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We report on a large-scale case study of a combinatorial prediction market. We implemented a back-end

pricing engine based on Dud́ık et al.’s [2012] combinatorial market maker, together with a wizard-like

front end to guide users to constructing any of millions of predictions about the presidential, senatorial, and
gubernatorial elections in the United States in 2012. Users could create complex combinations of predictions

and, as a result, we obtained detailed information about the joint distribution and conditional estimates of
election results. We describe our market, how users behaved, and how well our predictions compared with

benchmark forecasts. We conduct a series of counterfactual simulations to investigate how our market might

be improved in the future.
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1. INTRODUCTION

Political prediction markets like Intrade and Betfair offer financial derivatives linked to
election outcomes. Historically, prediction markets and other forms of expectation polling
have a record of outperforming traditional voter-intention polls when it comes to projecting
election winners [Rothschild 2009]. In 2012, these markets offered an impressive array of
predictions about the U.S. elections, including the national presidential winner, the number
of electoral votes for each candidate, and state-by-state outcomes in presidential, senatorial,
and gubernatorial races.

From September 16, 2012 until election day on November 6, 2012, we ran our own pre-
diction market game called WiseQ that went well beyond predicting individual elections.
Our market allowed traders to predict combinations of outcomes, for example,

— The Republican party candidate Mitt Romney would win Ohio yet lose the election,
— The same party would win both Ohio and Pennsylvania, or
— Less than 100,000 jobs would be created in October 2012 and Romney would win.

In WiseQ, as in other recent prediction market designs [Abernethy et al. 2011; Hanson
2007], traders interact with a central market maker that sets prices on any and all possible
predictions. Our market was expressive enough to allow traders to construct millions of
such predictions on the fly, obtain a nearly-instantaneous price quote reflecting the current
odds, purchase the contract, and watch as the odds for that outcome and thousands of
related outcomes changed in response. The market was a fully working implementation of
Dud́ık et al.’s [2012] automated combinatorial market maker with linear constraints that

Author contact: {mdudik,slahaie,dpennock,davidmr}@microsoft.com
Permission to make digital or hardcopies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copy-
rights for components of this work owned by others than ACM must be honored. Abstracting with credits
permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any com-
ponent of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
EC’13, June 16–20, 2013, Philadelphia, USA. Copyright c© 2013 ACM 978-1-4503-1962-1/13/06...$15.00



Proceedings Article

operationalized every aspect of an interactive market website, including direct login, third-
party login, portfolio display, map interface, league creation, leaderboard, detailed FAQs,
forum, popular trades, ability to browse other people’s trades, one-click selling, and more.
The game was featured on Yahoo! News, the Huffington Post, RealClearPolitics, and the
New York Times, drawing hundreds of traders from around the world.

In theory, combinatorial prediction markets can provide orders of magnitude more infor-
mation than ordinary prediction markets. In practice, many questions remain. With so many
choices, will traders become overwhelmed? What is a good interface to guide traders through
the endless sea of possible predictions? Can a combinatorial exchange that simply matches
willing traders ever work, or is a central market maker necessary to provide liquidity for
the long tail of predictions that users will inevitably generate? Can the empirical accuracy
we see in ordinary prediction markets generalize to combinatorial markets with the same
number of “mental cycles” spread across a vastly larger space of outcomes? Can the market
maker compute prices fast enough to support and satisfy many simultaneous traders? Do
linear constraints induce a significant and noticeable amount of information propagation?
Does offering users extreme flexibility to compose their own complex predictions engage or
discourage them?

In this paper, we begin to address some of these questions. We report for the first time
on a large-scale case study of a combinatorial prediction market. We describe our user
interface, how people behaved, what types of predictions people made, the extent to which
traders took advantage of the combinatorial expressiveness, how our market incorporated
information, and how accurately our market predicted outcomes. We consider accuracy on
outcomes that users directly traded as well as outcomes that were never explicitly touched,
on which our market was still able to form inferences.

For the probabilities of simple (non-combinatorial) outcomes, we compare the accuracy of
our market to PredictWise, a prediction aggregator that combines data from Intrade, Bet-
fair, and other sources. We also demonstrate the power of our market to elicit predictions
that go well beyond simple outcomes. We generate histograms of the entire distribution of
Electoral College votes for each candidate and the distribution of jobs created in Septem-
ber, showing how they compare to actual outcomes. We are able to compute conditional
probabilities, for example the likelihood of Romney winning given that the October jobs
report is bleak, or the likelihood that whoever wins Ohio wins the election.

Finally, we conduct a series of counterfactual simulations to determine what design deci-
sions we could have improved upon. We examine how decreases or increases in the liquidity
of our market maker would have hurt or improved our forecasts.

On the whole, our market performed well, both on the front end—hundreds of users placed
thousands of trades including many intricate combinatorial trades—and the back end—
quoting prices in real time and quickly propagating information via linear constraints—
yielding accurate and sensible results.

2. MARKET DESIGN

2.1. Preliminaries

We begin by describing the market maker used in our election market. Dud́ık et al. [2012]
and Abernethy et al. [2011] provide more details, background, and generalizations of this
market design.

Outcomes and securities. Let Ω be a finite set of outcomes, corresponding to mutually
exclusive and exhaustive states of the world. We are interested in eliciting expectations of
binary random variables φi : Ω→ {0, 1}, i ∈ I, which model the occurrence of various events
taking indices in the finite set I. For example, we could consider a variable that equals 1
if Romney wins Iowa in the Presidential Elections 2012, and 0 otherwise. Another example
is a variable that equals 1 if the September 2012 jobs numbers (the September change in
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nonfarm payroll) is more than 100,000 and Obama wins the Presidential Elections 2012,
and 0 otherwise.

