Verifying Computations in the Cloud (and Elsewhere)

Michael Mitzenmacher, Harvard University

Work offloaded to
Justin Thaler, Harvard University
Goals of Verifiable Computation

- Provide user with **correctness guarantee**, without requiring her to perform full computation herself.
  - Ideally user will not even maintain a local copy of the data.
  - Checking correctness should be much faster that performing the computation.

- Minimize extra effort required for cloud to provide correctness guarantee.

- Achieve protocols secure against malicious clouds, but lightweight for use in benign settings.
Interactive Proofs

Cloud Provider

Business/Agency/Scientist
Interactive Proofs

Cloud Provider

Data

Business/Agency/Scientist
Interactive Proofs

Cloud Provider

Data

Business/Agency/Scientist

Question

Answer
Interactive Proofs

Cloud Provider

Question
Answer
Challenge
Response

Business/Agency/Scientist

Data
Interactive Proofs

Cloud Provider

Data

Question

Answer

Challenge

Response

Challenge

Response

Business/Agency/Scientist
Interactive Proofs

• Prover $P$ and Verifier $V$.

• $P$ solves problem, tells $V$ the answer.
  • Then $P$ and $V$ have a conversation.
  • $P$’s goal: convince $V$ the answer is correct.

• Requirements:
  • 1. Completeness: an honest $P$ can convince $V$ to accept.
  • 2. Soundness: $V$ will catch a lying $P$ with high probability (secure even if $P$ is computationally unbounded).

Interactive Proofs

- IPs have revolutionized complexity theory in the last 25 years.
  - IP=PSPACE [LFKN90, Shamir90].
  - PCP Theorem e.g. [AS98, ALMSS98]. Hardness of approximation.
  - Zero Knowledge Proofs.

- But IPs have had very little impact in real delegation scenarios.
  - Why?
  - Not due to lack of applications!
Interactive Proofs

- Old Answer: Most results on IPs dealt with hard problems, needed P to be too powerful.
  - But recent constructions focus on “easy” problems (e.g. Interactive Proofs for Muggles [GKR 08]).
  - Allows V to run very quickly, so outsourcing is useful even though problems are “easy”.
  - P does not need “much” more time to prove correctness than she does to just solve the problem!
Interactive Proofs

• Why does GKR not yield a practical protocol out of the box?
  • $P$ has to do a lot of extra bookkeeping (cubic blowup in runtime).
  • Naively, $V$ has to retain the full input.
Streaming : New Application of IPs

- Streaming setting: data passes through $V$ but not stored at $V$; $V$ reads input and can do small amounts of computation as it passes by.

- Streaming problems: hard because $V$ has to read input in one-pass streaming manner, but (might be) easy if $V$ could store the whole input.

- Fits cloud computing well: streaming pass by $V$ can occur while uploading data to cloud.

- $V$ never needs to store entirety of data!
Data Streaming Model

- Stream: $m$ elements from universe of size $n$.
  - e.g., $S = <x_1, x_2, \ldots, x_m> = 3, 5, 3, 7, 5, 4, 8, 7, 5, 4, 8, 6, 3, 2, \ldots$

- Goal: Compute a function of stream, e.g., median, frequency moments, heavy hitters.

- Challenge:
  1. Limited working memory, i.e., sublinear($n,m$).
  2. Sequential access to adversarially ordered data.
One round vs. Many rounds

- Two models:
  1. One message (Non-interactive) [CCM 09/CCMT 12]: After both observe stream, P sends V an email with the answer, and a proof attached. Less interaction; more data sent.
  2. Multiple rounds of interaction [CTY 10]: P and V have a conversation after both observe stream.
Costs in Our Models

- Two main costs: words of communication, and $V$’s working memory.
- Other costs: running time, number of messages.
A Two-Pronged Approach

- First Prong: General purpose implementation to verify arbitrary computation [CMT12, TRMP12, T13].
  - Building on general-purpose GKR protocol.

