Automated Debugqging:
Are We There Yet?

Alessandro (Alex) Orso

School of Computer Science - College of Computing
Georgia Institute of Technology
http://www.cc.gatech.edu/~orso/

Partially supported by: NSF, IBM, and MSR

http://www.cc.gatech.edu/~orso/
http://www.cc.gatech.edu/~orso/

Automated Debugqging:
Are We There Yet?

An unexpected error has occurred.
Please quit and reopen Keynote.

=

| e——

Alessandro (Alex) Orso

School of Computer Science - College of Computing
Georgia Institute of Technology
http://www.cc.gatech.edu/~orso/

Partially supported by: NSF, IBM, and MSR

http://www.cc.gatech.edu/~orso/
http://www.cc.gatech.edu/~orso/

Edit

View Mailbox Window Help = ™ & -

Message Format

" Yalé)

- All Mail — alex@gmail (16437-6 messages, 1182 unread)

<) E) &k 33% Mon435PM Q

. _______|Subject
Problem Report for Keynote

MAILBOXES > ™ o From

Keynote quit unexpectedly.

Click "Send 1o Apple”™ 10 submit the report to Apple. This information is collected anomymously.

Comments

Problem Details and System Configuration

Keynote [7016)

JApplications/ivWork '@9/Xeynote.app/Contents/MacOS/Keynote
com.apple. iWork.Keynote

Process:

Path:
Icentifier:
version:

Build Info:
Code Type:
Parent Process:

5.1 {(1018)
Keynote=10169000~1
X86 (Native)
launchd [185)

Date/Tine: 2011-08-16 16:14:42.961
0S Version: Mac 0S5 X 10.6.8 (10x549)
Report Version: 6

+0530

Interval Since Last Repore: 673669 sec
Crashes Since Last Report: 3

Per-App Interval Since Last Report: 170458 sec
Per-App Crashes Since Last Report: 1
Anonynous WID: FBFFCOA4-DEFB-43D1-86DF-4ES12ESDAEDE

EXC_BREAXPOINT (SIGTRAP)
exRdeQ0dR000000002, 2x0D220020000000000
@ Dispatch queve: com.apple.rain-thread

Exception Type:
Exception Codes:
Crashed Thread:

Aonlirntsnn Sonariftisr Toftarmatinn

Hide Details

Mail File Edit View Mailbox Message Format Window Help W © @ = . 4) B @&rB3w Mon435PM Q
- Yol « ListFiles.cpp

ape 1 | Base SDK Missing A lEJ 4& .

Overview Breakpoimts Build and Run Tasks
Location: S UstFiles cpp:39 ¢ 1) ListFies{const char *videoTS) ¢ 1" R 1C) 439 AM
Ltz tdristring er = videoTS; 8:12 AM
S Beriin, 18 int f folder.size(); 8:44 AM
Goymory f == @) return hln,
Phore 1«49/ . der(f - 1] t= *'/') folder ' 9.22AM
Foe 2+ 455800 9:39 AM
wwv.asplar tdiivectorestd:istring> Paths; 9:40 AM
10:00 AM

X struct dirent ssnane st =N H
erlin ; .
Borlin, iy f mDfEntries = scondir(folder.c_str(), &nomelist, noCurAndParDir, alphasort); 10:32 AM

;(et?:x Alrp : mOfEntries == =1) return files: 11:06 AM
SCHONEFELR .) aftrisss des) 11:24 AM

From Atrpe { 11:33 AM
Haupthalle 5t urmg path = namelList[i)=>d_name; 11:57 AM
ot Lutzone filePat push back(path); l?OlPM
%;Q;cjphi%:) frec(t(i)); 12:10 PM s
| Express (4 free{nanelist); 1214 PM ~
i wirute int
) coirg to |
troin 5, 9
100 bus ¢
nirutes, g

)

1string fullPath = folder +
t char #cpath = fullPath.c "'(]

int fd = cpen{cpath, O_ROONLY, @);
Autobakn 4 if (fd == -1) continue

jurction B
Trorsfer ¢ struct log2phys physicalPosition;
Furkturm, int ret = fentl(fd, F_LOG2PHYS, (voide)(&physicalPosition));
ALLS, the close(fd);
right at 1
yrat-Redt

’*UP?N‘

straight o

Plats intg

cor park / T !

