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How are we doing?

Are we there yet?

Where shall we go 
next?



How Are We Doing?
A Short History of Debugging



The Birth of 
Debugging

First reference to software errors 
Your guess?

???

2013



The Birth of Debugging

• Software errors mentioned in Ada Byron's 
notes on Charles Babbage's analytical engine

• Several uses of the term bug to indicate 
defects in computers and software

• First actual bug and actual debugging
(Admiral Grace Hopper’s associates working 
on Mark II Computer at Harvard University)

1840

2013

1843
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The Birth of Debugging

• Software errors mentioned in Ada Byron's 
notes on Charles Babbage's analytical engine

• Several uses of the term bug to indicate 
defects in computers and software

• First actual bug and actual debugging
(Admiral Grace Hopper’s associates working 
on Mark II Computer at Harvard University)
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Symbolic Debugging

• UNIVAC 1100’s FLIT
(Fault Location by Interpretive Testing)

• Richard Stallman’s GDB

• DDD

• ...
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Symbolic Debugging

• UNIVAC 1100’s FLIT
(Fault Location by Interpretive Testing)

• GDB

• DDD

• ...
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Symbolic Debugging

• UNIVAC 1100’s FLIT
(Fault Location by Interpretive Testing)
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• DDD
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Symbolic Debugging

• UNIVAC 1100’s FLIT
(Fault Location by Interpretive Testing)

• GDB

• DDD

• ...
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Program Slicing

• Intuition: developers “slice” backwards 
when debugging

• Weiser’s breakthrough paper

• Korel and Laski’s dynamic slicing

• Agrawal

• Ko’s Whyline

1960

2013

1981
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   mid() {
    int x,y,z,m;
1:  read(“Enter 3 numbers:”,x,y,z);
2:  m = z;
3:  if (y<z)
4:	
 if (x<y)
5:	
 	
 m = y;
6:	
 else if (x<z)
7:	
 	
 m = y; // bug
8:  else
9:	
 if (x>y)
10:	
 	
 m = y;
11:	
 else if (x>z)
12:	
 	
 m = x;
13: print(“Middle number is:”, m);
   }

Static Slicing Example
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Program Slicing

• Intuition: developers “slice” backwards 
when debugging

• Weiser’s breakthrough paper

• Korel and Laski’s dynamic slicing

• Agrawal

• Ko’s Whyline
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   mid() {
    int x,y,z,m;
1:  read(“Enter 3 numbers:”,x,y,z);
2:  m = z;
3:  if (y<z)
4:	
 if (x<y)
5:	
 	
 m = y;
6:	
 else if (x<z)
7:	
 	
 m = y; // bug
8:  else
9:	
 if (x>y)
10:	
 	
 m = y;
11:	
 else if (x>z)
12:	
 	
 m = x;
13: print(“Middle number is:”, m);
   }

Dynamic Slicing Example



   mid() {
    int x,y,z,m;
1:  read(“Enter 3 numbers:”,x,y,z);
2:  m = z;
3:  if (y<z)
4:	
 if (x<y)
5:	
 	
 m = y;
6:	
 else if (x<z)
7:	
 	
 m = y; // bug
8:  else
9:	
 if (x>y)
10:	
 	
 m = y;
11:	
 else if (x>z)
12:	
 	
 m = x;
13: print(“Middle number is:”, m);
   }

Dynamic Slicing Example
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   mid() {
    int x,y,z,m;
1:  read(“Enter 3 numbers:”,x,y,z);
2:  m = z;
3:  if (y<z)
4:	
 if (x<y)
5:	
 	
 m = y;
6:	
 else if (x<z)
7:	
 	
 m = y; // bug
8:  else
9:	
 if (x>y)
10:	
 	
 m = y;
11:	
 else if (x>z)
12:	
 	
 m = x;
13: print(“Middle number is:”, m);
   }

Dynamic Slicing Example
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Program Slicing

• Intuition: developers “slice” backwards 
when debugging

• Weiser’s breakthrough paper

• Korel and Laski’s dynamic slicing

• Agrawal

• Ko’s Whyline
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• Intuition: developers “slice” backwards 
when debugging

• Weiser’s breakthrough paper

• Korel and Laski’s dynamic slicing

• Agrawal

• Ko’s Whyline

Program Slicing
1960

2013

2008



Delta Debugging

• Intuition: it’s all about differences!

• Isolates failure causes automatically

• Zeller’s “Yesterday, My Program Worked. 
Today, It Does Not. Why?”

•

1960

2013

1999



Delta Debugging

• Intuition: it’s all about differences!

• Isolates failure causes automatically

• Zeller’s “Yesterday, My Program Worked. 
Today, It Does Not. Why?”

