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ABSTRACT
In large software development projects, when a programmer
is assigned a bug to fix, she typically spends a lot of time
searching (in an ad-hoc manner) for instances from the past
where similar bugs have been debugged, analyzed and re-
solved. Systematic search tools that allow the programmer
to express the context of the current bug, and search through
diverse data repositories associated with large projects can
greatly improve the productivity of debugging. This paper
presents the design, implementation and experience from
such a search tool called DebugAdvisor.

The context of a bug includes all the information a pro-
grammer has about the bug, including natural language text,
textual rendering of core dumps, debugger output etc. Our
key insight is to allow the programmer to collate this en-
tire context as a query to search for related information.
Thus, DebugAdvisor allows the programmer to search us-
ing a fat query, which could be kilobytes of structured and
unstructured data describing the contextual information for
the current bug. Information retrieval in the presence of fat
queries and variegated data repositories, all of which contain
a mix of structured and unstructured data is a challenging
problem. We present novel ideas to solve this problem.

We have deployed DebugAdvisor to over 100 users inside
Microsoft. In addition to standard metrics such as precision
and recall, we present extensive qualitative and quantitative
feedback from our users.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Testing and Debugging—
Debugging Aids

General Terms
Design, Languages, Experimentation
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1. INTRODUCTION
Debugging large software is difficult. Large systems have

several tens of millions of lines of code. No single person
understands all the code in such systems, and often times
new hires, who have little or no context about the code,
are given the job of debugging failures. Our recent study
[6] with Microsoft’s Windows Serviceability group revealed
that developers and testers spend significant time during di-
agnosis looking for similar issues that have been resolved in
the past. They search through bug databases, articles from
the on-line Microsoft Developer Network (known as MSDN),
email threads, and talk to colleagues to find this informa-
tion. For example, the same bug or a very similar bug may
have been encountered and fixed in another code branch,
and the programmer would greatly benefit from knowing
this information. Consequently, we decided to build a rec-
ommender system to improve productivity of debugging by
automating the search for similar issues from the past. Prior
work in mining software repositories such as Hipikat [9, 10],
eRose [24], and Fran [19] provides us inspiration and very
useful ideas. However, there are important challenges in
building a recommender system for debugging.

Challenges. The first challenge involves understanding
what constitutes a query. In principle, we would like to
leverage all of the context the user has on the current prob-
lem, including the state of the machine being debugged, in-
formation in the current bug report, information obtained
from the user’s interaction with the debugger, etc.

The second challenge involves dealing with the diversity
of information sources that contain potentially useful infor-
mation for the user. These include past bug reports, logs of
interactive debugger sessions, information on related source
code changes, and information about people who can be
consulted. These information sources are variegated, and
the data is of varied type —a mixture of structured and un-
structured data. One approach is to ignore all the structure
in the data, and use full text search to index and search
through the data. This approach has the advantage that
we can reuse existing indexing and searching tools. How-
ever, as our empirical evidence shows, there is much room
for improvement in the quality of retrieved results.

Approach. We approach the first challenge (capturing the
context of the user) by allowing a fat query —a query which
could be kilobytes of structured and unstructured data con-
taining all contextual information for the issue being de-
bugged, including natural language text, textual rendering
of core dumps, debugger output etc. We have built a tool
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called DebugAdvisor, which allows users to search through
all our software repositories (version control, bug database,
logs of debugger sessions, etc) using a fat query interface.

The fat query interface is quite different when compared
with short query strings commonly used in information re-
trieval systems. Previously, our users had to search through
each data repository separately using several queries, each of
which was restricted to a short query string, and they had
no automatic mechanism to combine these search results.
DebugAdvisor’s fat query interface allows users to query
all these diverse data repositories with a single query.1

We approach the second challenge (diversity of informa-
tion sources) by partitioning the search problem into two
phases. The first “search” phase (see Figure 1) takes a fat
query as input and returns a ranked list of bug descriptions
that match the query. These bug descriptions (referred to
as “documents” in Figure 1) contain a mix of structured and
unstructured data (see example in Figure 3). The second
“related-information” phase (see Figure 2) uses the output
of the first phase to retrieve a set or related recommenda-
tions such as people, source files and functions.