right. Aut info.name » 1 3 :
info.start = physx(alposxtlon 2p_devoffset;
info.size = st.st_size;

files.push_back(info);

nane:

Re

1

File

Edit
eNnNeo

View Mailbox Message

Format

l Base SDK Missing

~J

Overview

Window Help

- <) B} &F33% Mon435PM Q

« ListFiles.cpp

= o @

Breakpoimts Budld and Run Tasks

Location:
Lt zonrs
o Beriin, 28
Goymory
Phore 1«49y
Foue 2+ 459300
v esplor

Beriin, G&
Tegel Alurg
SCHNEFELR

From Alrps
Houpthalls
ot Latzon
Liatzovpiat
Toke shutt
j Express (1}
i wirute int
) going to |
troin 5, 9
100 bus ¢
nirutes, g

Autobaln 4
jurction F
Trorsfer ¢
Furkturm,
All15, the
right at 1
Exrat-Redt

Hy 7.]?3’”!
straight o
Plats intg
cor park /
right. Aut

2 UstFiles cpp:39 ¢

}

ristring =

== @)

" fil
(f '

rivectorest

L dirent =»
¢End rins

= sconc

=n «1)

<

= 0;
urmg path =
push backl(;

t(i));

free(nane

freel

1string fullPath =

har #cpath =

nt fd = cpen(cpath,
(fd == -1) conti

struct log2phys phys
int ret = fentl(fd,
close(fd);

(ret == 1)

re();

es;

S

Jiistring> ¢

ir(folder.c_st
urn files:

ot

++)

.

melist[i)=>d_

1");

sths.size();

+ 1

follpath c_st

0 ROONLY, @)

icalPosition;
F_LOG2PHYS, (v

‘ Lf (S_ISBLK(st.st_mode) || S_ISCHR

‘ info;
info.name » ¢
info.sta = physica

s[1):
lPosition.\2p,

I] ListFdes{const char *videoTS) ¢

How are we doing?

l

12.00 [0
1210 PM &

m

Are we there yet?
ﬁ?

Where shall we go

info. - st.st_size;

next?

files.push_back(info);

How Are We Doing?

A Short History of Debugging

The Birth of
Debugging

First reference to software errors
Your guess?

The Birth of Debugging

1840

1843

@ Software errors mentioned in Ada Byron's
notes on Charles Babbage's analytical engine

2013

The Birth of Debugging

1840

: e Software errors mentioned in Ada Byron's
| notes on Charles Babbage's analytical engine

1940] ¢ Several uses of the term bug to indicate

defects in computers and software

2013

Th‘_e Birth of Debugging

1840 VRS ,
o go On Avn >.w {/-1700 7.032 syy o0L5
J V00 . S "aujﬂ"‘ / $o0 9087 ¥YC 795 covu b
P 13w, (034 HMP -pe E35050%%) 7eton) Y0l5725055(-0)
03y Pro » 2. lloy26yis
CWJ'. 2.13%067ews , .
RIS - =~ 033 ,é.JJ ,;.r‘wj ‘T"’J deod” \
{m tew g -
[

1S4y ’ : , Q_Z@(*70 ?‘A - 2
1947 @ inEEy AR

il iR o ot
P c)-o,im

2013

Symbolic Debugging

1840

e UNIVAC 1100’s FLIT
(Fault Location by Interpretive Testing)

1962

2013

Symbolic Debugging

1840

e UNIVAC 1100’s FLIT
(Fault Location by Interpretive Testing)

e GDB

1986

2013

Symbolic Debugging

1840

e UNIVAC 1100’s FLIT
(Fault Location by Interpretive Testing)

e GDB
e DDD

1996

2013

Symbolic Debugging

1840
e UNIVAC 1100’s FLIT
(Fault Location by Interpretive Testing)
e GDB
e DDD
1996| @ -

2013

Program Slicing

1960

@ Intuition: developers “slice” backwards
when debugging

1981

2013

Program Slicing

1960
@ Intuition: developers “slice” backwards
when debugging
@ Weiser’s breakthrough paper
1981

2013

Static Slicing Example

mid() {
int x Z,m;

Program Slicing

1960
@ Intuition: developers “slice” backwards
when debugging
@ Weiser’s breakthrough paper
1981

