ai(x, b−i; ρ
l−1; t′) for

some t′ (and of course t′ > tl). Round tl is thus (x, b−i; ρ
l)-

influential with influenced round t′ and influenced agent i.
Moreover, the influencing agent of that round is jl, and we



already proved that jl 6= i. Since round tl is (x, b−i; ρ
l)-

secured from agent i due to the “weakly separated” condi-
tion, it follows that agent i does not get an impression in
round tl if she raises her bid to bi. That is, A(b; ρl; tl) 6= i,
contradiction.

Note that we have proven the main characterization result
(Theorem 1.3) for the case of two agents, because for two
agents, it is not hard to see that a scale-free allocation is
exploration-separated if and only if it is weakly separated,
and also IIA trivially holds for two agents.

Let us argue that the non-degeneracy assumption in The-
orem 3.8 is indeed necessary. To this end, let us present a
simple deterministic mechanism (A,P) for two agents that
is truthful and normalized, such that the allocation rule A
is pointwise monotone, scale-free and yet not weakly sepa-
rated. (The catch is, of course, that it is degenerate.) There
are only two rounds. Agent 1 allocated at round 1 if and
only if b1 ≥ b2. Agent 1 allocated at round 2 if b1 > b2

or if b1 = b2 and ρ1(1) = 1; otherwise agent 2 is shown.
This completes the description of the allocation rule. To
obtain a payment rule P which makes the mechanism nor-
malized and truthful, consider an alternate allocation rule
A′ which in each round selects agent 1 if and only if b1 ≥ b2.
(Note that A′ = A except when b1 = b2.) Use Theorem 3.8
for A′ to obtain a normalized truthful mechanism (A′,P ′),
and set P = P ′. The payment rule P is well-defined since
the observed clicks for P and P ′ coincide unless b1 = b2,
in which case both payment rules charge 0 to both players.
The resulting mechanism (A,P) is normalized and truthful
because the integral in (3.1) remains the same even if we
change the value at a single point. It is easy to see that the
allocation rule A has all the claimed properties; it fails to
be non-degenerate because round t is influential only when
b1 = b2.

3.2 Scalefree and IIA allocation rules
To complete the proof of Theorem 1.3, we show that under

the right assumptions, an allocation is exploration-separated
if and only if it is weakly separated. The full proof of this
result is in the full version [8].

Lemma 3.9. Consider the MAB mechanism design prob-
lem. Let A be a non-degenerate deterministic allocation rule
which is scalefree, pointwise monotone, and satisfies IIA.
Then it is exploration-separated if and only if it is weakly
separated.

Proof Sketch. We sketch the proof of Lemma 3.9 at
a very high level. The “only if” direction was observed in
Observation 3.7. For the “if” direction, Let A be a weakly-
separated mechanism. We prove by a contradiction that it
is exploration-separated. If not, then there is a realization
ρ and a round t such that t is influencial w.r.t. ρ as well as
not bid-dependent w.r.t. ρ. Let round t be influencial with
bid vector b, influencing agent l, and influenced agents j and
j′ 6= j in influenced round t′ (see 1 in Figure 1; all boxed
numbers in this sketch will refer to this figure).

From the assumption, t is not bid-dependent w.r.t. ρ,
which means that there exists a bid profile b′ such that i′ 6= l
is played in round t with bids b′. Using scalefreeness, IIA,
and pointwise-monotonicity, we can prove that there exists
a sufficiently large bid b+

i′
of agent i′ such that she gets an

impression in round t with bids (b+
i′ , b−i′) (see 2 ). Using

the properties of the mechanism, it can further be proved
that there is an agent i such that she gets the impression in
round t when either i increases her bid, or l decreases her
bid (see 3 ). When i increases her bid to b+

i , she also gets
an impression in round t′, since impressions cannot differ in
round t′ in the case when l is not played in round t and they
must get transferred from j and j′ to somebody in round t′,
and IIA implies that this somebody should be i.

Recall that two different players j and j′ get the impres-
sion in round t′ under ρ and ρ′ respectively (see 4 ). We
prove that either agent j′ or agent j must be equal to l (this
is done by looking at how the allocation in round t′ changes
when l decreases her bid). Let us break the symmetry and
assume j′ = l (see box 5 ). It is also easy to see that when
i increases her bid, impression in round t′ get transferred
to her in ρ (at some minimum value b+ρ

i , see 6 ), and im-
pression in round t′ gets transferred to her also in ρ′ (as

some possibly different minimum value b+ρ′

i , see 7 ). Us-
ing the assumptions of weakly-separatedness, we prove that

b+ρ
i = b+ρ′

i (see 8 ). This can be proved by observing that

b+
i ≥ max{b+ρ

i , b+ρ′

i }, and then using weakly-separatedness
of A. Since these two bids were at a “threshold value” (these
were the minimum values of bids to have transferred the im-
pression in ρ and ρ′ from j and l respectively), we are able
to prove that the ratio of bj/bl must be some fixed number
dependent on ρ, ρ′, and t′. In particular, it follows that bl

belongs to a finite set S(b−l) which depends only on b−l.
However, by non-degeneracy of A there must be infinitely
many such bl’s, which leads to a contradiction.

