
Automated Debugging:
Are We There Yet?

Alessandro (Alex) Orso
School of Computer Science – College of Computing

Georgia Institute of Technology
http://www.cc.gatech.edu/~orso/

Partially supported by: NSF, IBM, and MSR

http://www.cc.gatech.edu/~orso/
http://www.cc.gatech.edu/~orso/

Automated Debugging:
Are We There Yet?

Alessandro (Alex) Orso
School of Computer Science – College of Computing

Georgia Institute of Technology
http://www.cc.gatech.edu/~orso/

Partially supported by: NSF, IBM, and MSR

http://www.cc.gatech.edu/~orso/
http://www.cc.gatech.edu/~orso/

How are we doing?

Are we there yet?

Where shall we go
next?

How Are We Doing?
A Short History of Debugging

The Birth of
Debugging

First reference to software errors
Your guess?

???

2013

The Birth of Debugging

• Software errors mentioned in Ada Byron's
notes on Charles Babbage's analytical engine

• Several uses of the term bug to indicate
defects in computers and software

• First actual bug and actual debugging
(Admiral Grace Hopper’s associates working
on Mark II Computer at Harvard University)

1840

2013

1843

The Birth of Debugging

• Software errors mentioned in Ada Byron's
notes on Charles Babbage's analytical engine

• Several uses of the term bug to indicate
defects in computers and software

• First actual bug and actual debugging
(Admiral Grace Hopper’s associates working
on Mark II Computer at Harvard University)

1840

2013

...

1940

The Birth of Debugging

• Software errors mentioned in Ada Byron's
notes on Charles Babbage's analytical engine

• Several uses of the term bug to indicate
defects in computers and software

• First actual bug and actual debugging
(Admiral Grace Hopper’s associates working
on Mark II Computer at Harvard University)

1840

2013

1947

Symbolic Debugging

• UNIVAC 1100’s FLIT
(Fault Location by Interpretive Testing)

• Richard Stallman’s GDB

• DDD

• ...

1840

2013

1962

Symbolic Debugging

• UNIVAC 1100’s FLIT
(Fault Location by Interpretive Testing)

• GDB

• DDD

• ...

1840

2013

1986

Symbolic Debugging

• UNIVAC 1100’s FLIT
(Fault Location by Interpretive Testing)

• GDB

• DDD

• ...

1840

2013

1996

Symbolic Debugging

• UNIVAC 1100’s FLIT
(Fault Location by Interpretive Testing)

• GDB

• DDD

• ...

1840

2013

1996

Program Slicing

• Intuition: developers “slice” backwards
when debugging

• Weiser’s breakthrough paper

• Korel and Laski’s dynamic slicing

• Agrawal

• Ko’s Whyline

1960

2013

1981

Program Slicing

• Intuition: developers “slice” backwards
when debugging

• Weiser’s breakthrough paper

• Korel and Laski’s dynamic slicing

• Agrawal

• Ko’s Whyline

1960

2013

1981

 mid() {
 int x,y,z,m;
1: read(“Enter 3 numbers:”,x,y,z);
2: m = z;
3: if (y<z)
4:	
 if (x<y)
5:	
 	
 m = y;
6:	
 else if (x<z)
7:	
 	
 m = y; // bug
8: else
9:	
 if (x>y)
10:	
 	
 m = y;
11:	
 else if (x>z)
12:	
 	
 m = x;
13: print(“Middle number is:”, m);
 }

Static Slicing Example

Program Slicing

• Intuition: developers “slice” backwards
when debugging

• Weiser’s breakthrough paper

• Korel and Laski’s dynamic slicing

• Agrawal

• Ko’s Whyline

1960

2013

1981

Program Slicing

• Intuition: developers “slice” backwards
when debugging

• Weiser’s breakthrough paper

• Korel and Laski’s dynamic slicing

• Agrawal

• Ko’s Whyline

1960

2013

1988
1993

 mid() {
 int x,y,z,m;
1: read(“Enter 3 numbers:”,x,y,z);
2: m = z;
3: if (y<z)
4:	
 if (x<y)
5:	
 	
