Open Data for Open Science
Microsoft Environmental Informatics Framework

Yan Xu
Sr. Research Program Manager
Microsoft Corporation
Microsoft Environmental Informatics
Since 2010

Vision: facilitate seamless access to environmental data and information

Focus: data discoverability, accessibility, and consumability

Objectives:
- advance the technology use in environmental research
- create design wins using Microsoft technologies to
 - Foster innovations in computational environmental research
 - Advance interoperability of data and information sharing
 - Facilitate citizen science for environmental research
- Enhance connections among multiple disciplines and stakeholders
Microsoft Environmental Research Workshop 2010

- 50+ from academia, industry, government, and Microsoft
- Focus:
 - Mind-swap between Environmental scientists and Microsoft technologists
 - Computational challenges in environmental research
 - Mutually beneficial collaborations
Initial Findings

Grand Challenge: vast amount of heterogeneous data
- Necessary to use data from difference sources
- Not easy (little incentive) to share data
- Need tools to enable producers & consumers to adopt standards

Unique Challenge: it doesn’t end with scientific publications
- Compelling presentation of knowledge is critical to
 - Influence policy makers and the general public
 - Enable citizen science to scale the effort.
Common Problems with Data

To use data from difference sources
- Non-standard formats, scales, and units
- Lack of data quality control
- Lack of metadata
- Difficult to repurpose data for different (my) tools

To share data
- Lack of incentive
- Expect no credit
- Need extra resource and tools

To properly maintain data, need
- Versioning
- Provenance
- Curation
The Norms of Technology Use

Cyberinfrastructure for the waters networks: a Survey of AEESP and CUSHAI Members, K.A. Lawrence et al, May 2006

Popular Software Packages *

<table>
<thead>
<tr>
<th>Software</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excel</td>
<td>40%</td>
</tr>
<tr>
<td>Other*</td>
<td>30%</td>
</tr>
<tr>
<td>ArcGIS</td>
<td>20%</td>
</tr>
<tr>
<td>MATLAB</td>
<td>15%</td>
</tr>
<tr>
<td>SAS</td>
<td>10%</td>
</tr>
<tr>
<td>MS Access</td>
<td>7%</td>
</tr>
<tr>
<td>SPSS</td>
<td>5%</td>
</tr>
<tr>
<td>SQL Server</td>
<td>3%</td>
</tr>
</tbody>
</table>

* Other:
 - MS Word
 - MS PowerPoint
 - Statistics applications (e.g., Stata, R, S-Plus)
 - SigmaPlot
 - PHREEQC
 - MatLab
 - FORTRAN compiler
 - Mathematica
 - GRASS GIS

Factors Influencing Technology Adoption *

- Clarity of interface/use
- Ability to do things I cannot do with current software/hardware
- Professional technical support
- Fulfillment of my current research needs
- Stability of software for long term use
- Compatibility with existing tools that I use
- Necessity of learning new tools
- Speed/ease of loading the CyberCollaboratory pages on my computer (with the Internet connection speed that I have)
- Upgradability or long term use
- Ability to access and modify source code (e.g., for nodes or workflows)
- Security of my personal information
- Having to install software on my personal computer (rather than accessing everything through a Web interface)
- Necessity of creating an account

Requirements for adopting new technologies:
- Easy of use
- Additional value
- Professional technical support
Advance the Norms

Microsoft Environmental Informatics Framework -

- a solution to engage Microsoft technologies with environmental research
- a strategy to amplify social impact of environmental research
- a common agenda among internal stakeholders

Data Sources

OData Ecosystem

Spatial Tools

Windows Azure Marketplace

Silverlight Toolkit

WorldWide Telescope

PowerPivot

SharePoint

maps
Example – Digital Urban Informatics

- **Objectives**
 - Research - Apply innovative computational thinking to environmental applications by developing a new "Digital Urban Informatics" computational framework addressing both long-term sustainability issues and short-term situational awareness
 - Education - Promote citizen science

- **Key technologies**
 - Microsoft WWT Earth,
 - Azure Cloud Computing,
 - Windows Phone 7 app + cloud, s
 - OData
 - Modeling in Azure, on-demand, in near-real-time
 - e.g. Modflow parallel ensemble runs for groundwater sustainability
Example – GEOSS Clearinghouse

- **Objectives**
 - Share Global Earth Observation Data Among 140+ Countries to Address Global Challenges on Natural Hazards and Emergency Responses
 - Support Global End Users to Discover, Access, and Utilize EO Data
 - Provide Responses to End Users in Seconds

- **Key technologies**
 - Windows Azure - Responding to Massive Concurrent End Users
 - SQLAzure and SQL Spatial - Managing Millions to Billions of Metadata Records
 - Bing Maps and World Wide Telescope - Visualizing EO Data
Objectives

- Provide timely forecasting of dust storm for public health emergency responses
- Provide an intuitive interface for decision makers

Key technologies

- SQL Azure as an data management to access large volumetric data
- World Wide Telescope (WWT) as an interactive 3D/4D visualization framework to render the data
- Azure as an advanced cloud computing platform to support forecasting.
Example – Forecasting Urban Land Use Changes

Objectives
- Visually integrated urban land expansion module and environmental forecast module
- Identify potential environmental impacts of various urban land layout over next 10-20 years
- Promote smart decision making

Key technologies
- Bing Maps and SilverLight
- HPC computing
Example – Wireless Sensor Networks in Brazilian Forest

- Hundreds of sensors to measure the vital signs of the rainforest
 - Temperature
 - Water vapor
 - Solar radiation

Deployment of towers with sensors *(in red)* placed on cables *(in orange)* above the rainforest canopy.

One of six towers equipped with sensors to measure temperature, water vapor, and solar radiation.
Example – Participatory Environmental Monitoring Toolkit

- **Objectives**
 - Facilitate socially inclusive environmental observation
 - Time & GPS location
 - Temperature & Humidity
 - CO2
 - H2S
 - Leverage existing Microsoft technologies and user communities
 - Deliver a HW+SW toolkit in open source form

- **Key technologies**
 - Microsoft Research low energy GPS location sensing and mobile data collection services
 - OData
 - World Wide Telescope (WWT)
 - Windows Azure
WorldWide Telescope (WWT)

- A visualization software environment
 - Enables a computer to function as a virtual telescope (astronomers call it “the best VO (virtual observatory) implementation”)
 - Visualizes geo-data in 4D (space + time)
 - Integrated with Excel
 - Allows data sharing with controlled access – WWT Community
 - Empowers high-quality, intuitive, and interactive visual presentation via “WWT tour”

Datasets under consideration

- Seismic event distribution against subduction slab models (USGS NEIC)
- Standardized-format datasets (OGC, WxS, NetCDF, Shapefile, CSV, HDF, ...)
- Dataset and model output concept: plugging data generators directly into WWT
- Draped raster, e.g. MODIS ocean, land and atmospheric products
- Alternative topography, e.g. ice sheet thickness and bathymetry
- Climate change thematic datasets, e.g. monthly sea ice extent from NSIDC

Free for research and education use
Demo – WWT and Dust Storm Simulation

A mutually beneficial case study

- Mind-swap, e.g. at Open Data for Open Science Developers Training
- Improve science modeling
- Improve computer engineering
- ...

![Dust Storm Simulation](image)