Each variable φi is associated with a security. A security is a contract that pays out φi(ω)
dollars when the outcome ω occurs; thus the random variable φi is also called the payoff
function. Binary securities, such as the ones we described above, pay out $1 if the specified
event occurs and $0 otherwise. The vector (φi)i∈I is denoted φ.

Cost function. The state of the market is specified by a vector θ ∈ RI listing the number
of shares of each security sold so far by the market maker. The market starts at θ = θ0.
Security prices are defined using a convex and differentiable cost function C : RI → R,
following the cost function paradigm of market making [Chen and Pennock 2007]. Traders
buy bundles δ ∈ RI of security shares issued by a central market maker. A trader holding
a bundle δ receives the payoff δ · φ(ω); negative entries in δ correspond to short-selling.

A trader wishing to buy a bundle δ in the market state θ must pay C(θ+δ)−C(θ) to the
market maker, after which the new state becomes θ + δ. Thus, the vector of instantaneous
prices in the state θ is p(θ) := ∇C(θ). A risk-neutral trader is incentivized to buy the
security i if she believes that the expectation of φi is larger than pi(θ), and sell if she
believes it is lower.

Market desiderata. Let conv denote the convex hull, cl the closure of a set, and im an
image of a mapping. We say that µ ∈ RI is a coherent belief if there exists a probability
distribution over Ω such that µ = E[φ]. The set of all coherent beliefs is denoted M and
is called a marginal polytope (or a realizable polytope). It is not too difficult to show that
M = conv{φ(ω) : ω ∈ Ω}.

There are several standard properties that we may wish our market to satisfy [Abernethy
et al. 2011]:

— Expressiveness. For any coherent belief, there exists a state θ that achieves the corre-
sponding prices at least in a limit: M⊆ cl imp.

— No arbitrage. There is no market state θ that would allow trades with a guaranteed profit
regardless of the outcome: for all θ, δ ∈ RI , there is ω ∈ Ω such that C(θ + δ)− C(θ) ≥
δ · φ(ω). Abernethy et al. [2011] show that there is no arbitrage opportunity if and only
if imp ⊆M.

— Bounded loss. There exists a constant M which bounds the loss of the market maker
regardless of the outcome and how many shares of each security are sold.

Linearly constrained market making. In many cases of interest, including the combinato-
rial market in this paper, market making that is simultaneously expressive and arbitrage-
free is computationally hard [Chen et al. 2008b]. To facilitate efficient pricing, we use Dud́ık
et al.’s [2012] market maker design, which is expressive and has a bounded loss, but allows
arbitrage. Arbitrage is partly resolved by maintaining a set of linear constraints that must
be satisfied by coherent beliefs.

The construction of a linearly constrained market maker (LCMM) begins with a tuple
(Ω, I,φ, C) describing an expressive bounded-loss market whose prices can be efficiently
calculated. Because of expressivity, we haveM⊆ cl imp. For all but the simplest problems,
we will also haveM ( cl imp, that is, there will be some arbitrage opportunities. An LCMM
defines a relaxation M̃ ⊇M described by linear constraints:

M̃ = {µ ∈ RI : A>µ ≥ b} .
When a constraint is violated, there is an arbitrage opportunity in the market, and LCMM
acts as an arbitrager by executing appropriate trades until none of the constraints are vio-
lated. Dud́ık et al. [2012] provide a procedure that allows independent pricing and arbitrage
removal, while maintaining bounded loss. Some of the constraints are explicitly listed and
some are generated during the run of the market.
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2.2. Compositional market design

While the abstractions used in the previous section are useful for reasoning about pricing,
arbitrage and loss, in order to implement a combinatorial market we need to develop a
more structured view that allows easy definitions of the relationships that must hold among
securities.

Securities in our market correspond to indicators of discrete random variables. The vari-
ables are denoted Xj : Ω→ Xj and their values are denoted xj . Given a set of variables Xj ,
j ∈ J , we construct a set of securities I = {(j, xj) : j ∈ J , xj ∈ Xj} with payoff functions
corresponding to indicators

φj(xj ;ω) = 1[Xj(ω) = xj ] ,

where we use notation φj(xj ;ω) instead of a more awkward φ(j,xj)(ω). Our cost function
is the sum of Hanson’s [2003; 2007] logarithmic market scoring rules (LMSR) across the
variables:

C(θ) = b
∑
j∈J ln

(∑
xj∈Xj

eθj(xj)/b
)
,

where θj(xj) denotes θ(j,xj) and b > 0 is the liquidity parameter controlling how fast the
prices change in response to the purchase of shares. A smaller value of b (lower liquidity)
means prices rise faster as shares are purchased; a larger value of b (higher liquidity) yields
slower changes.

We allow traders to buy bundles of the form 1[Xj ∈ A] where A ⊆ Xj . By this we mean
vectors δ ∈ RI such that

δj′(xj′) =

{
δ if j′ = j and xj′ ∈ A
0 otherwise

where δ > 0 is the (scalar) number of shares bought. Note that δ > 0 is not a restriction
since users can buy the complementary bundle 1[Xj 6∈ A] to achieve the same effect as
short-selling.

The cost of δ shares of bundle 1[Xj ∈ A] is

C(θ + δ)− C(θ) = b ln
(
µ[Xj ∈ A]eδ/b + µ[Xj 6∈ A]

)
where we use the shorthand

µ[Xj ∈ A] =
∑
xj∈A

pj(xj ;θ) =

∑
xj∈A e

θj(xj)/b∑
xj∈Xj

eθj(xj)/b
.

