Verifying Computations in the Cloud (and Elsewhere)

Michael Mitzenmacher, Harvard University Work offloaded to Justin Thaler, Harvard University

Goals of Verifiable Computation

- Provide user with **correctness guarantee**, without requiring her to perform full computation herself.
 - Ideally user will not even maintain a local copy of the data.
 - Checking correctness should be much faster that performing the computation.
- Minimize extra effort required for cloud to provide correctness guarantee.
- Achieve protocols secure against malicious clouds, but lightweight for use in benign settings.

Business/Agency/Scientist

- Prover **P** and Verifier **V**.
- P solves problem, tells V the answer.
 - Then P and V have a conversation.
 - P's goal: convince V the answer is correct.
- Requirements:
 - 1. Completeness: an honest P can convince V to accept.
 - 2. Soundness: V will catch a lying P with high probability (secure even if P is computationally unbounded).

Source: http://harrypotterfans.blogg.se/2009/december/albus-dumbledore.html

- IPs have revolutionized complexity theory in the last 25 years.
 - IP=PSPACE [LFKN90, Shamir90].
 - PCP Theorem e.g. [AS98, ALMSS98]. Hardness of approximation.
 - Zero Knowledge Proofs.
- But IPs have had very little impact in real delegation scenarios.
 - Why?
 - Not due to lack of applications!

- Old Answer: Most results on IPs dealt with hard problems, needed P to be too powerful.
 - But recent constructions focus on "easy" problems (e.g. Interactive Proofs for Muggles [GKR 08]).
 - Allows V to run **very** quickly, so outsourcing is useful even though problems are "easy".
 - P does not need "much" more time to prove correctness than she does to just solve the problem!

- Why does GKR **not** yield a practical protocol out of the box?
 - P has to do a lot of extra bookkeeping (**cubic** blowup in runtime).
 - Naively, V has to retain the full input.

Streaming : New Application of IPs

- Streaming setting: data passes through V but not stored at V; V reads input and can do small amounts of computation as it passes by.
- Streaming problems: hard because V has to read input in one-pass streaming manner, but (might be) easy if V could store the whole input.
- Fits cloud computing well: streaming pass by V can occur while uploading data to cloud.
- V never needs to store entirety of data!

Data Streaming Model

- Stream: *m* elements from universe of size *n*.
 - e.g., $S = \langle x_1, x_2, \dots, x_m \rangle = 3,5,3,7,5,4,8,7,5,4,8,6,3,2,\dots$
- Goal: Compute a function of stream, e.g., median, frequency moments, heavy hitters.
- Challenge:

(i) Limited working memory, i.e., sublinear(n,m).

(ii) Sequential access to adversarially ordered data.

Slide derived from [McGregor 10]

One round vs. Many rounds

- Two models:
 - One message (Non-interactive) [CCM 09/CCMT 12]: After both observe stream, P sends V an email with the answer, and a proof attached. Less interaction; more data sent.
 - 2. Multiple rounds of interaction [CTY 10]: P and V have a *conversation* after both observe stream.

Costs in Our Models

- Two main costs: words of communication, and V's working memory.
- Other costs: running time, number of messages.

A Two-Pronged Approach

- First Prong: General purpose implementation to verify arbitrary computation [CMT12, TRMP12, T13].
 - Building on general-purpose GKR protocol.
- Second Prong: Develop highly optimized protocols for specific important problems [CCMT12, CMT10, CTY12, CCGT13].
 - Reporting queries (what value is stored in memory location x of my database?)
 - Matrix multiplication.
 - Graph problems like perfect matching.
 - Certain kinds of linear programs.
 - Etc.

Non-Interactive Protocols with Streaming Verifiers: A Sampling

A general technique

- Arithmetization: Given function *f* defined on small domain, replace *f* with its low-degree extension, LDE(*f*), as a polynomial defined over a large field.
- Can view LDE(*f*) as error-corrected encoding of *f*. Errorcorrecting properties give V considerable power over P.
- If two (boolean) functions differ in one location, their LDE's will differ in almost all locations.

Second Frequency Moment (F₂)

- F₂ is a central streaming problem.
 - Captures sample variance, Euclidean norm, data similarity.
- Definition:
 - Let *X* be the frequency vector of the stream.

•
$$F_2(X) = \mathop{a}\limits_{i=1}^n X_i^2$$

Raw data stream over universe {a, b, c, d} **a b a c b a** $F_2(X) = 3^2 + 2^2 + 1^2 = 14$ Frequency Vector X **a b c d**

Second Frequency Moment

- [CCMT 12]: $(\sqrt{n} \text{ comm.}, \sqrt{n} \text{ space})$ -protocol for F_2 .
 - Terabytes of data translate to a few MBs of space and communication.
- Optimal. Lower bound of W(n) on comm. * space.

