
OPUS GroupLES | DI |PUC-Rio - Brazil

Why Developers Overlook

Architecture Degradation Symptoms?

Alessandro Garcia

SEIF Workshop 2013
Rio de Janeiro

Software has an “architecture” too!

November 13 2

How to achieve good architectures?

November 25 3

Loosely coupled
components

Simple
interfaces

Component addresses a
single concern

Keep it simple!

It does not matter...

... if the intended architecture is well defined:

but...

November 13 4

... but the program is not compliant to it!

The actual architecture is in the source code:

November 13 5

Software Architecture Degradation is…

� continuous quality decay of architecture design

� evolving systems: changes are made everyday

Architecture software degradation ...

Memory manager component - Linux

November 13 7

... Why do we care?

Taylor, R. et al. Software Architecture: Foundations, Theory and Practice. Wiley Publishing. 2009

Nenad Medvidović. When, Where, and Why Do Software Systems Architectures Decay? March 2013.

Why do we care?

Actual architecture - iRODS

November 13 8

violations of the
intended architecture

Taylor, R. et al. Software Architecture: Foundations, Theory and Practice. Wiley Publishing. 2009

Nenad Medvidović. When, Where, and Why Do Software Systems Architectures Decay? March 2013.

Why do we care?

� Hadoop

November 13 9

Why do we care?

Actual architecture - Hadoop

November 13 10
Nenad Medvidović. When, Where, and Why Do Software Systems Architectures Decay? March 2013.

Intended architecture of a software system

November 13 11

� … defines how developers actually communicate and work

on the system’s “building blocks”

Actual architecture of the same…

November 13 12

… software system

Architectural Erosion

November 13 13

Actual architecture
in the program

Intended

architecture

Architectural Erosion

November 13 14

Actual architecture
in the program

Intended

architecture

Architectural Drift

November 13 15

Intended

architecture

No dependency
violation!

Unused interface

Scattered parasitic functionality

Ambiguous interface

Connector envy

Bloated interface

Concern
overload

Drift often manifest as code anomalies…

November 13 16

… God Classes,

Feature Envies,

… and many other program anomalies

Why do we care?

� Netscape, Mozilla, EJB, FindBugs and ArgoUML

� several years of production

� These projects involved US$ millions

� ... millions and millions of users in many countries

� ... dozens of developers

� Degradation affects several software domains:

� Health care, mobile applications, banking, finantial

market analysis, ...

November 13 17

Recent Advances...

� Architecture recovery techniques

� Recovery of actual architectures from source code

� Drift detection in actual architectures

� Metrics-based strategies for programs

� Erosion detection

� Use of DSLs to descrive and check architecture rules

November 13 18

Architecture Recovery techniques are…

� … useless to support detection of architectural

problems in the program in these cases

� they retrieve components, which do not correspond

to actual components

� reason: intended software architecture is already diffused;

packages do not match architectural components

� they do not retrieve enough information: interfaces,

dependencies, etc…

� reason: intended software architecture is already diffused

November 13 19

Recent Advances...

� Architecture recovery techniques

� Recovery of actual architectures from source code

� Erosion detection in source code

� DSLs to describe (and check) anti-erosion rules

� Drift detection in source code

� DSLs to describe (and check) anti-drift rules

� Metrics-based strategies

November 13 20

Existing Anti-Degradation Techniques

… supports either drift- OR erosion-prevention rules

... for different program languages

...

Anti-Erosion and Anti-Drift Rules

November 25 22

Anti-Erosion
Rules

ArchitecturalConcept Action { parent AbsAppAction}

ArchitecturalConcept Engine { suffix Engine }
...

Architectural
Mapping

Anti-Drift
Rules

GodClass {

Coupling > 7

Cohesion, TopValues(25%)

MethodComplexity, TopValues(25%)

}

Bloated Interfaces, Ambiguous Interfaces

Why Developers Overlook …

… Architecture Degradation Symptoms?

November 25 23

Why Developers Overlook …

… Architecture Degradation Symptoms?

November 25 24

Detection
Effort

Detection
Accuracy

Empirical Methods

� Exploratory quantitative studies

� 7 software projects, such as:

� PDP – Company X

� Platform for financial market analysis – Company Y

� OODT – NASA/Apache

� MIDAS – Bosch

� Logistics Framework – Company Z

� Case studies (in situ)

� 7 software projects in the same domain

� Observations, questionaries and interviews with architects

and developers

November 13 25

Why Developers Overlook …

… Architecture Degradation Symptoms?