 m = y;
6:	
 else if (x<z)
7:	
 	
 m = y; // bug
8: else
9:	
 if (x>y)
10:	
 	
 m = y;
11:	
 else if (x>z)
12:	
 	
 m = x;
13: print(“Middle number is:”, m);
 }

Dynamic Slicing Example

 mid() {
 int x,y,z,m;
1: read(“Enter 3 numbers:”,x,y,z);
2: m = z;
3: if (y<z)
4:	
 if (x<y)
5:	
 	
 m = y;
6:	
 else if (x<z)
7:	
 	
 m = y; // bug
8: else
9:	
 if (x>y)
10:	
 	
 m = y;
11:	
 else if (x>z)
12:	
 	
 m = x;
13: print(“Middle number is:”, m);
 }

Dynamic Slicing Example

3,
3,

5

1,
2,

3

3,
2,

1

5,
5,

5

5,
3,

4

2,
1,

3

P P P P P F

•
•
•
•

•
•

•

•
•
•
•
•

•

•
•
•

•
•
•

•

•
•
•

•
•

•

•

•
•
•
•

•

•

•
•
•
•

•
•

•

Test Cases

Pass/Fail

 mid() {
 int x,y,z,m;
1: read(“Enter 3 numbers:”,x,y,z);
2: m = z;
3: if (y<z)
4:	
 if (x<y)
5:	
 	
 m = y;
6:	
 else if (x<z)
7:	
 	
 m = y; // bug
8: else
9:	
 if (x>y)
10:	
 	
 m = y;
11:	
 else if (x>z)
12:	
 	
 m = x;
13: print(“Middle number is:”, m);
 }

Dynamic Slicing Example

3,
3,

5

1,
2,

3

3,
2,

1

5,
5,

5

5,
3,

4

2,
1,

3

P P P P P F

•
•
•
•

•
•

•

•
•
•
•
•

•

•
•
•

•
•
•

•

•
•
•

•
•

•

•

•
•
•
•

•

•

•
•
•
•

•
•

•

Test Cases

Pass/Fail

Program Slicing

• Intuition: developers “slice” backwards
when debugging

• Weiser’s breakthrough paper

• Korel and Laski’s dynamic slicing

• Agrawal

• Ko’s Whyline

1960

2013

1988
1993

• Intuition: developers “slice” backwards
when debugging

• Weiser’s breakthrough paper

• Korel and Laski’s dynamic slicing

• Agrawal

• Ko’s Whyline

Program Slicing
1960

2013

2008

Delta Debugging

• Intuition: it’s all about differences!

• Isolates failure causes automatically

• Zeller’s “Yesterday, My Program Worked.
Today, It Does Not. Why?”

•

1960

2013

1999

Delta Debugging

• Intuition: it’s all about differences!

• Isolates failure causes automatically

• Zeller’s “Yesterday, My Program Worked.
Today, It Does Not. Why?”

• Applied in several contexts

•

1960

2013

1999

✔

✘
Today

✔

Yesterday

✔

✘
Today

✔

Yesterday

✘

✔

✘
Today

✔

Yesterday

✘

✘

✔

✘
Today

✔

Yesterday

✘

✘

✔

✘
Today

✔

Yesterday

✘

✘

✔

✘

Failure cause

…
…

✔

✘
Today

✔

Yesterday

✘

✘

✔

✘

Failure cause

…
…

 A
pplied

 to program
s, i

nputs,

sta
tes

, ...

Statistical Debugging

• Intuition: debugging techniques can
leverage multiple executions

• Tarantula

• Liblit’s CBI

• Many others!

1960

2013

2001

Statistical Debugging

• Intuition: debugging techniques can
leverage multiple executions

• Tarantula

• Liblit’s CBI

• Many others!