4. LOWER BOUNDS ON REGRET
In this section we use structural results from the previous

section to derive lower bounds on regret.

Theorem 4.1. Consider the stochastic MAB mechanism
design problem with k agents. Let A be an exploration-
separated deterministic allocation rule. Then its regret is
R(T ; vmax) = Ω(vmax k1/3 T 2/3).

Let ~µ0 = ( 1
2

, . . . , 1
2
) ∈ [0, 1]k be the vector of CTRs in

which for each agent the CTR is 1
2
. For each agent i, let

~µi = (µi1, . . . , µik) ∈ [0, 1]k be the vector of CTRs in which

agent i has CTR µii = 1
2
+ǫ, ǫ = k1/3 T−1/3, and every other

agent j 6= i has CTR µij = 1
2
. As a notational convention,

denote by Pi[·] and Ei[·] respectively the probability and
expectation induced by the algorithm when clicks are given
by ~µi. Let Ii be the problem instance in which CTRs are
given by ~µi and all bids are vmax. For each agent i, let Ji

be the problem instance in which CTRs are given by ~µ0, the
bid of agent i is vmax, and the bids of all other agents are
vmax/2. We will show that for any exploration-separated
deterministic allocation rule A, one of these 2k instances
causes high regret.

Let Ni be the number of bid-independent rounds in which
agent i is played. Note that Ni does not depend on the
bids. It is a random variable in the probability space in-
duced by the clicks; its distribution is completely specified
by the CTRs. We show that (in a certain sense) the alloca-
tion cannot distinguish between ~µ0 and ~µi if Ni is too small.
Specifically, let At be the allocation in round t. Once the
bids are fixed, this is a random variable in the probability
space induced by the clicks. For a given set S of agents,
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Figure 1: This figure explains all the steps in the proof of Lemma 3.9. The rows correspond to agents (whose identity

is shown on the right side), and columns correspond to time rounds. The asterisks show the impressions. The arrows

show how the impressions get transferred, and labels on the arrows show what causes the transfer. In labels, “in ρ, bi ↑”

denotes that a particular transfer of impression is caused in realization ρ when bid bi in increased.

we consider the event {At ∈ S} for some fixed round t, and
upper-bound the difference between the probability of this
event under ~µ0 and ~µi in terms of Ei[Ni], in the following
crucial claim, which is proved in the full version [8] via rel-
ative entropy techniques.

Claim 4.2. For any fixed vector of bids, each round t,
each agent i and each set of agents S, we have

|P0[At ∈ S] − Pi[At ∈ S] | ≤ O(ǫ2 E0[Ni]). (4.1)

Proof (of Theorem 4.1). Fix a positive constant β to
be specified later. Consider the case k = 2 first. If E0[Ni] >

β T 2/3 for some agent i, then on the problem instance Ji,
regret is Ω(T 2/3). So without loss of generality let us assume

E0[Ni] ≤ β T 2/3 for each agent i. Then, plugging in the
values for ǫ and E0[Ni], the right-hand side of (4.1) is at
most O(β). Take β so that the right-hand side of (4.1) is
at most 1

4
. For each round t there is an agent i such that

P0[At 6= i] ≥ 1
2
. Then Pi[At 6= i] ≥ 1

4
by Claim 4.2, and

therefore in this round algorithm A incurs regret Ω(ǫ vmax)
under problem instance Ii. By Pigeonhole Principle there
exists an i such that this happens for at least half of the
rounds t, which gives the desired lower-bound.

Case k ≥ 3 requires a different (and somewhat more com-

plicated) argument. Let R = β k1/3 T 2/3 and N be the
number of bid-independent rounds. Assume E0[N ] > R.
Then E0[Ni] ≤ 1

k
E0[N ] for some agent i. For the problem

instance Ji there are, in expectation, E[N − Ni] = Ω(R)
bid-independent rounds in which agent i is not played; each
of which contributes Ω(vmax) to regret, so the total regret is
Ω(vmax R).

From now on assume that E0[N ] ≤ R. Note that by Pi-
geonhole Principle, there are more than k

2
agents i such that

E0[Ni] ≤ 2R/k. Furthermore, let us say that an agent i is
good if P0[At = i] ≤ 4

5
for more than T/6 different rounds t.