- Second Prong: Develop highly optimized protocols for specific important problems [CCMT12, CMT10, CTY12, CCGT13].
  - Reporting queries (what value is stored in memory location x of my database?)
  - Matrix multiplication.
  - Graph problems like perfect matching.
  - Certain kinds of linear programs.
  - Etc.
Non-Interactive Protocols with Streaming Verifiers: A Sampling
A general technique

- Arithmetization: Given function $f$ defined on small domain, replace $f$ with its low-degree extension, $\text{LDE}(f)$, as a polynomial defined over a large field.

- Can view $\text{LDE}(f)$ as error-corrected encoding of $f$. Error-correcting properties give $V$ considerable power over $P$.

- If two (boolean) functions differ in one location, their LDE’s will differ in almost all locations.
Second Frequency Moment ($F_2$)

- $F_2$ is a central streaming problem.
  - Captures sample variance, Euclidean norm, data similarity.

- Definition:
  - Let $X$ be the frequency vector of the stream.
  - $F_2(X) = \sum_{i=1}^{n} X_i^2$

Raw data stream over universe \{a, b, c, d\}

\[
\begin{align*}
F_2(X) &= 3^2 + 2^2 + 1^2 = 14
\end{align*}
\]
Second Frequency Moment

- [CCMT 12]: $(\sqrt{n} \text{ comm.}, \sqrt{n} \text{ space})$-protocol for $F_2$.
  - Terabytes of data translate to a few MBs of space and communication.

- Optimal. Lower bound of $W(n)$ on comm. * space.
F₂ Protocol

- Recall: \( F_2(X) = \sum_{i} X_i^2 \)
- View universe \([n]\) as \([\sqrt{n}] \times [\sqrt{n}]\).

Frequency Vector \(X\)

\[
\begin{array}{cccccccc}
0 & 2 & 4 & 0 & 3 & 3 & 0 & 2 & 0 \\
\end{array}
\]

Frequency “Square”

\[
\begin{array}{ccc}
0 & 2 & 4 \\
0 & 3 & 3 \\
0 & 2 & 0 \\
\end{array}
\]
• First idea: Have $P$ send the answer “in pieces”:
  • $F_2$(row 1). $F_2$(row 2). And so on. Requires $\sqrt{n}$ communication.
  
• $V$ exactly tracks a row at random (denoted in yellow) so if $P$ lies about any piece, $V$ has a chance of catching her. Requires space $\sqrt{n}$.

Slide derived from [McGregor 10]
• Problem: If $P$ lies in only one place, $V$ has small chance of catching her.

• What we’d like: if $P$ lies about even one piece, she will have to lie about many.

• Solution: Have $P$ commit (succinctly) to second frequency moment of rows of an error-corrected encoding of the input.

• Note: $V$ can evaluate any row of the low-degree extension encoding in a streaming fashion.
Low-Degree Extension of Frequency Square

These values all lie on a low-degree polynomial

\[ P \text{ sends} \]

\[ 20 = 2^2 + 4^2 \]
\[ 18 = 3^2 + 3^2 \]
\[ 4 = 2^2 \]

\[ 26 = (-1)^2 + (-5)^2 \]
\[ 180 = (-6)^2 + (-12)^2 \]
\[ 610 = (-13)^2 + (-21)^2 \]
F₂ Experiments

Multi-round \( P \) from [CTY11] vs. Non-interactive \( P \) with and without FFT techniques
General Purpose IPs
(Extending GKR)
Circuits, Fields, and All That

F_2 circuit
Interactive Proofs on Circuits

Prover starts the conversation with an answer (output).

$F_2$ circuit
Interactive Proofs on Circuits

Verifier challenges. Prover has to respond with information about the next circuit level.

$F_2$ circuit
Interactive Proofs on Circuits

Challenges continue, layer by layer down to the input.