1960

2013

2001

Tarantula

 mid() {
 int x,y,z,m;
1: read(“Enter 3 numbers:”,x,y,z);
2: m = z;
3: if (y<z)
4:	
 if (x<y)
5:	
 	
 m = y;
6:	
 else if (x<z)
7:	
 	
 m = y; // bug
8: else
9:	
 if (x>y)
10:	
 	
 m = y;
11:	
 else if (x>z)
12:	
 	
 m = x;
13: print(“Middle number is:”, m);
 }

3,
3,

5

1,
2,

3

3,
2,

1

5,
5,

5

5,
3,

4

2,
1,

3

P P P P P F

•
•
•
•

•
•

•

•
•
•
•
•

•

•
•
•

•
•
•

•

•
•
•

•
•

•

•

•
•
•
•

•

•

•
•
•
•

•
•

•

Test Cases

Pass/Fail

su
sp

ici
ou

sn
es

s

0.8

0.5
0.5
0.6
0.0
0.7

0.0
0.0
0.0
0.0
0.0
0.5

0.5

Statistical Debugging

• Intuition: debugging techniques can
leverage multiple executions

• Tarantula

• Liblit’s CBI

• Many others!

1960

2013

2001

Statistical Debugging

• Intuition: debugging techniques can
leverage multiple executions

• Tarantula

• CBI

• Many others!

1960

2013

2003

Statistical Debugging

• Intuition: debugging techniques can
leverage multiple executions

• Tarantula

• CBI

• Ochiai

• Many others!

1960

2013

2006

Statistical Debugging

• Intuition: debugging techniques can
leverage multiple executions

• Tarantula

• CBI

• Ochiai

• Causal inference based

• Many others!

1960

2013

2010

Statistical Debugging

• Intuition: debugging techniques can
leverage multiple executions

• Tarantula

• CBI

• Ochiai

• Causal inference based

• Many others!

1960

2013

...

Workflow integration:

Tarantula, GZoltar,

EzUnit, ...

2013

Formula-based Debugging
(AKA Failure Explanation)

• Intuition: executions can be expressed as
formulas that we can reason about

• Darwin

• Cause Clue Clauses

• Error invariants

•

1960

2009

Assertion A

Input I Formula

Input = I∧

c1 ∧ c2 ∧ c3 ∧ ...∧

... ∧ cn-2∧cn-1∧ cn∧

A

1

2

3

unsatisfiable

{ ci }

MAX-SAT
Complement

2013

Formula-based Debugging
(AKA Failure Explanation)

• Intuition: executions can be expressed as
formulas that we can reason about

• Darwin

• Cause Clue Clauses

• Error invariants

•

1960

2009

Formula-based Debugging
(AKA Failure Explanation)

• Intuition: executions can be expressed as
formulas that we can reason about

• Darwin

• Bug Assist

• Error invariants

•

1960

2011

2013

Formula-based Debugging
(AKA Failure Explanation)

• Intuition: executions can be expressed as
formulas that we can reason about

• Darwin

• Bug Assist

• Error invariants

•

1960

2011

2013

Formula-based Debugging
(AKA Failure Explanation)

• Intuition: executions can be expressed as
formulas that we can reason about

• Darwin

• Bug Assist

• Error invariants

• Angelic debugging

1960

2011

2013

Additional Techniques
• Contracts (e.g., Meyer et al.)

• Counterexample-based (e.g., Groce et al., Ball et al.)

• Tainting-based (e.g., Leek et al.)

• Debugging of field failures (e.g., Jin et al.)

• Predicate switching (e.g., Zhang et al.)

• Fault localization for multiple faults (e.g., Steimann et al.)

• Debugging of concurrency failures (e.g., Park et al.)

• Automated data structure repair (e.g., Rinard et al.)

• Finding patches with genetic programming

• Domain specific fixes
(tests, web pages, comments, concurrency)

• Identifying workarounds/recovery strategies (e.g., Gorla et al.)

• Formula based debugging (e.g., Jose et al., Ermis et al.)

• ...

1960

2013

Not meant to be comprehensive!

Are We There Yet?
Can We Debug at the Push of a Button?