We claim that there are more than k
2

good agents. Suppose

not. If agent i is not good then P0[At = i] > 4
5

for at least
5
6
T different rounds t, so if there are at least k/2 such agents

then

T =
PT

t=1

Pk
i=1P0[At = i] > k

2
× ( 5

6
T ) × 4

5
≥ kT/3 ≥ T,

contradiction. Claim proved. It follows that there exists
a good agent i such that E0[Ni] ≤ 2R/k. Therefore the
right-hand side of (4.1) is at most O(β). Pick β so that the
right-hand side of (4.1) is at most 1

10
. Then by Claim 4.2 for

at least T/6 different rounds t we have Pi[At = i] ≤ 9
10

. In
each such round, if agent i is not played then algorithm A in-
curs regret Ω(ǫ vmax) on problem instance Ii. Therefore, the
(total) regret of A on problem instance Ii is Ω(ǫ vmax T ) =

Ω(vmax k1/3 T 2/3).

Theorem 4.3. In the setting of Theorem 4.1, fix k and
vmax and assume that R(T ; vmax) = O(vmax T γ) for some
γ < 1. Then for every fixed δ ≤ 1

4
and λ < 2(1− γ) we have

Rδ(T ; vmax) = Ω(δ vmax T λ).

Proof. Fix λ ∈ (0, 2(1− γ)). Redefine ~µi’s with respect

to a different ǫ, namely ǫ = T−λ/2. Define the problem
instances Ii in the same way as before: all bids are vmax,
the CTRs are given by ~µi.

Let us focus on agents 1 and 2. We claim that E1[N1] +
E2[N2] ≥ β T λ, where β > 0 is a constant to be defined
later. Suppose not. Fix all bids to be vmax. For each round
t, consider event St = {At = 1}. Then by Claim 4.2

˛

˛P1[St] − P2[St]
˛

˛ ≤
˛

˛P0[St] − P1[St]
˛

˛ +
˛

˛P0[St] − P2[St]
˛

˛

≤ O
`

ǫ2
´

(E1[N1] + E2[N2]) ≤ 1
4

for a sufficiently small β. Now, P1[St] ≥ 1
2

for at least T/2
rounds t. This is because otherwise on problem instance
Ii regret would be R(T ) ≥ Ω(ǫ Tvmax) = Ω(vmax T 1−λ/2),
which contradicts the assumption R(T ) = O(vmax T γ). There-
fore P2[St] ≥ 1

4
for at least T/2 rounds t, hence on prob-



lem instance I2 regret is at least Ω(ǫ Tvmax), contradiction.
Claim proved.

Now without loss of generality let us assume that E1[N1] ≥
β
2

T λ. Consider the problem instance in which CTRs given
by ~µ1, bid of agent 2 is vmax, and all other bids are vmax(1−
2δ)/(1+2ǫ). It is easy to see that this problem instance has
δ-gap. Each time agent 1 is selected, algorithm incurs regret
Ω(δvmax). Thus the total regret is at least Ω(δN1 vmax) =
Ω(δ vmax T λ).

Matching upper bound. Let us describe a very sim-
ple mechanism, called the naive MAB mechanism, which
matches the lower bound from Theorem 4.1 up to polyloga-
rithmic factors (and also the lower bound from Theorem 4.3,
for γ = λ = 2

3
and constant δ). 9

Fix the number of agents k, the time horizon T , and the
bid vector b. The mechanism has two phases. In the explo-
ration phase, each agent is played for T0 := k−2/3 T 2/3(log T )1/3

rounds, in a round robin fashion. Let ci be the number of
clicks on agent i in the exploration phase. In the exploitation
phase, an agent i∗ ∈ argmaxi cibi is chosen and played in all
remaining rounds. Payments are defined as follows: agent
i∗ pays maxi∈[k]\{i∗} cibi/ci∗ for every click she gets in ex-
ploitation phase, and all others pay 0. (Exploration rounds
are free for every agent.) This completes the description of
the mechanism.

Observation 4.4. Consider the stochastic MAB mecha-
nism design problem with k agents. The naive mechanism is
normalized, truthful and has worst-case regret R(T ; vmax) =

O(vmax k1/3 T 2/3 log2/3 T ).

Proof. The mechanism is truthful by a simple second-
price argument.10 Recall that ci is the number of clicks
i got in the exploration phase. Let pi = maxj 6=i cjbj/ci

be the price paid (per click) by agent i if she wins (all)
rounds in exploitation phase. If vi ≥ pi, then by bidding
anything greater than pi agent i gains vi−pi utility each click
irrespective of her bid, and bidding less than vi, she gains 0,
so bidding vi is weakly dominant. Similarly, if vi < pi, then
by bidding anything less than pi she gains 0, while bidding
bi > pi, she loses bi − pi each click. So bidding vi is weakly
dominant in this case too.