$F_2$ circuit
Finally, the Prover must say something about the input. The verifier checks the Prover’s final statement about the input, using the right kind of “fingerprint”.
Saving **V** Space and Time [CMT12]

- Saves **V** substantial amounts of space (works for streaming).
- Save **V** substantial amounts of time.
- E.g. when multiplying two 512x512 matrices, **V** requires .12s, while naive matrix multiplication takes .70s.
- Savings for **V** will be much larger at larger input sizes, and for more time-intensive computations.
Minimizing P’s Overhead [CMT12]

- Brought P’s runtime down from $\Omega(S^3)$, to $O(S \log S)$, where $S$ is circuit size.
- Lots of additional engineering.
  - Choosing the “right” finite field to work over.
  - Using the “right” circuits.
  - Etc.
- Practically speaking, still not good enough on its own.
  - 256 x 256 matrix multiplication takes P 27 minutes.
  - Naïve implementation of GKR would take trillions of times longer.
Reducing Overhead Further [T13]

- Improvements for “regular” circuits: Reduce $P$’s runtime to $O(S)$.
  - Experimental results: 250x speedup over [CMT12].
  - $P$ less than 10x slower than a C++ program that just evaluates the circuit for example applications: MatMult, DISTINCT, $F_2$, Pattern Matching, FFTs.
Results for Regular Circuits [T13]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTINCT (n=2^{20})</td>
<td>56.6 minutes</td>
<td>17.2 s</td>
<td>.2 s</td>
<td>236</td>
<td>40.7 KB</td>
<td>1.88 s</td>
</tr>
<tr>
<td>MatMult (512 x 512)</td>
<td>2.7 hours</td>
<td>37.8 s</td>
<td>.1 s</td>
<td>1361</td>
<td>5.4 KB</td>
<td>6.07 s</td>
</tr>
</tbody>
</table>
Dealing with Irregular Circuits [T13]

- No magic bullet for dealing with irregular wiring patterns.
  - Need *some* assumption about the computation being outsourced.
  - Is there structure in real-world computations?
- Yes: Data Parallel computation.
  - Any setting where a sub-computation C is applied to many pieces of data.
  - Make no assumptions about C itself.
  - These are the sort of problems getting outsourced!
Data
Sub-Comp C
Aggregation
Leveraging Parallelism [T13]

- Problem: Verify massive parallel computations.
  - Directly applying existing results has big overhead.
  - Costs depend on number of data pieces.
- Approach: take advantage of parallelism.
  - Reduce V's effort to proportional to size of C.
  - Reduce P's overhead to log size of C.
  - No dependence on number of data pieces.
- Key insight: C may be irregular internally, but the computation is maximally regular between copies of C.
A Final Result: MatMult \([T_{13}]\)

- Let \(A\) be any time \(t\), space \(s\) algorithm for \(n \times n\) MatMult.
- New MatMult protocol:
  - \(P\) takes time \(t + O(n^2)\) and space \(s + o(n^2)\).
  - Optimal runtime up to leading constant assuming no \(O(n^2)\) time algorithm for MatMult.

<table>
<thead>
<tr>
<th>Problem Size</th>
<th>Naïve MatMult Time</th>
<th>Additional P time</th>
<th>V Time</th>
<th>Rounds</th>
<th>Protocol Comm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024 x 1024</td>
<td>2.17 s</td>
<td>0.03 s</td>
<td>0.67 s</td>
<td>11</td>
<td>264 bytes</td>
</tr>
<tr>
<td>2048 x 2048</td>
<td>18.23 s</td>
<td>0.13 s</td>
<td>2.89 s</td>
<td>12</td>
<td>288 bytes</td>
</tr>
</tbody>
</table>
Future Directions

- Build a system that avoids the circuit model.
  - Writing computations as circuits is limiting, can blow up time for verification.
  - Can we design systems that work with general C programs?
    - In theory, mostly yes; currently prover time is impractically large.
  - Can we design systems that work with MapReduce?
- Continue pushing speed, functionality, of current systems
- More room for improvement
- From the big data cloud to small attachable devices.
  - Imagine special purpose high-speed attachable devices for special purposes – e.g., decrypting messages, custom calculations.
    - Special ASICs, or GPUs, or…
  - These devices should be able to verify their work.