2013

1960

1988
1993

2013

Program Slicing

@ Intuition: developers “slice” backwards
when debugging

@ Weiser’s breakthrough paper
@ Korel and Laski’s dynamic slicing

e Agrawal

Dynamic Slicing Example

mid () {
int x,y,z,m;
read (“Enter 3 numbers:” ,x,y,Zz);
m= z;
if (y<z)
if (x<y)
m =y,
else if (x<z)
m=1y; // bug
else
if (x>y)
m=y;
else if (x>z)

x::
2::
3:
4:
5:
6:
H
8:

: m = Xy
: print(“Middle number is:”
}

Dynamic Slicing Example

Test Cases

mid () {
int x,y,z,m;
read (“Enter 3 numbers:” ,x,vy,z);
m= z;
if (y<z)
if (x<y)
m =y,
else if (x<z)
m=y; // bug
else
if (x>y)
m =y,
else if (x>z)
: m = Xy
: print(“Middle number is:”, m);

) Pass/Fail

i
2::
3:
4:
5:
6:
H
8:

Dvnamic Slicing Example

Test Cases

8: else

9: if (x>y)

10: m=y;
11: else if (x>z)
12 m= X;

Pass/Fail P P P P P F

1960

1988
1993

2013

Program Slicing

@ Intuition: developers “slice” backwards
when debugging

@ Weiser’s breakthrough paper
@ Korel and Laski’s dynamic slicing

e Agrawal

1960

2008

2013

Program Slicing

Intuition: developers “slice” backwards
when debugging

Weiser’s breakthrough paper
Korel and Laski’s dynamic slicing
Agrawal

Ko’s Whyline

Delta Debugging

1960

@ Intuition: it’s all about differences!

1999

2013

Delta Debugging

1960
e Intuition: it’s all about differences!
e® Isolates failure causes automatically
@ Zeller's “Yesterday, My Program Worked.
Today, It Does Not. Why?”
1999

2013

Today

-
B
@@]

Yesterday

Today

I —

BN |

Yesterday

5

Yesterday

£

\

Yesterday

Yesterday

Statistical Debugging

1960

e Intuition: debugging techniques can
leverage multiple executions

2001

2013

Statistical Debugging

1960
e Intuition: debugging techniques can
leverage multiple executions
@ Tarantula
2001

2013

Tarantula

t %
- S
-] ness(s) = o
suspiciousness(s) SEEE] +! §

totalpassed Test Cases S

N

. W (qf) — W <t (qf) COQ'

mid () { AN E e = &
int x AN

P P P P P F

Pass/Fail

Statistical Debugging

1960
e Intuition: debugging techniques can
leverage multiple executions
@ Tarantula
2001

2013

Statistical Debugging

1960
e Intuition: debugging techniques can
leverage multiple executions
@ Tarantula
e CBI
2003

2013

Statistical Debugging

1960
e Intuition: debugging techniques can
leverage multiple executions
@ Tarantula
e CBI
@ Ochiai
2006

2013

Statistical Debugging

1960

e Intuition: debugging techniques can
leverage multiple executions

Tarantula
CBI
Ochiai

Causal inference based

2010

2013

1960

2013

Statistical Debugging

e Intuition: debugging techniques can
leverage multiple executions

Tarantula

Formula-based Debugging
(AKA Failure Explanation)

1960

@ Intuition: executions can be expressed as
formulas that we can reason about

2009

2013

aab\e
Input | Formula

O (puc -

a Cl/\/\C3/\ VA
@A Cn—2/\ Cn N

16y

MAX-SAT
Complement

{ G}

Formula-based Debugging
(AKA Failure Explanation)

1960

@ Intuition: executions can be expressed as
formulas that we can reason about

® Darwin

2009

2013

Formula-based Debugging
(AKA Failure Explanation)

1960
@ Intuition: executions can be expressed as
formulas that we can reason about
® Darwin

@ Bug Assist

2011

2013

Formula-based Debugging
(AKA Failure Explanation)

1960
@ Intuition: executions can be expressed as
formulas that we can reason about
® Darwin
@ Bug Assist
® Error invariants
2011

2013

Formula-based Debugging
(AKA Failure Explanation)

1960

Intuition: executions can be expressed as
formulas that we can reason about

Darwin
Bug Assist

Error invariants

Angelic debugging

2011

2013

Additional Techniques

Contracts (e.g., Meyer et al.)

Counterexample-based (e.g., Groce et al., Ball et al.)
Tainting-based (e.g., Leek et al.)

