Mind-reading machines: Inferring emotions from facial expressions

Peter Robinson
University of Cambridge
Computer Laboratory
http://www.cl.cam.ac.uk/~pr/

Introduction

- Computer Science at Cambridge
- Video user interfaces
- Affective interfaces
 - Mind-reading and mental states
 - Computational model of mind-reading
 - The facial affect inference system
 - Evaluation
 - Applications
- Future work

EDSAC

- Maurice Wilkes (1949)
- Practical computer
 - 650 instructions/s
 - 1k x 17 bits
 - paper tape input
 - teletype output
 - 4m x 3m
 - 3000 valves
 - 12kW

Projects and cameras

- Advanced computational properties to everyday objects

DigitalDesk DoubleDigitalDesk
Pierre Wellner Steve Freeman 1992

Remote collaboration

Projects and cameras

- Interaction with programs mediated by cameras
 - Animated paper documents
 - Richard Watts & Dan Sheppard
 - 1997

BrightBoard
Quentin Stafford-Fraser

Projects and cameras

- Large display with high resolution fovea
 - Escribire Mark Ashdown
 - 2002

Telepointer traces for collaboration

Two-handed interaction
Projectors and cameras
- High resolution for arbitrary rotation of documents for territory
- Distributed Tabletop
 - Phil Tuddenham
 - 2007
- Presence for remote collaboration
- Standard widgets from Java toolkit

Emotional intelligence
- Mind-reading: people interpret mental states in terms of behaviour
- Subtle and elusive but essential for social interaction
- Computers are mindblind: most human-computer interaction ignores non-verbal communication cues
- As a result they fail to:
 - Account for what the user knows (and doesn't know)
 - Read and respond to the user's intentions
 - Understand the reasons behind the user's actions

The mind in the face
- The face is a spontaneous channel for the communication of social and emotional displays
 - Conversation enhancers
 - Show empathy
 - Acknowledge the actions of other people
- Communicates
 - Basic emotions
 - Complex (cognitive) mental states

Facial affect analysis
- Infer cognitive mental state groups
 - Agreement, concentration, disagreement, interest, thought, unsure
- Characteristics
 - Multiple asynchronous information sources
 - Multi-level abstractions
 - Action unit: per frame
 - Facial and head displays: 6th of a second
 - Mental state: 2-4 seconds

Taxonomy of emotions
- Lexicographic analysis (Baron-Cohen, 2003)
 - 1150 words from MS Wordthesaurus
 - 412 concepts plus 738 synonyms
 - 24 mutually exclusive groups
- Basic emotions (Ekman, 1971)
 - Afraid, angry, disgusted, happy, sad, surprised
 - Easily recognised
- Complex (cognitive) mental states
 - Bored, bothered, disbelieving, excited, fond, hurt, interested, kind, liked, romantic, sneaky, sorry, sure, thinking, touched, unfriendly, unsure, wanting
 - More important for predicting intentions and actions

Computational model
- Facial feature extraction
- Head pose estimation
- Feature point tracking
- Mental state inference
- Hmm … Let me think about this

Proectors and cameras
- High resolution for documents for territory
- Distributed Tabletop
 - Phil Tuddenham
 - 2007
- Presence for remote collaboration
- Standard widgets from Java toolkit
Feature point tracking
- FaceTracker (Neven Vision, 2002)
- 320×240 video stream at 30 fps
- Tracks 22 points in real-time
 - anchor point interpolated and two further nodes extrapolated
- Self-starting
- Rotation up to 4°/frame and translation to 20 pixels/frame

Head pose estimation
- Use expression-invariant feature points to estimate pitch (50°), yaw (50°) and roll (30°)
- Output is head action unit

Facial feature extraction
- Colour, shape and motion analysis
- Output is facial action units (+ intensity)

Action units
- Facial Action Coding System (Ekman, 1978)
 - Consider 15 of 44 Action Units
 - pitch up & down
 - yaw left & right
 - roll left & right
 - lip pull, pucker, depress & stretch
 - mouth stretch, jaw drop, lips part
 - eyebrow raise inner & outer
- Coded empirically