(Recall that by definition p(θ) = ∇C(θ).)
Initially, our market contains no variables and hence no securities. The market operator

can create new variables and specify their relationship to any existing variables. At the time
of creation of a new variable Xj , we need to specify its domain Xj , the mapping Xj(ω),
initial prices µ[Xj = xj ] for xj ∈ Xj (these prices determine an initial state θj(xj) for
xj ∈ Xj), and possibly linear constraints that tie it to the previous variables. The initial
prices can be chosen based on the prices of previously existing variables.

We distinguish the following types of variables:

— Atomic variables. The market operator explicitly specifies Xj , Xj(ω), and initial prices.
For instance, the presidential outcome in Florida is represented by an atomic variable
FL with values in {Dem,Rep} whose prices were initialized at µ[FL = Dem] = 0.51 and
µ[FL = Rep] = 0.49 on 9-16-2012.
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— Pairs. An example of a pair variable is the combined presidential outcome in states FL
and OH. The new variable Xj is derived from a pair of existing variables Xk, X` by setting
Xj = Xk ×X` and Xj(ω) = (Xk(ω), X`(ω)). We create marginal constraints:

µ[Xk = xk] =
∑
x`∈X`

µ[Xj = (xk, x`)] for all xk ∈ Xk
µ[X` = x`] =

∑
xk∈Xk

µ[Xj = (xk, x`)] for all x` ∈ X` .

We use two initialization strategies. If Xk = X` = {Dem,Rep}, namely, we are creating a
pair of party-valued variables, we let µ1 := µ[Xk = Rep] and µ2 := µ[X` = Rep] and use
an initialization parametrized by ρ that interpolates between independence (if ρ = 0) and
maximum correlation (if ρ = 1):

µ[Xj = (Rep,Rep)] = (1− ρ)µ1µ2 + ρmin{µ1, µ2}.
We fill in the remaining initialization prices uniquely to satisfy the marginal constraints.
For non-party pairs, we used independent initialization

µ[Xj = (xk, x`)] = µ[Xk = xk]µ[X` = x`] .

— Triples. An example of a triple variable is the combined outcome in presidential races in
FL, OH, and the national race. Triples are defined from three existing variables Xk, X`,
Xm. We assume that all pair variables exist (and if not, we create them first), denoting
them Xk`, Xkm, X`m. We create marginal constraints with these pair variables, and use
the initialization of the form

µ[Xj = (xk, x`, xm)] ∝ µ[Xk` = (xk, x`)] · µ[Xkm = (xk, xm)] · µ[X`m = (x`, xm)]

µ[Xk = xk] · µ[X` = x`] · µ[Xm = xm]
.

This initialization guarantees prices are coherent with marginals as long as at least one pair
of the variables is conditionally independent conditioned on the third variable. However,
in general, the marginal constraints might be initially violated.

— Counts. Count variables are for example used to represent how many states in a given
region (such as the Midwest or Northeast) will vote for a Democratic or Republican candi-
date. The user has the ability to specify any range in which the outcome count could fall.
Formally, given a set of existing distinct variables {Xj1 , . . . , Xjn} and the corresponding
values xj1 , . . . , xjn , we create a new variable Xj monitoring how many of the variables
attain the given value. We have Xj = {0, . . . , n} and

Xj(ω) =

n∑
k=1

1[Xjk(ω) = xjk ] .

We again assume that all of the pairwise variables Xjkj` exist, and create the first and
second moment constraints:

n∑
k=1

k · µ[Xj = k] =

n∑
k=1

µ[Xjk = xjk ]

n∑
k=1

k2 · µ[Xj = k] =

n∑
k=1

(
µ[Xjk = xjk ] +

∑
` 6=k

µ[Xjkj` = xjkj` ]
)
.

The initial prices are set proportional to a discretized Gaussian distribution with the
mean and variance as determined by the right-hand side of the two constraints. Again,
note that the initialization does not guarantee that the constraints will hold exactly (but
they should not be too violated). In addition, note that 1[Xj = n] is equivalent to the
conjunction 1[Xj1 = xj1 ∧ · · · ∧ Xjn = xjn ] and analogously 1[Xj = 0] is equivalent to
1[Xj1 6= xj1 ∧ · · · ∧ Xjn 6= xjn ]. For these extreme values, we introduce clique and tree
constraint generators [Dud́ık et al. 2012].
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— Weighted sums. An example of a weighted sum variable is the number of electoral votes
obtained by a candidate (this is a weighted sum of state-by-state presidential outcomes).
We allow sums of the form

Xj(ω) =

n∑
k=1

ak1[Xjk(ω) = xjk ]

where ak are positive integers and jk are not necessarily distinct. We set X = {0, . . . , n}
where n =

∑
k ak if jk’s are distinct, or the sum only includes the largest weight assigned

to values of each distinct variable. We create the first and second moment constraints and
initialize prices similarly to the count variables.

— Paths. As a fun example, we implemented variables modeling whether, in the pres-
idential election, Democrats (or Republicans) would win a path of neighboring
states connecting Mexico with Canada, or the Atlantic with the Pacific. We cre-
ated constraint generators for these variables as follows. Consider the event E =
“There is a path of Rep from Mexico to Canada”. Then P[E] is bounded from below by
the probability that all the states on a specific path P vote Republican. Let A1, . . . , An be
the events corresponding to each individual state on the path P voting Republican, and
let Ā1, . . . , Ān be the complementary events that the states vote Democratic. Then

P[E] ≥ P[P votes Rep] ≥ P[A1]− P[A1 ∩ Ā2]− P[A2 ∩ Ā3]− · · · − P[An−1 ∩ Ān]

where the last inequality is a particular instance of a tree inequality [Dud́ık et al. 2012;
Galambos and Simonelli 1996]. Finding the tightest lower bound then corresponds to the
problem of finding shortest paths where edge weights are of the form µ[Xj = (Dem,Rep)]
for variables modeling pair outcomes. Since these only provide lower bounds, we use a
specific property of our design and also create the inequalities

µ[Dem path Atlantic-Pacific] + µ[Rep path Mexico-Canada] ≤ 1

µ[Rep path Atlantic-Pacific] + µ[Dem path Mexico-Canada] ≤ 1

which follow because Mexico-Canada paths act as cuts for Atlantic-Pacific paths and
vice-versa (we do not treat states that border by corners as neighbors).