For the regret bound, let (µ1 , . . . , µk) be the vector of
CTRs, and let µ̄i = ci/T0 be the sample CTRs. By Chernoff
bounds, for each agent i we have Pr [|µ̄i − µi| > r] ≤ T−4,

for r =
p

8 log(T )/T0. If in a given run of the mechanism
all estimates µ̄i lie in the intervals specified above, call the
run clean. The expected regret from the runs that are not
clean is at most O(vmax), and can thus be ignored. From
now on let us assume that the run is clean.

9Independently, Devanur and Kakade [15] presented a ver-
sion of the naive MAB mechanism that achieves the same
regret even in the more general model in which the value-
per-click of an agent changes over time and the agents are
allowed to submit a different bid at every round. Instead of
assigning all impressions to the same agent in the exploita-
tion phase, their mechanism runs the same allocation and
payment procedure for each exploration round separately
(see [15] for details).

10Alternatively, one can use Theorem 3.8 since all exploration
rounds are bid-independent, and only exploration rounds
are influential, and the payments are exactly as defined in
Theorem 3.1.

The regret in the exploration phase is at most k T0 vmax =
O(vmax k1/3 T 2/3 log1/3 T ). For the exploitation phase, let
j = argmaxi µibi. Then (since we assume that the run is
clean) we have

(µi∗ + r) bi∗ ≥ µ̄i∗ bi∗ ≥ µ̄j bj ≥ (µj − r) bj ,

which implies µjvj −µi∗vi∗ ≤ r(vj + vi∗) ≤ 2r vmax. There-
fore, the regret in exploitation phase is at most 2r vmax T =
O(vmax k1/3 T 2/3 log2/3 T ). Therefore the total regret is as
claimed.

5. EXTENSIONS AND OPEN QUESTIONS
We extend our results in several directions which are fleshed

out in the full version [8].
First, we derive a regret lower bound for deterministic

truthful mechanisms without assuming that the allocations
are scale-free. In particular, for two agents there are no
assumptions. This lower bound holds for any k (the number
of agents) assuming IIA, but unlike the one in Theorem 4.1
it does not depend on k.11

Second, we extend our results to randomized mechanisms.
We consider randomized mechanisms that are universally
truthful, i.e. truthful for each realization of the internal ran-
dom seed. For mechanisms that randomize over exploration-
separated deterministic allocation rules, we obtain the same
lower bounds as in Theorems 4.1 and Theorem 4.3.

Third, we consider randomized allocation rules under a
weaker version of truthfulness: a mechanism is weakly truth-
ful if for each realization, it is truthful in expectation over
its random seed. We show that any randomized allocation
that is “pointwise monotone” and satisfies a certain notion
of “separation between exploration and exploitation” can be
turned into a mechanism that is weakly truthful and nor-
malized. Then we apply this result to two algorithms in the
literature [22, 14] in order to obtain regret guarantees for the
version of the MAB mechanism design problem in which the
clicks are chosen by an adversary. (This version corresponds
to the adversarial MAB problem [7, 14, 1, 9].) In particular,
for oblivious (resp. adaptive) adversaries the upper bound
matches our lower bound for deterministic allocations up to
(log k)1/3 (resp. k2/3) factors.

Fourth, we consider the stochastic MAB mechanism de-
sign problem under a more relaxed notion of truthfulness:
truthfulness in expectation, where for each vector of CTRs
the expectation is taken over clicks (and the internal ran-
domness in the mechanism, if the latter is not determin-
istic). Following our line of investigation, we ask whether
restricting a mechanism to be truthful in expectation has
any implications on the structure and regret thereof. Given
our results on mechanisms that are truthful and normal-
ized, it is tempting to seek similar results for mechanisms
that are truthful in expectation and normalized in expecta-
tion.12 We rule out this approach: we show that in order
to obtain any non-trivial lower bounds on regret and (essen-
tially) any non-trivial structural results, one needs to assume
that a mechanism is ex-post normalized, at least in some ap-

11One would expect to obtain such bound by a reduction to
the two-agent case. Interestingly, the trivial reduction fails.

12A mechanism is normalized in expectation if in expectation
over clicks (and possibly over the allocation’s randomness),
each agent is charged an amount between 0 and her bid for
each click she receives.



proximate sense. The key idea is to view the allocation and
the payment as multivariate polynomials over the CTRs.

The two major questions left open by this work concern
structural results and regret lower bounds for (i) weakly
truthful randomized mechanisms allocations, and (ii) mech-
anisms that are truthful in expectation. The latter question
seems to require very different techniques which would fur-
ther explore the connection to polynomials over the CTRs.
Another potentially fruitful line of inquiry concerns incorpo-
rating more detailed settings, such as: budget constraints,
time-varying valuations, repeated bids, and external partial
information on CTRs.
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