Why? Humans need models to represent every kind of knowledge. To share knowledge humans have to unify models.

What? Given two data models M_1 and M_2 (like ER, Relational, Object Oriented, Object Relational, XSD, ...), and a schema S_1 of M_1 (the source schema and model), we generate a schema S_2 of M_2 (the target schema and model), corresponding to S_1 and, for each database D_1 over S_1, we generate an equivalent database D_2 over S_2.

How? We use a framework that allows the definition of any possible model and the definition of translations from a model to another.

Metamodel
The constructs in the various models are rather similar and can be classified into a few categories.

We can fix a set of metaconstructs and define models in terms of the metaconstructs they use.

Supermodel
A model that includes all the metaconstructs.
Each model is subsumed by the supermodel.
Each schema for any model is also a schema for the supermodel.

Translations
Translations can be defined on metaconstructs.
Each translation from the supermodel SM to a target model M is also a translation from any other model to M.

Given n models, we need n translations, not n^2 but we still have too much models.

Elementary translation steps to be combined:
Each translation step handles a supermodel construct (or a feature thereof) "to be eliminated" or "transformed".
A translation is the concatenation of elementary translation steps.
Basic translations are written in a variant of Datalog, with OID invention.

Example: A Complex Translation from ER to OO

- Eliminate N-ary relationships
- Eliminate attributes from relationships
- Eliminate many-to-many relationships
- Eliminate generalizations
- Replace relationships with references