2.3. Implementation

User Interface. When a user logged into the WiseQ game, she interacted with several sec-
tions of the interface. First, there was a portfolio that showed what securities the user owned.
Second, there were three U.S. maps displaying the current presidential, senatorial and gu-
bernatorial predictions across states. Third, there was both an overall leaderboard and
leaderboards for user-created “leagues”. Leagues allowed users to compete against their so-
cial network with overall scores translated into within-league scores. On leaderboard pages,
a user could access the full portfolio of all other users for comparison and research.

A trading wizard was always visible on all pages for users to buy securities (i.e., make pre-
dictions). The wizard asked the user to “make a prediction on” and provided a drop-down
menu of 23 prediction types including presidential, senatorial and gubernatorial outcomes
in states, national outcomes for the Senate, House and presidential elections, numerical vari-
ables such as the number of electoral votes won by a candidate, “jobs numbers” for Septem-
ber and October (change in nonfarm payroll) and various combinations. After choosing the
prediction type (e.g., a presidential race in a pair of states), the exact contest (e.g., two
particular states) and outcomes (e.g., a winning party), the user could see a full sentence
describing her prediction, such as: “Democrats will win the presidential election in both
Ohio and Virginia”. Three values were displayed underneath: the current odds, a fill-in text
box for the investment amount with a default initial value, which the user could adjust,
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and the return if correct. The user executed the trade by pressing a large “buy prediction”
button underneath.

There were three additional ways to execute trades. First, the user could sell anything in
her portfolio by clicking the “sell” button that was next to each security owned by the user.
Second, the user could click on a state in any of the three U.S. maps to obtain a pre-filled
wizard. At that point, the user would just have to click the “buy prediction” button or
could adjust any aspect of the prediction in the wizard. Third, WiseQ had a running list of
trending predictions and editorial picks, and the user could just click “buy prediction” to
execute any of the predictions on that list.

Pricing Engine. The back-end pricing engine for our market consisted of a fully functional
Java implementation of Dud́ık et al.’s [2012] linearly constrained market maker, with the
specific price initialization and constraints described in Section 2.2. A goal of their market
maker design was the separation of price computations and arbitrage removal to enable
near-instantaneous price queries. In our implementation, pricing and arbitrage removal ran
in separate threads. If an operation (pricing or trading) was performed for a security that
was not yet present in the market, the security was first created and initialized. Price
queries on existing securities did not trigger new constraint violations. On the other hand,
the execution of trades resulted in price changes, which were followed by price updates for
potentially all securities in the market.

3. RESULTS AND ANALYSIS

Our market was launched on 09-16-2012 and was closed at 7pm EST on 11-06, which is
when media coverage of the election results began. In our market 680 users signed up for an
account, out of which 437 made at least one trade. We restrict our analysis to these active
users. The users made 3,137 trades in total, using all 23 possible prediction types, with the
first trade placed on 09-16 at 16:37 EDT and the last trade placed on 11-06 at 17:33 EST.
Overall, 514 distinct bundles were bought. Several of them were bought by many users (such
as the national presidency), but 261 were traded by a unique user, which underscores the
fact that a market maker is essential for a combinatorial prediction market.

In our back-end pricing engine the market consisted of 2,840 variables corresponding to
17,222 securities. During the run of the market 20,983 unique constraints were created, and
of these 261 constraints were created by constraint generators; the remaining were created
at initialization (such as marginal constraints). Of the generated constraints, 92 (35%) were
generated before the election night. The remaining 169 (65%) were created on the election
night, as the election results in individual races were reported and the market prices were
finalized to 0-1 values.

In the remainder of this section we undertake a detailed analysis of the trading data
generated by WiseQ. As part of our analysis we aim to address several concrete questions:
(1) Was user behavior consistent with risk-neutral profit maximization, or was it distorted
because the market used play money rather than real money? (2) Did combinatorial bets
contribute to market performance? (3) How much of the market accuracy can be ascribed to
user input (trades) rather than well-initialized prices? (4) How sensitive is market accuracy
to the choice of liquidity parameter?

Section 3.1 studies the behavior of users to make sure it is consistent with profit maxi-
mization, and to understand what distinguishes the top performers. Section 3.2 assesses the
accuracy of our market forecasts against several benchmarks. Section 3.3 performs coun-
terfactual experiments to understand how market forecasting performance depends on the
liquidity parameter.
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Fig. 1. Distribution of return across user popu-
lation. The spike at -100% return corresponds to
users whose shares all failed to pay out.
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Fig. 2. The dots represent users, who are sorted
by increasing profit. Reference lines indicate the
minimum, median, and maximum profits.

3.1. User Behavior

User Performance. Each user received 1400 points to buy securities in the market. At
any time a user could also liquidate its shares of a particular security. In the following, the
revenue of a user is the total amount of points received from selling securities, and from 0-1
payouts from securities that were held until market close. The spend of a user is the total
amount of points spent buying securities. The profit of a user is revenue minus spend, while
its return is profit over spend.