F₂ Protocol

- Recall: $F_2(X) = \mathop{\text{a}}_{i} X_i^2$
- View universe [n] as $[\sqrt{n}] \ge [\sqrt{n}]$.

Frequency Vector X

- First idea: Have P send the answer "in pieces":
 - $F_2(row 1)$. $F_2(row 2)$. And so on. Requires \sqrt{n} communication.
- V exactly tracks a row at random (denoted in yellow) so if P lies about any piece, V has a chance of catching her. Requires space \sqrt{n} .

Frequency Square

$$0$$
 2
 4
 $20=2^2+4^2$
 0
 3
 3
 $18=3^2+3^2$
 0
 2
 0
 $4=2^2$

Slide derived from [McGregor 10]

- Problem: If **P** lies in only one place, **V** has small chance of catching her.
- What we'd like: if **P** lies about even one piece, she will have to lie about many.
- Solution: Have **P** commit (succinctly) to second frequency moment of rows of an **error-corrected encoding** of the input.
- Note: V can evaluate any row of the low-degree extension encoding in a streaming fashion.

F₂ Experiments

General Purpose IPs (Extending GKR)

Circuits, Fields, and All That

F₂ circuit

F₂ circuit

Verifier challenges.
Prover has to respond with information about the next circuit level.

F₂ circuit

F₂ circuit

Saving V Space and Time [CMT12]

- Saves V substantial amounts of space (works for streaming).
- Save V substantial amounts of time.
- E.g. when multiplying two 512x512 matrices, V requires .12s, while naive matrix multiplication takes .70s.
- Savings for V will be much larger at larger input sizes, and for more time-intensive computations.

Minimizing P's Overhead [CMT12]

- Brought P's runtime down from $\Omega(S^3)$, to O(S log S), where S is circuit size.
- Lots of additional engineering.
 - Choosing the "right" finite field to work over.
 - Using the "right" circuits.
 - Etc.
- Practically speaking, still not good enough on its own.
 - 256 x 256 matrix multiplication takes P 27 minutes.
 - Naïve implementation of GKR would take trillions of times longer.

Reducing Overhead Further [T13]

- Improvements for "regular" circuits: Reduce P's runtime to O(S).
 - Experimental results: 250x speedup over [CMT12].
 - P less than 10x slower than a C++ program that just evaluates the circuit for example applications: MatMult, DISTINCT, F₂, Pattern Matching, FFTs.

Results for Regular Circuits [T13]

Problem	P time [CMT12]	P time [T13]	V time [Both]	Rounds [T13]	Protocol Comm* [T13]	Circuit Eval Time
DISTINCT (n=2 ²⁰)	56.6 minutes	17.2 s	.2 s	236	40.7 KB	1.88 s
MatMult (512 x 512)	2.7 hours	37.8 s	.1 s	1361	5.4 KB	6.07 s

Dealing with Irregular Circuits [T13]

- No magic bullet for dealing with irregular wiring patterns.
 - Need *some* assumption about the computation being outsourced.
 - Is there structure in real-world computations?
- Yes: Data Parallel computation.
 - Any setting where a sub-computation C is applied to many pieces of data.
 - Make no assumptions about C itself.
 - These are the sort of problems getting outsourced!

Leveraging Parallelism [T13]

- Problem: Verify massive parallel computations.
 - Directly applying existing results has big overhead.
 - Costs depend on number of data pieces.
- Approach: take advantage of parallelism.
 - Reduce V's effort to proportional to size of C.
 - Reduce P's overhead to log size of C.
 - No dependence on number of data pieces.
- Key insight: C may be irregular internally, but the computation is maximally regular between copies of C.

A Final Result: MatMult [T13]

- Let A be **any** time t, space s algorithm for n x n MatMult.
- New MatMult protocol:
 - P takes time $t + O(n^2)$ and space $s + o(n^2)$.
 - \bullet Optimal runtime up to leading constant assuming no $\mathrm{O}(n^2)$ time algorithm for MatMult.

Problem Size	Naïve MatMult Time	Additional P time	V Time	Rounds	Protocol Comm
1024 x 1024	2.17 s	0.03 s	0.67 s	11	264 bytes
2048 x 2048	18.23 s	0.13 s	2.89 s	12	288 bytes

Future Directions

- Build a system that avoids the circuit model.
 - Writing computations as circuits is limiting, can blow up time for verification.
 - Can we design systems that work with general C programs?
 - In theory, mostly yes; currently prover time is impractically large.
 - Can we design systems that work with MapReduce?
- Continue pushing speed, functionality, of current systems
 - More room for improvement
- From the big data cloud to small attachable devices.
 - Imagine special purpose high-speed attachable devices for special purposes e.g., decrypting messages, custom calculations.
 - Special ASICs, or GPUs, or...
 - These devices should be able to verify their work.