• Applied in several contexts

•
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Statistical Debugging

• Intuition: debugging techniques can 
leverage multiple executions

• Tarantula

• Liblit’s CBI

• Many others!
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Tarantula

   mid() {
    int x,y,z,m;
1:  read(“Enter 3 numbers:”,x,y,z);
2:  m = z;
3:  if (y<z)
4:	
 if (x<y)
5:	
 	
 m = y;
6:	
 else if (x<z)
7:	
 	
 m = y; // bug
8:  else
9:	
 if (x>y)
10:	
 	
 m = y;
11:	
 else if (x>z)
12:	
 	
 m = x;
13: print(“Middle number is:”, m);
   }
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Statistical Debugging

• Intuition: debugging techniques can 
leverage multiple executions

• Tarantula

• Liblit’s CBI

• Many others!
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Statistical Debugging

• Intuition: debugging techniques can 
leverage multiple executions

• Tarantula

• CBI

• Many others!
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Statistical Debugging

• Intuition: debugging techniques can 
leverage multiple executions

• Tarantula

• CBI

• Ochiai

• Many others!
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Statistical Debugging

• Intuition: debugging techniques can 
leverage multiple executions

• Tarantula

• CBI

• Ochiai

• Causal inference based

• Many others!
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Statistical Debugging

• Intuition: debugging techniques can 
leverage multiple executions

• Tarantula

• CBI

• Ochiai

• Causal inference based

• Many others!

1960

2013

...

Workflow integration:

Tarantula, GZoltar, 

EzUnit, ...
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Formula-based Debugging 
(AKA Failure Explanation)

• Intuition: executions can be expressed as 
formulas that we can reason about

• Darwin

• Cause Clue Clauses

• Error invariants

•

1960

2009



Assertion A

Input I Formula

Input = I∧

c1 ∧ c2 ∧ c3 ∧ ...∧

... ∧ cn-2∧cn-1∧ cn∧

A

1

2

3

unsatisfiable

{ ci }

MAX-SAT
Complement
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Formula-based Debugging 
(AKA Failure Explanation)

• Intuition: executions can be expressed as 
formulas that we can reason about

• Darwin

• Cause Clue Clauses

• Error invariants

•

1960

2009



Formula-based Debugging 
(AKA Failure Explanation)

• Intuition: executions can be expressed as 
formulas that we can reason about

• Darwin

• Bug Assist

• Error invariants

•

1960

2011

2013



Formula-based Debugging 
(AKA Failure Explanation)

• Intuition: executions can be expressed as 
formulas that we can reason about

• Darwin

• Bug Assist

• Error invariants
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Formula-based Debugging 
(AKA Failure Explanation)

• Intuition: executions can be expressed as 
formulas that we can reason about

• Darwin

• Bug Assist

• Error invariants

• Angelic debugging

1960

2011

2013



Additional Techniques
• Contracts (e.g., Meyer et al.)

• Counterexample-based (e.g., Groce et al., Ball et al.)

• Tainting-based (e.g., Leek et al.)

• Debugging of field failures (e.g., Jin et al.)

• Predicate switching (e.g., Zhang et al.)

• Fault localization for multiple faults (e.g., Steimann et al.)

• Debugging of concurrency failures (e.g., Park et al.)

• Automated data structure repair (e.g., Rinard et al.)

• Finding patches with genetic programming

• Domain specific fixes
(tests, web pages, comments, concurrency)

• Identifying workarounds/recovery strategies (e.g., Gorla et al.)

• Formula based debugging (e.g., Jose et al., Ermis et al.)

• ...

1960

2013

Not meant to be comprehensive!



Are We There Yet?
Can We Debug at the Push of a Button?



Automated Debugging
(rank based)

…"

1)"

2)"

3)"

4)"

Here$is$a$list$of$
places$to$check$out$ Ok,$I$will$check$out$

your$sugges3ons$
one$by$one.$



Automated Debugging
Conceptual Model

…"

1)"

2)"

3)"

4)"

✔
✔
✔

Found&the&bug!&
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Mission Accomplished?

100 LOC ➡ 10 LOC

Best result: fault in 10% of the code.
Great, but...

10,000 LOC ➡ 1,000 LOC

100,000 LOC ➡ 10,000 LOC



Mission Accomplished?

100 LOC ➡ 10 LOC

Best result: fault in 10% of the code.
Great, but...

10,000 LOC ➡ 1,000 LOC

100,000 LOC ➡ 10,000 LOC
Moreover, strong assumptions



Assumption #1: Programmers 
exhibit perfect bug understanding

Do you see a bug?



Assumption #2: Programmers inspect 
a list linearly and exhaustively

Good for comparison, 
but is it realistic?



Assumption #2: Programmers inspect 
a list linearly and exhaustively

Good for comparison, 
but is it realistic?

Does the conceptual model make sense?

Have we really evaluated it?



Where Shall We Go Next?
Are We Headed in the Right Direction?