Table I summarizes these metrics across the population of users, listing for each the
minimum, maximum, and quartiles. Note that the spend of a user can exceed 1400 points if
the user repeatedly liquidates held shares and reinvests the proceeds. The profit and return
of a user are lower bounded by 1400 points and -100% respectively, but in principle they
have no upper bound. Profit and return quantify user success. Their medians are (slightly)
above zero, indicating that the median user improved the accuracy of market prices via her
trades. We also note that over three quarters of users never sold any securities, meaning that
their revenues are based on the quality of their outcome predictions rather than predictions
of price movements.

Table I. Summary statistics on user activity and performance.

Percentile Revenue Spend Profit Return Buys Sells

0% 0.00 1.97 -1400.00 -1.00 1 0
25% 60.83 100.00 -50.07 -0.34 2 0
50% 238.47 350.02 9.93 0.12 4 0
75% 1006.14 1199.97 95.29 0.29 9 0

100% 5041.55 4505.96 1841.55 1.53 64 37

Figure 1 provides a histogram of the user returns. We see a large mass of users to the right
of the 0% return mark; these users were all able to improve the market’s forecast accuracy.
The reason the median return is nevertheless close to 0% is that this mass is offset by a
spike at the -100% return mark, corresponding to users whose securities all paid out 0 points
(i.e., the corresponding outcomes did not occur). The shape of the return distribution shows
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Fig. 3. Mean daily profit of users from market
opening to closure, together with LOESS curve
showing a downward trend, which slows down
once the estimate falls just below zero.
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Fig. 4. Time series of the number of ‘buy’ and
‘sell’ transactions in the market. The ratio of to-
tal buy to sell trades is almost 11 to 1.

that users were not adopting the strategy of spending their budgets on high-risk securities,
on the off chance that enough of them would pay out to propel them to the top of the
leaderboard. This would have been a plausible strategy—after all, points are worthless in
real life so there is no benefit to a positive profit if one still ends up low on the leaderboard—
but it would have lead to a return distribution with spikes at the two extremes, which is
not the case here. Figure 2 plots user profits in increasing order, which can be interpreted
as a cumulative distribution function (CDF) of profit across the user population. The profit
distribution is symmetric, with most mass concentrated between -500 and 500 points, and
the median just slightly exceeding 0 points.

Figure 3 shows a time series of daily mean profit across users. The local regression curve
(LOESS) depicts a trend where profit is steadily decreasing across time until it reaches
the 0 mark around October 10th, at which point it only decreases slightly below 0. The
interpretation is that agents are steadily incorporating information into the market by taking
advantage of profit opportunities until the latter are exhausted.

Table II. Prediction types ranked by user interest.

Prediction Type Unique Users Trades per User

Presidential—Singleton 413 3.87
Senate and House—Singleton 176 3.12
Presidential—Combinatorial 150 3.12
Electoral Votes 63 1.79
Governor 47 1.49
Economic Indicators 37 1.54
Senate, Governor and Presidential—Combinatorial 12 1.50

User Activity. We next examine user activity in terms of the number of trades performed
and the kinds of securities transacted. Figure 4 presents a time series of the buy and sell
orders in the market. There are 3–4 spikes in the buy series, but they do not correspond to
election events like the presidential debates; we suspect they are due to new user sign-ups
after advertising our market on social media. Trade activity picks up sharply around 10
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Table III. Top singleton securities by spend.

Prediction Spend Outcome % Spend

Federal 43663
Dem 76.3
Rep 23.6

FL 26034
Dem 48.4
Rep 51.5

OH 16715
Dem 75.3
Rep 24.6

VA 14753
Dem 48.9
Rep 51.0

CO 12143
Dem 58.3
Rep 41.6

Elect. Votes 10419

NC 9911
Dem 67.3
Rep 32.6

Senate 8319
Dem 82.9
Rep 13.5
Neither 3.4

House 7500
Dem 16.3
Rep 83.6

Senate-MA 7221
Dem 94.3
Rep 5.6

NH 4803
Dem 36.2
Rep 63.7

IA 4350
Dem 67.1
Rep 32.8

Table IV. Top combinatorial securities by spend.

Prediction Spend

VA,WI=Dem 1900

CO,IA,NH,OH,VA=Dem 1650

Fed,OH=Rep 1551

OH,VA=Dem 1393

FL=Rep,Fed=Dem 1349

FL,NC=Rep 1160

FL,Fed,OH=Dem 1010

NH,NV,OH,VA,WI=Dem 980

Path Canada-Mexico=Dem 835

CO,Fed=Dem 800

FL,NC=Rep,Fed=Dem 765

Fed,OH=Dem 584

days prior to the elections, with the highest volume coming on the eve of election day. Sell
volume is much lighter, and the ratio of securities held until close to securities eventually
liquidated in the market was almost 11 to 1.

As mentioned, users made trades on all 23 possible prediction types in the trading wizard.
Table II lists the prediction types ranked by user interest, as measured by unique users
and number of trades per user in each category. The prediction types are grouped into
seven categories for clarity. The rankings are almost the same under both metrics (the only
difference is the rank of the Governor category). Notably, combinatorial securities attracted
interest with over a third of users making a combinatorial trade. It does not appear that the
order of prediction types in the WiseQ pull-down menu had much influence on the kinds
of trades selected. While singleton presidential and senatorial elections appeared at the top
of the WiseQ menu and are also most popular in Table II, the menu listed the presidential
electoral votes much below the Governor outcomes and combinatorial Senate-Governor-
Presidential elections, yet the electoral votes were a more popular prediction type.