November 25 26

7 Lessons Learned

Why Developers Overlook …

… Architecture Degradation Symptoms?

November 25 27

Detection
Effort

Detection
Accuracy

Downstream Analysis

Architecture problems and code anomalies were

related in

28

>80%

DATA
BUSINESSDATA GUI

Upstream Analysis

Lack of ranking support

29

DATA
BUSINESSDATA GUI

Too many DRIFT candidates to inspect...

November 13 30

... detect
thousands of code anomalies

But many irrelevant code anomalies

� Upstream Analysis

31

0

10

20

30

40

50

60

70

80

90

100

HW MM PDP MIDAS

Irrelevant

Relevant

Detection
Accuracy

Architectural Relevance of Code Anomalies

32

<<subsystem>>

<<subsystem>>

GUI

Business
HWFacade

Symptom

Complaint

Employee

<<subsystem>>

public class HWFacade{

public void updateComplaint(..){..}

public Complaint searchComplaint(..){..}

public void insertComplaint(..){..}

public void insertEmployee(..){..}

public Employee searchEmployee(..){..}

public void updateEmployee(..){..}

public void insertSymptom(..){..}

public Symptom searchSymptom(..){..}

public void updateSymptom(..){..}

...

}

<<subsystem>>

DATA

EmployeeArray

<<subsystem>>

public class ComplaintRepo{

...

public int insert(..){..}

public void update(..){..}

public int getIndex(..){..}

public boolean exists(..){..}

public Complaint search(..){..}

public void reset(..){..}

public Object next(..){..}

public void remove(..){..}

public List getList(..){..}

public boolean hasNext(..){..}

public void updateTimestamp(..){..}

public int searchTimestamp(..){..}

...

}

Repository

Factory
ArrayRepository

ComplaintRepo

7 Lessons – Why Developers Overlook ...

... Architecture Degradation Symptoms?

1. Lack of prioritization support

November 13 33

Studying prioritization models

34

� Which other characteristics could be explored for

detecting architecturally-relevant code anomalies ?

� Change density

� Error density

� Anomaly density

� Code anomaly type

� Etc...

���� Roberta Arcoverde et al – RSSE/ICSE 2012: Automatically Detecting Architecturally-Relevant
Code Anomalies

���� Roberta Arcoverde et al – SBES 2013: Prioritization of Code Anomalies Based on

Architecture Sensitiveness. SBES'13) Brasília, Brazil, September 2013.

Prioritization heuristics

35

System # of Ranked CE Arch. Relevant %

HW 14 10 71%

MM 10 7 70%

PDP 10 10 100%

Change

density

Error

density

System # of Ranked CE Arch. Relevant %

HW 14 12 85%

MM 10 8 70%

PDP 10 8 70%

System # of Ranked CE Arch. Relevant %

HW 10 7 60%

MM 10 9 70%

PDP 10 8 70%

MIDAS 10 6 90%

Anomaly

density

7 Lessons – Why Developers Overlook ...

... Architecture Degradation Symptoms?

1. Lack of prioritization support

2. There is no ‘universal’ prioritization model

3. Prioritization models: satisfactory results too late

November 13 36

Prioritization heuristics

37

System # of Ranked CE Arch. Relevant %

HW 14 10 71%

MM 10 7 70%

PDP 10 10 100%

Change

density

Error

density

System # of Ranked CE Arch. Relevant %

HW 14 12 85%

MM 10 8 70%

PDP 10 8 70%

System # of Ranked CE Arch. Relevant %

HW 10 7 60%

MM 10 9 70%

PDP 10 8 70%

MIDAS 10 6 90%

Anomaly

density

Version 12

Version 9

Version 10

Earliness of Anomaly

38

18%
Of all architecturally-relevant

code anomalies were identified

as
early anomalies

� Early anomalies often appear in the 1st version

Earliness of Architectural Problems

� Early anomalies often appear in the 1st version

39

18%
Of all architecturally-relevant code

anomalies were introduced as

early

40%
Related to almost

architectural
problems

of all the

Example

November 25 40

Business

HWFacade

Symptom

public class HWFacade{

public void updateComplaint(..){..}

public Complaint searchComplaint(..){..}

public void insertComplaint(..){..}

public void insertEmployee(..){..}

public Employee searchEmployee(..){..}

public void updateEmployee(..){..}

...