Head and facial displays
- New classification for additional level in model
 - Consider 9 displays (2 periodic & 7 episodic)
 - head nod & shake
 - head tilt & turn
 - lip corner pull & pucker
 - mouth open
 - teeth visible
 - eyebrow flash

Mental states
- Groups of emotion concepts from the Baron-Cohen taxonomy
 - Consider 6 groups encompassing 29 concepts
 - Agreement (sure): assertive, committed, convinced, knowing, persuaded, sure
 - Concentration (interested): absorbed, concentrating, vigilant
 - Disagreement (unfriendly): contradictory, disapproving, discouraging, disinclined
 - Interest (interested): asking, curious, fascinated, impressed, interested
 - Thought (thinking): brooding, choosing, fantasizing, judging, thinking, thoughtful
 - Unsure (unsure): baffled, confused, puzzled, undecided, unsure
Combined inference

- **DBN Level** (model per mental state)
 - [Diagram of DBN model]
- **HMM Level** (head-facial displays)
 - [Diagram of HMM model]
- **Feature Extraction Level**
 - [Diagram of feature extraction]

Temporal abstraction

- Diagram showing temporal abstraction with time axis and mental states.

The Mindreading DVD

- **Comprehensive labelled corpus**
 - 412 mental states (or emotions)
 - 6 videos per mental state
 - 24 groups
 - meta-groups
 - fine shades of the same mental state
 - posed using 30 actors
 - classified by panel of 10

- **Demonstration**
 - Classify the video
 - Agreement
 - Concentration
 - Disagreement
 - Interest
 - Thinking
 - Unsure

- **Result**
 - This was a video of brooding from the thinking group

- **Training**
 - Six groups of complex mental states
 - 174 videos from Mindreading DVD
 - FaceTracker failed on 10
 - 164 videos featuring 30 actors over 855 seconds
 - 164 runs using leave-one-out
 - each actor appears at most once for any concept but possibly more than once in a group
 - 77% accuracy
Accuracy

CVPR 2004 corpus
- 16 conference delegates (not actors)
- each acting six mental state groups
- 96 videos tested on panel of 18 people
 - average accuracy 54%
 - 85% consensus only achieved on 11% of videos
- 88 videos tested on automatic system
 - 3 too short and FaceTracker failed on 5
 - average accuracy 64%
 - 80% accuracy for videos achieving consensus
- System as good as best 6% of panel

Generalization

Panel of 18 people

Automatic system

Driver monitoring

Pleasure
- enjoyable driving

Comfort
- easy driving

Concentrating
- neutral

Bored
- distracted thinking about something else

Uncertain
- distracted finding route

Bothered
- discomforted stuck in heavy traffic

Driving in Cairo

Mental state inference

Analysis from the Cairo data when the driver was talking on a mobile phone. The dominant inference is comfort (black).
Mental state inference

Analysis video from the Cairo data when the driver was lost. The dominant inference is uncertain (blue), with bothered (green) also showing strongly.

Simulator at TRL

The UK's Transport Research Laboratory in Crowthorne has several simulators. Video samples were obtained from a camera monitoring the driver in this simulator.

The camera is in a similar location to the Cambridge car and the video also includes the forward view from the simulator. The driver-cam is slightly further away from the driver which makes the view more direct so the tracker coped better.

Mental state inference

Analysis from the TRL data. The dominant inference is comfort (black).

Other applications

- Facial affect instant messaging
 - plug-in for MS Messenger
- Emotional hearing aid
 - assistive tool
- Empathic avatars
 - synthesis as well as analysis
- Usability
- On-line learning
- Sales assistant
- Indexing video

Multi-modal inference

- Face, voice, posture, gesture, physiology

Future work

- Further groups of mental states
- Multi-modal sensors
 - voice, skin conductivity, posture, gesture
- Extended model
 - additional sensors, context
- Generalisation
- Naturally-evoked emotions