Debugging of field failures (e.g., Jin et al)

Predicate switching (e.g., ZharZ

Fault localization f=

amming

ges, comments, concurrency)
entifying workarounds/recovery strategies (e.g., Gorla et al.)
Formula based debugging (e.g., Jose et al., Ermis et al.)

Are We There Yet?

Can We Debug at the Push of a Button?

Automated Debugging
(rank based)

)

Here is a list of

places to check out
"

/\d

)

AN)
Ok, | will check out
your suggestions

one by one.

o /

Automated Debugging

Conceptual Model

e

(Found the bug! J

N

Performance of Automated
Debugging Techniques

100

/ Space—
Siemens

80

60

40

(Vs
c
O
(s
—
Q
>
>
a.d
-
(C
G
G
o
X

20

0 20 40 60 80 100

% of program to be examined to find fault

Mission Accomplished?

Best result: fault in 10% of the code.
Great, but...

100 LOC = 10 LOC

10,000 LOC = 1,000 LOC

100,000 LOC = 10,000 LOC

Mission Accomplished?

Best result: fault in 10% of the code.
Great, but...

100 LOC = 10 LOC

Assumption #1: Programmers
exhibit perfect bug understandin

Do you see a bug?

POLs Scennsetee->Ens
382970 Tole enierer
TIIT e fre

d for comparison,
ut is it realistic?

18 ewgere

pers
LR
I en

Where Shall We Go Next?

Are We Headed in the Right Direction?

AKA: “Are Automated Debugging Techniques
Actually Helping Programmers?” ISSTA 2011
Chris Parnin and Alessandro Orso

What do we know
about automated

Studies on tools Human studies

\\/
Let’s see...

Over 50 years of research :I
on automated debugging.

~

2001. Statistical Debugging

J

1999. Delta Debugging }

studies

1981. Weiser. Program Slicing]

1962. Symbolic Debugging (UNIVAC FLIT) }
J

What do we know
about automated

S
an G

Weiser
Kusumoto
Sherwood
Ko

DelLine

Are these Techniques and Tools
Actually Helping Programmers?

|21 Problems E Console Q\ Error Log == Properties e Suspicious Statements &3 =) = v=a

Suspicious Statement File Line # Rank
if (dx > 0) && (x > 750)) { lorg/newdawn /spaceinvaders/Shipknl40 0.7 | |
return; org/newdawn/spaceinvaders/ShipEn 41 0.96
g.setColor(Color.white); org/newdawn/spaceinvaders/Game.j 304 0.9
g.drawString(message,(800-g.getFontMetrics().stringWidth(message))/2,250); org/newdawn/spaceinvaders/Game.j 305 0.9
g.drawString("Press any key",(800-g.getFontMetrics().stringWidth(*Press any key™)/2,300); org/newdawn/spaceinvaders/Game.j 306 0.9
if (dx > 0) && (x > 750)) { org/newdawn/spaceinvaders/ShipEn 40 0.97
return; org/newdawn/spaceinvaders/ShipEn 41 0.96
g.setColor(Color.white); org/newdawn/spaceinvaders/Game.j 304 0.9

e What if we gave developers a ranked list of
statements?

e How would they use it?
@ Would they easily see the bug in the list?

e Would ranking make a difference?

Hypotheses

H1: Programmers who use automated debugging
tools will locate bugs faster than programmers
who do not use such tools

H2: Effectiveness of automated tools increases
with the level of difficulty of the debugging task

H3: Effectiveness of debugging with automated
tools is affected by the faulty statement’s rank

Research Questions

RQ1: How do developers navigate a list of statements
ranked by suspiciousness? In order of suspiciousness
or jumping from one statement to the other?

RQ2: Does perfect bug understanding exist? How

much effort is involved in inspecting and assessing
potentially faulty statements?

RQ3: What are the challenges involved in using
automated debugging tools effectively? Can
unexpected, emerging strategies be observed?