Table III shows that when users were buying singleton securities, they were focusing on
the most meaningful and uncertain outcomes. Besides the national presidential outcome, the
four top predictions by spend were the presidential outcomes in Florida, Ohio, Virginia, and
Colorado. The most efficient proxy for outcome uncertainty is the state-by-state advertising
spending of official campaigns and their aligned outside groups. Ohio and Florida were
nearly tied in spending with just shy of $200 million each, and were the top two individual
race securities in our market. Virginia at $150 million was both the third highest spending
and third most traded, while Colorado at $80 million was both the fourth highest spending
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and fourth most traded.1 The next 5 most popular state-by-state presidential races fill out
5 of the 6 next most expensive states in terms of advertising dollars. The top Senate race on
the list, Massachusetts, was also the most expensive Senate race by over 25% more than the
second most expensive race.2 Table IV shows that users were focusing their combinatorial
spend on how these key states interacted with each other. Of the top 12 combinatorial
securities, all but two of them include Florida, Ohio, or Virginia.

User Strategies. We now take a closer look at trading patterns to understand what dis-
tinguishes high-performing users from the rest. In order to do this we segment the users
into four groups according to return quartiles, and examine their spend allocation among
the different prediction categories. We use the prediction categories from Table II, with the
Senate-House-Governor securities (singleton and combinatorial) combined into the same
category, and the Electoral Vote and Economic Indicator securities also combined into a
“Continuous” category.

Figure 5 shows the allocation of spend among the four securities categories just defined, for
each quartile of user return. (The breakpoints for the segments can be read from the ‘Return’
column in Table I.) A clear pattern from this plot is that higher return is associated with
greater spend allocation to Senate-House-Governor securities. The users who performed
best were those who were most informed on the likely outcomes of the non-presidential
races. As we will see in Section 3.3, our priors (i.e., initial prices) were the least accurate for
these races, so these races provided the most profitable prediction opportunities. The spend
allocations also show that the two highest return quartiles had a higher proportion of spend
on combinatorial bets, which is evidence that such bets contribute to market accuracy,
although this pattern is less pronounced.

Figure 5 also suggests that the high-return users diversified their spend allocation more
among prediction categories than other segments, at least in aggregate. To examine “di-

1http://www.nationaljournal.com/hotline/ad-spending-in-presidential-battleground-states-20120620
2http://www.opensecrets.org/overview/topraces.php
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Fig. 7. Average log score for presidential (left) and senatorial (right) races, compiled every four hours. All
51 presidential and 33 senatorial elections are included. Optimized WiseQ performance corresponds to the
optimal choice of the liquidity parameter determined in Section 3.3.

versification” at the user level, we consider the distributions of user spend entropy within
each return quartile. The entropy of a user’s spend is defined as −

∑
c sc log2 sc, where sc

is the normalized user spend in category c (so that normalized spends sum to 1), and c
ranges across the four prediction categories. Higher spend entropy corresponds to a more
uniform allocation of spend across the categories; the lowest possible entropy is 0 bits (all
trades are in the same category) and the highest possible here is 2 bits (since there are four
categories). Figure 6 summarizes the distributions of spend entropy within the four user
return segments. Spend entropy clearly distinguishes the highest-return segment from the
rest: the median is much higher, and combined with the higher 75th percentile this shows
that the distribution is more skewed towards uniform spend allocation.

3.2. Market Accuracy

We compare the accuracy of WiseQ with two external benchmarks. The comparison is lim-
ited to simple variables representing presidential and senatorial outcomes since these are
the only outcomes where standard forecasts are available. The first benchmark is the fun-
damental model of Hummel and Rothschild [2013], which is a statistical model based on
presidential approval, incumbency, past election results, economic indicators, measures of
ideology, and biographical information. The second benchmark is the PredictWise3 aggre-
gator [Rothschild 2013], which combines signals from polling, external prediction markets
such as Betfair and Intrade, and the fundamental model. Note that we do not compare
with pure polling and pure external prediction markets, because both have higher errors
than PredictWise, and neither of them can generate a complete set of forecasts during our
time frame. The fundamental forecasts were determined on February 15 for the presidential
elections and June 15 for the senatorial elections, whereas PredictWise forecasts were gen-
erated and published in real-time. PredictWise is similar to the popular New York Times
blog FiveThirtyEight4 by Nate Silver, but FiveThirtyEight is only updated sporadically
and does not include prediction market data, which is key to achieving accuracy earlier in
the cycle and to obtaining real-time updates for major events.

Figure 7 illustrates how the log score evolves over the evaluation period (higher values
correspond to better forecasts). WiseQ is more accurate than the benchmarks during most
of the time frame for the presidential races and slightly less accurate for the senatorial
races. We also plot the “optimized” WiseQ performance which corresponds to the optimal

3http://www.predictwise.com/
4http://fivethirtyeight.blogs.nytimes.com/
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Fig. 8. Calibration for WiseQ (left) and PredictWise (right). We compile the calibrations from the forecasts
obtained every four hours. All 51 presidential and 33 senatorial races are included. The size of the outside
circles corresponds to the number of distinct races included in the bin.

choice of the liquidity parameter as determined by counterfactual experiments in Section 3.3.
Figure 7 shows that optimizing the liquidity parameter would have made WiseQ a much
tighter competitor in the Senate.

A second test of a forecast is its calibration and again WiseQ compares reasonably with
PredictWise. In Figure 8 we first bin forecasts to the nearest 5% mark according to the
probability they ascribe to the leading candidate (i.e, between 50% and 100%). For each bin,
we plot the fraction of outcomes that come true. A perfect calibration would correspond to
the average forecast equal to the average probability of occurrence in each bin. To provide
enough data, we include all 84 presidential and senatorial races and use forecasts from
every four-hour interval. The size of the outside circles reflects the number of distinct races
included in the bin. Since PredictWise has more variation during the time frame, there are
many more distinct races included in each bin, yielding a lower variance in our calibration
estimates. Both WiseQ and PredictWise are under-confident for the most certain races,
as too high a fraction of forecasts in the 70s and 80s comes true. Yet, while PredictWise
continues to show under-confidence, WiseQ is relatively well calibrated for more uncertain
races where the leading candidate is between 50 and 75 percent; this portion of the curve
corresponds to the outcomes that are most important for stakeholders.