Automated Debugging
(rank based)

…"

1)"

2)"

3)"

4)"

Hereisa$list$of$
placestocheckout Ok,Iwill$check$out$

your$sugges3ons$
onebyone.$

Automated Debugging
Conceptual Model

…"

1)"

2)"

3)"

4)"

✔
✔
✔

Found&the&bug!&

0	
 	
 	
 	
 	
 	
 	
 	
 	
 20	
 	
 	
 	
 	
 	
 	
 	
 40	
 	
 	
 	
 	
 	
 	
 	
 60	
 	
 	
 	
 	
 	
 	
 	
 80	
 	
 	
 	
 	
 	
 	
 100

%
	
 o
f	
 f
au
lty

	
 v
er
sio

ns

20

40

60

80

100

%	
 of	
 program	
 to	
 be	
 examined	
 to	
 find	
 fault

Siemens
Space

Performance of Automated
Debugging Techniques

Mission Accomplished?

100 LOC ➡ 10 LOC

Best result: fault in 10% of the code.
Great, but...

10,000 LOC ➡ 1,000 LOC

100,000 LOC ➡ 10,000 LOC

Mission Accomplished?

100 LOC ➡ 10 LOC

Best result: fault in 10% of the code.
Great, but...

10,000 LOC ➡ 1,000 LOC

100,000 LOC ➡ 10,000 LOC
Moreover, strong assumptions

Assumption #1: Programmers
exhibit perfect bug understanding

Do you see a bug?

Assumption #2: Programmers inspect
a list linearly and exhaustively

Good for comparison,
but is it realistic?

Assumption #2: Programmers inspect
a list linearly and exhaustively

Good for comparison,
but is it realistic?

Does the conceptual model make sense?

Have we really evaluated it?

Where Shall We Go Next?
Are We Headed in the Right Direction?

AKA: “Are Automated Debugging Techniques
Actually Helping Programmers?” ISSTA 2011
Chris Parnin and Alessandro Orso

What do we know
about automated

Studies on tools Human studies

What do we know
about automated

Studies on tools Human studies

Let’s&see…&
Over&50&years&of&research&
on&automated&debugging.&

1962.&Symbolic&Debugging&(UNIVAC&FLIT)&

1981.%Weiser.%Program%Slicing%

1999.$Delta$Debugging$

2001.%Sta)s)cal%Debugging%

What do we know
about automated

Studies on tools

Human studies

Weiser
Kusumoto
Sherwood
Ko
DeLine

• What if we gave developers a ranked list of
statements?

• How would they use it?

• Would they easily see the bug in the list?

• Would ranking make a difference?

Are these Techniques and Tools
Actually Helping Programmers?

Hypotheses

H1: Programmers who use automated debugging
tools will locate bugs faster than programmers
who do not use such tools

H2: Effectiveness of automated tools increases
with the level of difficulty of the debugging task

H3: Effectiveness of debugging with automated
tools is affected by the faulty statement’s rank

Research Questions
RQ1: How do developers navigate a list of statements
ranked by suspiciousness? In order of suspiciousness
or jumping from one statement to the other?

RQ2: Does perfect bug understanding exist? How
much effort is involved in inspecting and assessing
potentially faulty statements?

RQ3: What are the challenges involved in using
automated debugging tools effectively? Can
unexpected, emerging strategies be observed?

Participants:
34 developers
MS’s Students
Different levels of expertise
(low, medium, high)

Experimental Protocol:
Setup

…"

1)"

2)"

3)"

4)"

✔
✔
✔

Tools
•Rank-based tool

(Eclipse plug-in, logging)
•Eclipse debugger

Experimental Protocol:
Setup

…"

1)"

2)"

3)"

4)"

✔
✔
✔

Software subjects:
•Tetris (~2.5KLOC)
•NanoXML (~4.5KLOC)

Experimental Protocol:
Setup

…"

1)"

2)"

3)"

4)"

✔
✔
✔

Tetris Bug

(Easier)

NanoXML Bug

(Harder)

Software subjects:
•Tetris (~2.5KLOC)
•NanoXML (~4.5KLOC)

Experimental Protocol:
Setup

…"

1)"

2)"

3)"

4)"

✔
✔
✔

Tasks:
•Fault in Tetris
•Fault in NanoXML
•30 minutes per task
•Questionnaire at the end

Experimental Protocol:
Setup

…"

1)"

2)"

3)"

4)"

✔
✔
✔

Experimental Protocol:
Studies and Groups

Experimental Protocol:
Studies and Groups

A! B!