Experimental Protocol:
/Setup

Participants:
34 developers

MS’s Students
Different levels of expertise

(low, medium, high)

Experimental Protocol:
Setup

-

Tools
e Rank-based tool
(Eclipse plug-in, logging)
e Eclipse debugger

\

Experimental Protocol:
Setup

-

Software subjects:
e Tetris (~2.5KLOC)
e NanoXML (~4.5KLOC)

_

Tetris Bug

ESRERT)

| 5| Tetris

(Easier)

NanoXML Bug

The input, testvm_22.xml, contains the following input xml document:
<Foo a="test”>
<ns:Bar>
<Blah x="1" ns:x="2"/>
</ns:Bar>
</Foo>

When runmng the NanoXML program (mam is in class Parserl_vw v1) the followmg excepnon is thrown:

Well-Formed at Line 19: C1031ng tag does not match openlng tag: ns:Bar' !'= " :Bar'
l .XMLUt1il.errorWrongClosingTag "HLTTLL 12:497)
> tdXMLI 3 rocessElen d}J_F“L°~L lavaz:438)
lag (StdXMLParser. java:202)

......

(Harder)

Experimental Protocol:
Setup

-

Software subjects:
e Tetris (~2.5KLOC)
e NanoXML (~4.5KLOC)

Experimental Protocol:
Setup

-

Tasks:
e Fault in Tetris
e Fault in NanoXML
e 30 minutes per task
e Questionnaire at the end

Experimental Protocol:
Studies and Groups

Experimental Protocol:
Studies and Groups

] Tetris] Tetris

Score: 140 Score: 140

Level: 1 Level: 1

Pause Pause

When running the NanoXML program (ma wing exception i thrown: When running the NanoXML program (mains i class Parser]_vw_v1,the fllowing excepton s thrown:

lowing nput xml document The input,testvm_22.xmi, contains the following nput xml document
o

st

a1 T

Experimental Protocol:
Studies and Groups

Study Results

Tetris NanoXML

Study Results

Tetris

NanoXML

Not

significantly
different

Study Results

Tetris NanoXML

Not Not
significantly | significantly
different different
Not Not
significantly | significantly
different different

Study Results

Tetris NanoXML
. A Significantly Not
pS;:ﬁgifg;?]%S different for signiﬁcantly
B | high performers different
C Not Not
significantly | significantly
D different different

Study Results

Ifferent
Not
significantly | significantly
D different different

Findings: Hypotheses

H1: Programmers who use automated debugging tools will locate
bugs faster than programmers who do not use such tools

Experts are faster when using the tool = Support for H1 (with caveats)

H2: Effectiveness of automated tools increases with the level of
difficulty of the debugging task

The tool did not help harder tasks = No support for H2

H3: Effectiveness of debugging with automated tools is affected by
the faulty statement’s rank

Changes in rank have no significant effects = No support for H3

Findings: RQs

RQ1: How do developers navigate a list of statements ranked by
suspiciousness? In order of suspiciousness or jumping b/w stmts?

Programmers do not visit each statement in the list, they search

RQ2: Does perfect bug understanding exist? How much effort is
involved in inspecting and assessing potentially faulty statements?

Perfect bug understanding is generally not a realistic assumption

RQ3: What are the challenges involved in using automated debugging
tools effectively? Can unexpected, emerging strategies be observed?

1) The statements in the list were sometimes useful as starting points
2) (Tetris) Several participants preferred to search based on intuition
3) (NanoXML) Several participants gave up on the tool after
investigating too many false positives

Research Implications

Percentages will not cut it (e.g., 1.8% == 83" position)
= I[mplication 1: Techniques should focus on improving
absolute rank rather than percentage rank

Ranking can be successfully combined with search
= I[mplication 2: Future tools may focus on searching through

(or automatically highlighting) certain suspicious statements

Developers want explanations, not recommendations
= I[mplication 3: We should move away from pure ranking and
define techniques that provide context and ability to explore

We must grow the ecosystem

= |[mplication 4: We should aim to create an ecosystem that
provides the entire tool chain for fault localization, including
managing and orchestrating test cases

In Summary

® We came a long way since the early days of debugging

mid{) { - Toda
int x

Where Shall We Go Next

Ay
De
-al

orid, semi-automated fault localization techniques"’ :
pugging of field failures (with limited information)

ure understanding and explanation

e (Semi-)automated repair and workarounds

®*User studies, user studies, USer studies!

(true also for other areas)

With much appreciated
input/contributions from

e Andy Ko

e Wei Jin

@ Jim Jones

® Wes Masri
@ Chris Parnin

@ Abhik Roychoudhury
® Wes Weimer

® [ao Xie

@ Andreas Zeller

@ Xiangyu Zhang