The next step beyond individual outcomes is to consider the pairwise combinations of
all 51 state-by-state presidential outcomes. While WiseQ forms these meaningful forecasts
directly, standard forecasts do not provide these probabilities without additional assump-
tions. To obtain pairwise forecasts from the singleton PredictWise forecasts we consider
two standard heuristics: the independence heuristic and the ranking heuristic [Chen et al.
2008a]. The independence heuristic assumes that outcomes in the two states are statistically
independent. The ranking heuristic first orders states according to forecasted victory prob-
abilities of one candidate, say Obama. It then assumes that in the final outcome, a state
can be a victory only if all the higher ranked states are victories. For example, consider
two states, X and Y , where X is 55% likely to go for Obama and Y is 40% likely to go for
Obama. The likelihood of X going for Romney and Y going for Obama is then 0% by the
ranking assumption. The likelihood of both states going for Obama is the likelihood of the
less likely state, or 40%, and the likelihood of both states going for Romney is similarly de-
termined as 45%. Thus, the likelihood of X going for Obama and Y going for Romney is the
remainder, namely 15%. With four possible outcomes for any state pair, there is a total of
5,100 pairwise outcomes. Figure 9 shows the average log score of WiseQ predictions and the
two heuristics applied to PredictWise. The ranking heuristic is consistently more accurate
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Fig. 9. Average log score for presidential out-
comes across all pairs of states, compiled every
four hours. There are four possible outcomes for
1,275 pairwise state combinations for a total of
5,100 outcomes for each time period.

Fig. 10. Likelihood of Romney’s victory in na-
tional elections and the trifecta of Florida, Ohio,
and Virginia. We compile the forecasts every
hour.

than independence. WiseQ’s performance gain over PredictWise is even more pronounced
here than for individual races in Figure 7.

WiseQ uniquely answers critical questions for political science and economics that stan-
dard forecasts cannot address. Obama and Romney were two firms spending billions of
dollars in pursuit of a single outcome—winning the presidency—and WiseQ data provides
meaningful conditional likelihoods that could help them determine efficient resource alloca-
tion. That same type of data also answers critical research questions about the nature of
campaigns and elections.

One example that pundits and campaigns prominently examined during the 2012 election,
generally without data, were the conditional likelihoods of victory in the national election
and the key swing states of Ohio, Florida, and Virginia. On the morning after the first
debate, October 4, Obama was over 90% likely to win the presidency if he won Ohio, and
similarly for Florida (95%) and Virginia (92%). Yet, Romney was well less than 50% likely
to win the presidency conditional on winning Ohio (41%), Florida (32%), or Virginia (31%).
Romney’s chances of taking all of these states were slim: WiseQ had that possibility at just
over 11%. Our full breakdown had Obama at 21% to carry exactly one of the states, 32%
to carry two of the states, and 36% to carry all three states. So, despite making gains in
the national polls, these conditional numbers and three-state probabilities provide a clear
picture explaining why Romney was still so unlikely to win the election, at just 17% that
morning. Figure 10 highlights this relationship during the 2012 elections by showing how the
likelihood of Romney winning all three states (Ohio, Florida, and Virginia) closely tracked
the likelihood of winning the national elections; they are never more than a few percentage
points on either side of each other. This relationship becomes even tighter as Election Day
approaches.

For many questions there is an added value to the stakeholders in probability distribu-
tions versus just point estimates or single probabilities. WiseQ tracks these for economic
indicators and the number of electoral votes. That same morning after the first debate, the
pundits quickly turned to the key economic indicator that was due out the following day, the
September change in nonfarm payroll. Briefing released a point estimate earlier that week
of 165,000, an alternate expectation of 120,000, and the prior month was 142,000.5 At 8:30
AM on October 5 the Department of Labor announced just 114,000 new jobs for September.
WiseQ was able to show a full probability distribution of the likely jobs numbers, shown in

5http://biz.yahoo.com/c/ec/201240.html
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Fig. 11. Histograms for electoral votes and September Jobs numbers on October 4 and September 20
(initialization). We bin the histograms in the exact manner as our user interface.

Figure 11 on the right-hand side. The comparison of the October 4 distribution with the
initial distribution from September 20 reveals how the market absorbed new information
and moved away from a smooth distribution centered just above the prior month towards
the actual outcome.

The left-hand side of Figure 11 shows how the distribution for the number of electoral
votes for Obama changed from its initialization on September 20. The final answer was
located on the peak in the 300 to 350 range. The users created this single-peaked distribution
from the initialization that had two separate and smaller peaks; one peak was narrow and
on the Romney side of victory, and the other peak was wider and on the Obama side of
victory.

3.3. Counterfactual Analysis

A key difficulty in running automated market makers is the choice of the liquidity parameter.
In this section, we evaluate how far we deviated from the optimal choice and how it affected
our predictive performance. We also compare the linearly constrained market maker with
an approach using independent markets for each variable.

Both styles of comparisons are counterfactual since we cannot actually rerun history with
different market parameters and witness how real traders would react. Our approach to a
counterfactual evaluation is to take the realized set of buy/sell transactions and transform
them into a sequence of limit orders, and then repeatedly execute the sequence of limit
orders under different conditions. Limit orders are triples, specifying a bundle to buy, the
maximum price per share, and the maximum amount to spend (maximum cost). We execute
them by spending the money until either the maximum price or the maximum cost is
reached, whichever comes first.