}

� 1st version

CBC = 7

Example: fixing here is expensive

November 25 41

� Version 10

<<subsystem>>

GUI

Business
HWFacade

Symptom

Complaint

Employee

public class HWFacade{

public void updateComplaint(..){..}

public Complaint searchComplaint(..){..}

public void insertComplaint(..){..}

public void insertEmployee(..){..}

public Employee searchEmployee(..){..}

public void updateEmployee(..){..}

public void insertSymptom(..){..}

public Symptom searchSymptom(..){..}

public void updateSymptom(..){..}

...

}

<<subsystem>>

Distribution

<<subsystem>>

Priorization Heuristics: conclusions

� Heuristics proposed were able to correctly outline

architecturally-relevant anomalies

� Ranked elements were architecturally relevant in 75%-85%

average

� Anomaly density heuristic presented very good results

� Code modules infected by multiple code anomalies were

often related to architectural problems

� Identification of code anomaly patterns

� Mapping-based prioritization was even better

� … but there is a cost involved to produce and maintain these

architecture-code mappings

42

7 Lessons – Why Developers Overlook ...

... Architecture Degradation Symptoms?

1. Lack of prioritization support

2. There is no ‘universal’ prioritization model

3. Prioritization: satisfactory results too late

4. Critical code anomalies are often introduced early

November 13 43

What about Upfront Detection?

� 2nd stage - Case studies (in situ): 7 software projects

Observations, questionaries and interviews
November 13 44

... when developers write their own architectural rules?

Empirical Methods

� 1st Stage - Exploratory quantitative studies

� 7 software projects, such as:

� PDP – Radix Engenharia

� Platform for financial market analysis – Minds@Work

� OODT – NASA/Apache

� MIDAS – Bosch

� Logistics Framework – Petrobras/PUC-Rio

� Case studies (in situ)

� 1 case study: accuracy vs. effort

� 6 software projects in the same domain: reuse of rules

� Observations, questionaries and interviews with architects

and developers

November 13 45

Why Developers Overlook …

… Architecture Degradation Symptoms?

November 25 46

Overall
Effort

Detection
Accuracy

Rule

Description

Architecture

Problem Detection

Architectural

Mapping

What about Upfront Detection?

� Exploratory quantitative studies

� 7 software projects, such as:

� PDP – Radix Engenharia

� Platform for financial market analysis – Minds@Work

� OODT – NASA/Apache

� MIDAS – Bosch

� Logistics Framework – Petrobras/PUC-Rio

� Comparison:

Specification and Detection of Architectural Rules

vs.

Code Inspection

November 13 47

EffortAccuracy

What about Upfront Detection?

November 13 48

EffortAccuracy

Architectural
Rules

Code
Inspection

85%.. 95%

85%.. 95%

(... but a few ‘universal’ drift

rules could be reused)

False positives were related to ...

...the nature of multiparadigm of software

projects

November 25 49

What about Upfront Detection?

November 13 50

Overall
Effort

Accuracy

Architectural
Rules

Code
Inspection

90%.. 100%

90%.. 100%

(per subsystem)

22 hours

16 hours

-37,5%

Effort is Too High

Strategy
Configuration

(hour)

Detection

(hour)

Total

(hour)

Code inspection 0 16 16
Architectural

rules
20 2 22

Architectural

Mapping

(hour)

Rules

Tailoring

(hour)

Total (hour)

Architectural

rules 12 8 20

Configuration
Effort

(per subsystem)

(anti-drift rules)

Reuse to pay off the upfront effort?

� Reuse of architectural rules

November 25 52

Architeture

Rules

System 2

System 3

System 7

Family of 7 Systems

Same ‘Architecture Reference’

Same Company, Practices, Frameworks

Architeture

Rules

System 1

Same Domain:

Financial Market Analysis

7 Lessons – Why Developers Overlook ...

... Architecture Degradation Symptoms?

1. Lack of prioritization support

2. There is no ‘universal’ prioritization model

3. Prioritization models tend to yield satisfactory results too late

4. Critical code anomalies are often introduced early

5. Effort on upfront detection is costly or prohibitive

6. False negatives in multi-paradigm software projects

7. Reuse of anti-drift rules are hard

November 13 53

Possible solutions

� Better support for reuse of architectural rules

� Per concerns in a domain

� Our initial results are promising

� Synthesizing code anomalies -> architectural

problems

� Further study degradation symptoms in multi-

paradigm projects

� Exploit informal architectural blueprints to

improve static analysis and early detection

November 13 54

The Opus Team and Collaborators

Examples of Collaborators...

TU Darmstadt
Germany

USC
USA

OPUS GroupLES | DI |PUC-Rio - Brazil

Why Developers Overlook

Architecture Degradation Symptoms?

Alessandro Garcia

SEIF Workshop 2013
Rio de Janeiro