Study 1

Experimental Protocol:
Studies and Groups

Study 2

C! D!

R
ank

!

R
an
k!

7
➡

35

83
➡

16

Study Results

Tetris NanoXML

A

B

C

D

A! B! C! D!

R
ank

!

R
an
k!

Study Results

Tetris NanoXML

A Not
significantly

differentB

Not
significantly

different
C

D

A! B! C! D!

R
ank

!

R
an
k!

Study Results

Tetris NanoXML

A Not
significantly

different

Not
significantly

differentB

Not
significantly

different

Not
significantly

different
C Not

significantly
different

Not
significantly

differentD

Not
significantly

different

Not
significantly

different

A! B! C! D!

R
ank

!

R
an
k!

Study Results

Tetris NanoXML

A Significantly
different for

high performers

Not
significantly

differentB

Significantly
different for

high performers

Not
significantly

different
C Not

significantly
different

Not
significantly

differentD

Not
significantly

different

Not
significantly

different

A! B! C! D!

R
ank

!

R
an
k!

Stratifying
participants

Study Results

Tetris NanoXML

A Significantly
different for

high
performers

Not
significantly

differentB

Significantly
different for

high
performers

Not
significantly

different
C Not

significantly
different

Not
significantly

differentD

Not
significantly

different

Not
significantly

different

A! B! C! D!

R
ank

!

R
an
k!

Stratifyin
g Analysis of results and

questionnaires...

Findings: Hypotheses
H1: Programmers who use automated debugging tools will locate
bugs faster than programmers who do not use such tools

Experts are faster when using the tool ➡ Support for H1 (with caveats)

H2: Effectiveness of automated tools increases with the level of
difficulty of the debugging task

The tool did not help harder tasks ➡ No support for H2

H3: Effectiveness of debugging with automated tools is affected by
the faulty statement’s rank

Changes in rank have no significant effects ➡ No support for H3

Findings: RQs
RQ1: How do developers navigate a list of statements ranked by
suspiciousness? In order of suspiciousness or jumping b/w stmts?
Programmers do not visit each statement in the list, they search
RQ2: Does perfect bug understanding exist? How much effort is
involved in inspecting and assessing potentially faulty statements?
Perfect bug understanding is generally not a realistic assumption
RQ3: What are the challenges involved in using automated debugging
tools effectively? Can unexpected, emerging strategies be observed?
1) The statements in the list were sometimes useful as starting points
2) (Tetris) Several participants preferred to search based on intuition
3) (NanoXML) Several participants gave up on the tool after
investigating too many false positives

Research Implications
• Percentages will not cut it (e.g., 1.8% == 83rd position)

➡ Implication 1: Techniques should focus on improving
absolute rank rather than percentage rank

• Ranking can be successfully combined with search
➡ Implication 2: Future tools may focus on searching through
(or automatically highlighting) certain suspicious statements

• Developers want explanations, not recommendations
➡ Implication 3: We should move away from pure ranking and
define techniques that provide context and ability to explore

• We must grow the ecosystem
➡ Implication 4: We should aim to create an ecosystem that
provides the entire tool chain for fault localization, including
managing and orchestrating test cases

• We came a long way since the early days of debugging

• There is still a long way to go...

In Summary

...

Where Shall We Go Next
•Hybrid, semi-automated fault localization techniques
•Debugging of field failures (with limited information)
•Failure understanding and explanation
•(Semi-)automated repair and workarounds

•User studies, user studies, user studies!
(true also for other areas)

With much appreciated
input/contributions from

• Andy Ko

•Wei Jin

• Jim Jones

•Wes Masri

• Chris Parnin

• Abhik Roychoudhury

•Wes Weimer

• Tao Xie

• Andreas Zeller

• Xiangyu Zhang

