
Michael Mitzenmacher, Harvard University

Work offloaded to

Justin Thaler, Harvard University

Verifying Computations in the Cloud (and

Elsewhere)

Goals of Verifiable Computation

 Provide user with correctness guarantee, without

requiring her to perform full computation herself.

 Ideally user will not even maintain a local copy of the data.

 Checking correctness should be much faster that performing

the computation.

 Minimize extra effort required for cloud to provide

correctness guarantee.

 Achieve protocols secure against malicious clouds, but

lightweight for use in benign settings.

Cloud Provider Business/Agency/Scientist

Interactive Proofs

Cloud Provider Business/Agency/Scientist

Interactive Proofs

Data

Cloud Provider Business/Agency/Scientist

Interactive Proofs

Question

Data

Answer

Cloud Provider Business/Agency/Scientist

Interactive Proofs

Question

Data

Answer

Challenge

Response

Cloud Provider Business/Agency/Scientist

Interactive Proofs

Question

Data

Answer

Challenge

Response

Challenge

Response

Cloud Provider Business/Agency/Scientist

Interactive Proofs

Question

Data

Answer

Challenge

Response

Challenge

Response

Accept
or

Reject

Interactive Proofs
 Prover P and Verifier V.

 P solves problem, tells V the answer.

 Then P and V have a conversation.

 P’s goal: convince V the answer is correct.

 Requirements:

 1. Completeness: an honest P can convince V
to accept.

 2. Soundness: V will catch a lying P with high
probability (secure even if P is computationally
unbounded).

Source: http://harrypotterfans.blogg.se/2009/december/albus-dumbledore.html

Interactive Proofs

 IPs have revolutionized complexity theory in the last 25

years.

 IP=PSPACE [LFKN90, Shamir90].

 PCP Theorem e.g. [AS98, ALMSS98]. Hardness of

approximation.

 Zero Knowledge Proofs.

 But IPs have had very little impact in real delegation scenarios.

 Why?

 Not due to lack of applications!

Interactive Proofs

 Old Answer: Most results on IPs dealt with hard

problems, needed P to be too powerful.

 But recent constructions focus on “easy” problems

(e.g. Interactive Proofs for Muggles [GKR 08]).

 Allows V to run very quickly, so outsourcing is

useful even though problems are “easy”.

 P does not need “much” more time to prove

correctness than she does to just solve the problem!

Interactive Proofs

 Why does GKR not yield a practical protocol out

of the box?

 P has to do a lot of extra bookkeeping (cubic

blowup in runtime).

 Naively, V has to retain the full input.

Streaming : New Application of IPs
 Streaming setting: data passes through V but not stored at V; V reads input and can do

small amounts of computation as it passes by.

 Streaming problems: hard because V has to read input in one-pass streaming manner, but
(might be) easy if V could store the whole input.

 Fits cloud computing well: streaming pass by V can occur while uploading data to cloud.

 V never needs to store entirety of data!

Data Streaming Model

 Stream: m elements from universe of size n.

 e.g., S=<x1, x2, ... , xm> = 3,5,3,7,5,4,8,7,5,4,8,6,3,2, …

 Goal: Compute a function of stream, e.g., median, frequency moments, heavy

hitters.

 Challenge:

 (i) Limited working memory, i.e., sublinear(n,m).

 (ii) Sequential access to adversarially ordered data.

Slide derived from [McGregor 10]

One round vs. Many rounds

 Two models:

1. One message (Non-interactive) [CCM 09/CCMT 12]: After

both observe stream, P sends V an email with the answer, and a

proof attached. Less interaction; more data sent.

2. Multiple rounds of interaction [CTY 10]: P and V have a

conversation after both observe stream.

Costs in Our Models

 Two main costs: words of communication, and V’s working memory.

 Other costs: running time, number of messages.

A Two-Pronged Approach
 First Prong: General purpose implementation to verify

arbitrary computation [CMT12, TRMP12, T13].

 Building on general-purpose GKR protocol.

 Second Prong: Develop highly optimized protocols for
specific important problems [CCMT12, CMT10, CTY12,
CCGT13].

 Reporting queries (what value is stored in memory location x
of my database?)

 Matrix multiplication.

 Graph problems like perfect matching.

 Certain kinds of linear programs.

 Etc.

Non-Interactive Protocols with Streaming Verifiers:

A Sampling

A general technique

 Arithmetization: Given function f defined on small domain,

replace f with its low-degree extension, LDE(f), as a

polynomial defined over a large field.

 Can view LDE(f) as error-corrected encoding of f. Error-

correcting properties give V considerable power over P.

 If two (boolean) functions differ in one location, their LDE’s

will differ in almost all locations.

Second Frequency Moment (F2)
 F2 is a central streaming problem.

 Captures sample variance, Euclidean norm, data similarity.

 Definition:

 Let X be the frequency vector of the stream

 a

F2 (X) = Xi
2

i=1

n

å

Let X be the frequency vector of the stream.

3 2 1 0

Frequency Vector XRaw data stream over universe {a, b, c, d}

a b c d F2(X) = 32 +22 +12 =14

Second Frequency Moment
 [CCMT 12]: (√n comm., space)-protocol for F2.

 Terabytes of data translate to a few MBs of space and

communication.

 Optimal. Lower bound of Ω(n) on comm. * mem

n n

Optimal. Lower bound of W(n) on comm. * space.

Terabytes of data translate to a few MBs of space

and communication.

F2 Protocol
 Recall: F2(X)=∑i Xi

2

 View universe [n] as [√n] x [√n].

Frequency

“Square”

Recall: F2(X)=	 X 2

i

i

å

View universe [n] as [n] x [n].

