Programming with the Kinect for Windows SDK
What we’ll cover

- Kinect Sensor
- Using Cameras
- Understanding Depth Data
- Skeletal Tracking
- Audio
RGB CAMERA

MULTI-ARRAY MIC

3D DEPTH SENSORS

MOTORIZED TILT
SDK Architecture

- **Video Components**
 - NU1 API
 - Video stream control
 - WinUSB camera stack

- **Audio Components**
 - Windows Core Audio and Speech APIs
 - DMO codec for mic array
 - Audio stream control
 - USBAudio audio stack

- **Kernel Mode**
 - Kernel-mode drivers for Kinect for Windows

- **User Mode**
 - User Mode

- **Hardware**
 - Motor
 - Cameras
 - Audio mic array

- **USB Hub**
 - Motor
 - Cameras
 - Audio mic array

- **Components**
 - Kinect for Windows SDK
 - Windows components
 - User-created components
SDK Architecture

Applications

Video Components
- NUI API

Audio Components
- Windows Core Audio and Speech APIs
- DMO codec for mic array

Kernel-mode drivers for Kinect for Windows

Device setup
- WinUSB device stack
- WinUSB camera stack

Device access
- USB Hub
- WinUSB audio stack
- USBAudio audio stack

Video stream control
- Video stream control

Audio stream control
- Audio stream control

Kernel Mode

User Mode

Hardware

Motor
- Camera setup
- Cameras
- Audio mic array

- Kinect sensor

- Kinect for Windows SDK
- Windows components
- User-created components
SDK Architecture

Video Components
- NUI API
- Video stream control
- WinUSB camera stack
- WinUSB device stack
- Kernel-mode drivers for Kinect for Windows

Audio Components
- Windows Core Audio and Speech APIs
- DMO codec for mic array
- Audio stream control
- USBAudio audio stack
- WinUSB camera stack

Hardware
- USB Hub
- Motor
- Cameras
- Audio mic array
- Kinect sensor

User Mode
- User Mode
- Application

Kernel Mode
- Kernel Mode
- System

User-created components
- Windows components
- User-created components

Windows components
SDK Architecture

Video Components
- NUI API

Audio Components
- Windows Core Audio and Speech APIs
- DMO codec for mic array

Hardware
- Kinect sensor
- Cameras
- Audio mic array
- Motor

Device setup
- Device access
- Video stream control
- Audio stream control

Kernel-mode drivers for Kinect for Windows

User Mode

Kernel Mode

User-mode created components
- USB Hub
- WinUSB device stack
- WinUSB camera stack
- USBAudio audio stack
Using Cameras

Demos
Understanding Depth Data

- ImageFrame.Image.Bits
- Array of bytes - `public byte[] Bits;`
- Array
 - Starts at top left of image
 - Moves left to right, then top to bottom
 - Represents distance for pixel in millimeters
Calculating Distance

- 2 bytes per pixel (16 bits)
- Depth – Distance per pixel
 - Bitshift **second byte by 8**
 - Distance \((0,0) = (\text{int})(\text{Bits}[0] \mid \text{Bits}[1] \ll 8);\)
 - VB \((\text{int})(\text{CInt}(\text{Bits}(0)) \text{ Or } \text{CInt}(\text{Bits}(1)) \ll 8);\)
- DepthAndPlayer Index – Includes Player index
 - Bitshift by **3 first byte** (player index), **5 second byte**
 - Distance \((0,0) = (\text{int})(\text{Bits}[0] \gg 3 \mid \text{Bits}[1] \ll 5);\)
 - VB:\((\text{int})(\text{CInt}(\text{Bits}(0)) \gg 3 \text{ Or } \text{CInt}(\text{Bits}(1)) \ll 5);\)
Depth Reference

- **Distance Range:** 850 mm to 4000 mm range
- **Depth value 0** means unknown
 - Shadows, low reflectivity, and high reflectivity among the few reasons
- **Player Index**
 - 0 – No player
 - 1 – Skeleton 0
 - 2 – Skeleton 1
 - ...
Demos
Skeleton Data
Joints

- Maximum two players tracked at once
 - Six player proposals
- Each player with set of \(<x, y, z> \) joints in meters
- Each joint has associated state
 - Tracked, Not tracked, or Inferred
- Inferred - Occluded, clipped, or low confidence joints
- Not Tracked - Rare, but your code must check for this state
Skeletal Tracking

SkeletonFrame
- Sealed Class
- Fields:
 - FloorClipPlane
 - FrameNumber
 - NormalToGravity
 - Quality
 - TimeStamp

SkeletonFrameReadyEventArgs
- Sealed Class
- Methods:
 - SkeletonFrameReadyEventArgs

SkeletonData
- Sealed Class
- Fields:
 - EnrollmentIndex
 - Position
 - Quality
 - TrackingID
 - TrackingState
 - UserID

Joint
- Struct
- Properties:
 - ID
 - Position
 - TrackingState
Demos
Audio Going Inside of Kinect

- Four microphone array with hardware-based audio processing
 - Multichannel echo cancellation (MEC)
 - Sound position tracking
 - Other digital signal processing (noise suppression and reduction)
Audio

- Kinect as a microphone
- Kinect for Speech Recognition
Multi-modal Feedback

- Engagement model
 - Mic indicator for speech-enabled menus
 - Keyword to engage

- Feedback and confirmation (both passive and active)
Speech Recognition

- Kinect Grammar available to download
- Grammar – What we are listening for
 - Code – GrammarBuilder, Choices
 - Speech Recognition Grammar Specification (SRGS)
 - C:\Program Files (x86)\Microsoft Speech Platform SDK\Samples\Sample Grammars\
Grammar

<!-- Confirmation_YesNo._value: string ["Yes", "No"] -->
<rule id="Confirmation_YesNo" scope="public">
 <example> yes </example>
 <example> no </example>
 <one-of>
 <item><ruleref uri="#Confirmation_Yes" /></item>
 <item><ruleref uri="#Confirmation_No" /></item>
 </one-of>
 <tag> out = rules.latest() </tag>
</rule>

<!-- Confirmation_Yes._value: string ["Yes"] -->
<rule id="Confirmation_Yes" scope="public">
 <example> yes </example>
 <example> yes please </example>
 <one-of>
 <item>yes</item>
 <item>yeah</item>
 <item>yep</item>
 <item>ok</item>
 </one-of>
 <item repeat="0-1"> please </item>
 <tag> out._value = "Yes";</tag>
</rule>
Demos
Resources

- Kinect Programming Walkthroughs
 - http://research.microsoft.com/kinectsdk/
- Coding4Fun Kinect Toolkit
 - http://c4fkinect.codeplex.com
- Kinect SDK Quickstarts
 - http://channel9.msdn.com/series/KinectSDKQuickstarts