The collected user data consists of market orders, so it only contains the number of
shares bought/sold and their total cost/revenue. Based on this information we construct
limit orders as follows:

— Each sell transaction is first transformed into a complementary buy transaction: a sale of
q shares of a bundle 1[Xj ∈ A] with the revenue r is transformed into a purchase of q
shares of a bundle 1[Xj 6∈ A] with the cost q − r.

— For a buy transaction of q shares of a bundle 1[Xj ∈ A] for the cost c, we first determine
the revealed share price p = c/q. We impute the unobserved value v by sampling uniformly
from the interval [p, 1], and then create a limit order for the bundle 1[Xj ∈ A] with the
maximum price v and the maximum cost c.
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Fig. 12. Market’s predictive performance for different liquidity parameters across different security types.

We create five replicates using this protocol (obtaining transactions with different values
v). In all experiments below we evaluate markets on all five replicates and report results of
the individual five runs as well as the average performance.

To evaluate the performance of various markets we use two scoring rules:

— log score (log likelihood). A bundle forecast f = µ[Xj ∈ A] is scored as a function of the
actual outcome ω, which translates into a binary outcome f∗ = 1[Xj(ω) ∈ A], as

f∗ log f + (1− f∗) log(1− f) .

A set of forecasts for a variable Xj , when the final realization is x∗ = Xj(ω), is scored
according to the log likelihood as

logµ[Xj = x∗] .

— quadratic score. A forecast f for a binary outcome f∗ is scored as

−(f − f∗)2 .

A set of forecasts for a variable Xj , when the final realization is x∗, is scored as

−
∑
x∈Xj

(µ[Xj = x]− 1[x∗ = x])
2
.

Values of both scores are negative, and larger score values correspond to better forecasts.
Perfect forecasts, where f = f∗ (for bundles) or µ[Xj = x] = 1[x∗ = x] (for variables),
receive the maximum score of zero in both cases.

In Figure 12, we evaluate the performance of the linearly constrained market maker as
well as the independent markets for varying liquidity parameters. We show the average
performance across three groups of bets. First, we show the average score across all unique
bundles created by users. Second, we show the average performance across all variables
derived for presidential variables. Third, we show the performance across variables derived
for the Senate-House-Governor races (abbreviated as SHG).
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Fig. 13. Counterfactual evaluation of market’s predictive performance on a subset of securities correspond-
ing to simple and combinatorial bets on Senate, House and governors.

According to the log score, the optimized linearly constrained market maker outperforms
the optimized independent markets in all three groups. This means that propagating infor-
mation across related securities indeed improves the predictive performance of the market.
Also note that the constrained market is more robust to variations in user beliefs than
independent markets.

As we saw in Section 3.2, in the presidential elections, the initialization prices were very
accurate and optimizing the liquidity parameter does not dramatically improve over the
initialization. On the other hand, in the SHG races, a more dramatic improvement over the
initialization is achievable and our actual market came close to achieving it. Across user
bets, our actual market went about half-way from the initialization towards the optimal
performance. The optimal liquidity for presidential outcomes was around 3,000, while the
optimal liquidity for SHG was about 20, reflecting lower user activity (see Section 3.1). The
optimal liquidity for user bundles was about 1,000. The broad range of optimal liquidity
values suggests that for the best market accuracy, we should differentiate the liquidity across
different bet types.

The counterfactual performance of the linearly constrained market maker crosses the
actual performance in the range of 500–750. This is broadly consistent with the actual
values that we used: 1,000 for time period 9/16–9/27; 500 for time period 9/27–10/29; and
350 for time period 10/29–11/14.

Compared with log score results, quadratic score results are less sharp—the improve-
ment of linearly constrained market over independent markets remains strong for the SHG
outcomes, but there is no improvement on the other two groups, and in fact, independent
markets appear to have a small edge in presidential outcomes. Note that this is not too sur-
prising since our market maker is designed to optimize the log score rather than quadratic
score.

In Figure 13, we take a closer look at the performance on SHG variables. These are the
variables where the market most significantly outperformed the initialization. We separate
the bets into simple bets and combinatorial bets. Simple bets are bets on Senate and
governor race winners in individual states. Combinatorial bets are bets on the number of
races that each party will win, among Senate, governor and presidential races. In both cases,
our market significantly outperformed the initialization, and in the case of simple bets, our
market was quite close to the optimal performance. For combinatorial bets, however, we
could have improved predictive performance much further. In the case of combinatorial bets,
we also clearly see the benefits of a linearly constrained market. The optimal performance
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of independent markets lags behind the constrained market, even if independent markets
are optimized.

4. DISCUSSION AND CONCLUSION

The large-scale case study described in this paper enabled us to test a new market maker,
a new front-end trading wizard, and probe critical questions in political science. Our play-
money combinatorial prediction market was able to provide additional accuracy to estab-
lished forecast categories (e.g., Electoral College outcomes), but more importantly, provide
accurate and real-time predictions for a host of relevant categories that are challenging for
statistical models and polls: combinatorial outcomes, and less prominent categories such as
gubernatorial outcomes.

We evaluated several aspects of our market including user behavior, forecast accuracy,
and sensitivity to liquidity settings, but the case study itself yielded some further questions
and potential answers. As we saw in our counterfactual experiments, different groups of
variables may benefit from using different liquidity parameters. Other considerations include
the default investment size, trading wizard design, and additional variables. The default
settings have a serious impact on investment choices; this includes both the size of the
investment and the actual securities purchased.

We see the self-selection of qualified participants (users with the most valuable infor-
mation) as an advantage of prediction markets that should hold true in domains beyond
politics. We plan to run and evaluate our market maker in other domains such as sports,
business, or entertainment.
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