Frequency Vector X

0 2 4

0 3 3

0 2 0

0 2 4 0 3 3 0 2 0

 First idea: Have P send the answer “in pieces”:

 F2(row 1). F2(row 2). And so on. Requires √n communication.

 V exactly tracks a row at random (denoted in yellow) so if P lies about

any piece, V has a chance of catching her. Requires space √n.

0

Frequency Square

2 4

0 3 3

0 2 0

P sends

Slide derived from [McGregor 10]

20=22+42

18=32+32

4=22

 Problem: If P lies in only one place, V has small chance of
catching her.

 What we’d like: if P lies about even one piece, she will have to
lie about many.

 Solution: Have P commit (succinctly) to second frequency
moment of rows of an error-corrected encoding of the
input.

 Note: V can evaluate any row of the low-degree extension
encoding in a streaming fashion.

0

Low-Degree Extension

of Frequency Square

2 4

0 3 3

0 2 0

P sends

20=22+42

18=32+32

0 -1 -5

0 -6 -12

0 -13 -21

26=(-1)2+(-5)2

These values

all lie on a

low-degree

polynomial

4=22

180=(-6)2+(-12)2

610=(-13)2+(-21)2

F2 Experiments

Multi-round P from [CTY11] vs. Non-interactive P

with and without FFT techniques

General Purpose IPs

(Extending GKR)

a1 a2 a3 a4

x x x x

+ +

+

Circuits, Fields, and All That

F2 circuit

a1 a2 a3 a4

x x x x

+ +

+

Interactive Proofs on Circuits

F2 circuit

Prover starts the

conversation with

an answer (output).

a1 a2 a3 a4

x x x x

+ +

+

Interactive Proofs on Circuits

F2 circuit

Verifier challenges.

Prover has to respond

with information about

the next circuit level.

a1 a2 a3 a4

x x x x

+ +

+

Interactive Proofs on Circuits

F2 circuit

Challenges continue,

layer by layer down

to the the input.

a1 a2 a3 a4

x x x x

+ +

+

Interactive Proofs on Circuits

F2 circuit

Finally, the Prover

must say something

about the input.
The verifier checks the Prover’s final

statement about the input, using the

right kind of “fingerprint”.

Saving V Space and Time [CMT12]

 Saves V substantial amounts of space (works for streaming).

 Save V substantial amounts of time.

 E.g. when multiplying two 512x512 matrices, V requires .12s, while naive matrix

multiplication takes .70s.

 Savings for V will be much larger at larger input sizes, and for more time-intensive

computations.

Minimizing P’s Overhead [CMT12]

 Brought P’s runtime down from Ω(S3), to O(S log S), where

S is circuit size.

 Lots of additional engineering.

 Choosing the “right” finite field to work over.

 Using the “right” circuits.

 Etc.

 Practically speaking, still not good enough on its own.

 256 x 256 matrix multiplication takes P 27 minutes.

 Naïve implementation of GKR would take trillions of times

longer.

Reducing Overhead Further [T13]

 Improvements for “regular” circuits: Reduce P’s runtime to

O(S).

 Experimental results: 250x speedup over [CMT12].

 P less than 10x slower than a C++ program that just evaluates

the circuit for example applications: MatMult, DISTINCT, F2,

Pattern Matching, FFTs.

Problem P time

[CMT12]

P time

[T13]

V time

[Both]

Rounds

[T13]

Protocol

Comm*

[T13]

Circuit

Eval Time

DISTINCT

(n=220)

56.6

minutes

17.2 s .2 s 236 40.7 KB 1.88 s

MatMult

(512 x 512)

2.7

hours

37.8 s .1 s 1361 5.4 KB 6.07 s

Results for Regular Circuits [T13]

Dealing with Irregular Circuits [T13]

 No magic bullet for dealing with irregular wiring patterns.

 Need some assumption about the computation being outsourced.

 Is there structure in real-world computations?

 Yes: Data Parallel computation.

 Any setting where a sub-computation C is applied to many pieces

of data.

 Make no assumptions about C itself.

 These are the sort of problems getting outsourced!

Data

Sub-

Comp

C

Data

Sub-

Comp

C

Data

Sub-

Comp

C

Data

Sub-

Comp

C

Data

Sub-

Comp

C

Data

Sub-

Comp

C

Aggregation

Leveraging Parallelism [T13]

 Problem: Verify massive parallel computations.

 Directly applying existing results has big overhead.

 Costs depend on number of data pieces.

 Approach: take advantage of parallelism.

 Reduce V's effort to proportional to size of C.

 Reduce P's overhead to log size of C.

 No dependence on number of data pieces.

 Key insight: C may be irregular internally, but the

computation is maximally regular between copies of C.

A Final Result: MatMult [T13]

 Let A be any time t, space s algorithm for n x n MatMult.

 New MatMult protocol:

 P takes time t + O(n2) and space s + o(n2).

 Optimal runtime up to leading constant assuming no O(n2) time

algorithm for MatMult.

 Problem

Size

Naïve

MatMult

Time

Additional

P time

V Time Rounds

Protocol

Comm

1024 x 1024 2.17 s 0.03 s 0.67 s 11 264 bytes

2048 x 2048 18.23 s 0.13 s 2.89 s 12 288 bytes

Future Directions
 Build a system that avoids the circuit model.

 Writing computations as circuits is limiting, can blow up time for verification.
 Can we design systems that work with general C programs?

 In theory, mostly yes; currently prover time is impractically large.

 Can we design systems that work with MapReduce?

 Continue pushing speed, functionality, of current systems
 More room for improvement

 From the big data cloud to small attachable devices.
 Imagine special purpose high-speed attachable devices for special purposes – e.g., decrypting

messages, custom calculations.
 Special ASICs, or GPUs, or…

 These devices should be able to verify their work.