AKA: “Are Automated Debugging Techniques 
Actually Helping Programmers?” ISSTA 2011
Chris Parnin and Alessandro Orso



What do we know 
about automated 

Studies on tools Human studies



What do we know 
about automated 

Studies on tools Human studies

Let’s&see…&
Over&50&years&of&research&
on&automated&debugging.&

1962.&Symbolic&Debugging&(UNIVAC&FLIT)&

1981.%Weiser.%Program%Slicing%

1999.$Delta$Debugging$

2001.%Sta)s)cal%Debugging%



What do we know 
about automated 

Studies on tools

Human studies

Weiser
Kusumoto
Sherwood
Ko
DeLine



• What if we gave developers a ranked list of 
statements?

• How would they use it?

• Would they easily see the bug in the list?

• Would ranking make a difference?

Are these Techniques and Tools 
Actually Helping Programmers?



Hypotheses

H1: Programmers who use automated debugging 
tools will locate bugs faster than programmers 
who do not use such tools

H2: Effectiveness of automated tools increases 
with the level of difficulty of the debugging task

H3: Effectiveness of debugging with automated 
tools is affected by the faulty statement’s rank



Research Questions
RQ1: How do developers navigate a list of statements 
ranked by suspiciousness? In order of suspiciousness 
or jumping from one statement to the other?

RQ2: Does perfect bug understanding exist? How 
much effort is involved in inspecting and assessing 
potentially faulty statements?

RQ3: What are the challenges involved in using 
automated debugging tools effectively? Can 
unexpected, emerging strategies be observed?



Participants:
34 developers
MS’s Students
Different levels of expertise
(low, medium, high)

Experimental Protocol: 
Setup

…"

1)"

2)"

3)"

4)"

✔
✔
✔



Tools
•Rank-based tool

(Eclipse plug-in, logging)
•Eclipse debugger

Experimental Protocol: 
Setup

…"

1)"

2)"

3)"

4)"

✔
✔
✔



Software subjects:
•Tetris (~2.5KLOC)
•NanoXML (~4.5KLOC)

Experimental Protocol: 
Setup

…"

1)"

2)"

3)"

4)"

✔
✔
✔



Tetris Bug

(Easier)



NanoXML Bug

(Harder)



Software subjects:
•Tetris (~2.5KLOC)
•NanoXML (~4.5KLOC)

Experimental Protocol: 
Setup

…"

1)"

2)"

3)"

4)"

✔
✔
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Tasks:
•Fault in Tetris
•Fault in NanoXML
•30 minutes per task
•Questionnaire at the end

Experimental Protocol: 
Setup

…"

1)"

2)"

3)"

4)"

✔
✔
✔



Experimental Protocol: 
Studies and Groups



Experimental Protocol: 
Studies and Groups

A! B!

Study 1



Experimental Protocol: 
Studies and Groups

Study 2
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Study Results
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Findings: Hypotheses
H1: Programmers who use automated debugging tools will locate 
bugs faster than programmers who do not use such tools

Experts are faster when using the tool ➡ Support for H1 (with caveats)

H2: Effectiveness of automated tools increases with the level of 
difficulty of the debugging task

The tool did not help harder tasks ➡ No support for H2

H3: Effectiveness of debugging with automated tools is affected by 
the faulty statement’s rank

Changes in rank have no significant effects ➡ No support for H3



Findings: RQs
RQ1: How do developers navigate a list of statements ranked by 
suspiciousness? In order of suspiciousness or jumping b/w stmts?
Programmers do not visit each statement in the list, they search
RQ2: Does perfect bug understanding exist? How much effort is 
involved in inspecting and assessing potentially faulty statements?
Perfect bug understanding is generally not a realistic assumption
RQ3: What are the challenges involved in using automated debugging 
tools effectively? Can unexpected, emerging strategies be observed?
1) The statements in the list were sometimes useful as starting points
2) (Tetris) Several participants preferred to search based on intuition
3) (NanoXML) Several participants gave up on the tool after 
investigating too many false positives



Research Implications
• Percentages will not cut it (e.g., 1.8% == 83rd position)

➡ Implication 1: Techniques should focus on improving 
absolute rank rather than percentage rank

• Ranking can be successfully combined with search
➡ Implication 2: Future tools may focus on searching through 
(or automatically highlighting) certain suspicious statements

• Developers want explanations, not recommendations
➡ Implication 3: We should move away from pure ranking and 
define techniques that provide context and ability to explore

• We must grow the ecosystem
➡ Implication 4: We should aim to create an ecosystem that 
provides the entire tool chain for fault localization, including 
managing and orchestrating test cases



• We came a long way since the early days of debugging

• There is still a long way to go...

In Summary

...



Where Shall We Go Next
•Hybrid, semi-automated fault localization techniques
•Debugging of field failures (with limited information)
•Failure understanding and explanation
•(Semi-)automated repair and workarounds

•User studies, user studies, user studies! 
(true also for other areas)
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