The key idea in the first phase is to uniformly represent
both queries and information sources as a collection of fea-
tures, which are formalized as typed documents. Typed doc-
uments have a recursive type structure with four type con-

1Every query does not have to be kilobytes long. DebugAd-
visor can also answer short queries, and some users issue
short queries.

structors:2(1) unordered bag of terms, (2) ordered list of
terms, (3) weighted terms, and (4) key-value pairs. Fea-
tures with arbitrary structure are expressed by combining
these type constructors. Representing features as typed doc-
uments leads to an important advantage —it separates the
process of defining and extracting domain specific structure
from the process of indexing and searching. The former
needs to be done by a domain expert, but the latter can
be done generically from the type structure. As shown in
Figure 1 the domain expert writes one feature parser for
each feature (such as call stack), and the output of each
feature parser is a typed document. The typed document
is processed by a transform (explained in Section 3), which
converts it into a bag of words. We define the transform
in such a way that the semantics of the type structure is
encoded during the transformation. The query is processed
in a similar manner —the same feature parsers are used to
extract a typed document from the query, and the same
transform is used to convert the typed document into a bag
of words. We then use an existing search engine based on
TF-IDF (Term Frequency and Inverse Document Frequency,
see [16]) to index and search these bags of words.

The second phase of DebugAdvisor (see Figure 2) re-
trieves recommendations about people, source files, binaries,
and source functions that are relevant to the current query,
by analyzing relationships between these entities. We are
inspired by link-analysis algorithms such as Page Rank [5]
and HITS [14] to compute these recommendations. Unlike
the world-wide web, where explicit URL pointers between
pages provide the link structure, there are no explicit links
between these data sources. We use prior work in mining
software repositories to establish these relationships [9, 10,
22, 20]. For fixed bugs, it is possible to discover the ver-
sion control revision that was made to fix the bug. We can
then find out which lines of code were changed to fix the
bug, which functions and which binaries were changed, and
who made the change. The output of such an analysis is
a relationship graph, which relates elements in bug descrip-
tions, source files, functions, binaries and people. Starting
with a “seed” set of bug descriptions from the first phase,
the second phase performs link analysis using probabilistic
inference (see Section 4) and retrieves a ranked list of peo-
ple, files, binaries and functions related to the seed set. As
we show in our empirical evaluation (see Section 5), using
the first phase to “expand” the query greatly improves the
quality of the second phase.

Evaluation. We have collected empirical data for 4 weeks
of usage from deploying the latest version of DebugAdvi-
sor to a community of over 100 users in Microsoft’s Win-
dows Serviceability group. We present usage statistics, and
anecdotal feedback from users. Feedback from our users has
been very positive —the tool returned useful results for 78%
of respondents, and queries about open and active bugs re-
turned useful results for 75% of the cases we tried. In 15%
of the cases we tried with open and active bugs, the tool
returned a duplicate bug which led to immediate resolution
of the issue. Anecdotal feedback suggests that the tool pro-
vides value, and that the fat query interface is very useful.

In addition, we rigorously measure the effectiveness of al-
gorithms implemented using DebugAdvisor in comparison

2Here, we are using the term type constructor in the sense
used by functional programming languages like ML.



with base-line analyses such as full-text search. We found
that DebugAdvisor improves precision and recall (see Sec-
tion 5 for definition of precision and recall) significantly
when compared with base-line analyses. DebugAdvisor’s
first phase (using features) improves recall by 33% for chal-
lenging queries from our test suite (see Section 5 for defi-
nition of challenging queries), and by 14% for all queries
from our test suite. When we consider actual queries posed
by users, full-text search is able to retrieve only 65% of the
desired results, which are returned by features and certified
as useful by users.

Summary. In summary, DebugAdvisor has the following
distinguishing characteristics:

• We allow the user to specify their debugging context as
a fat query, which collates all the contextual informa-
tion they have. We are not aware of any information
retrieval system that supports such a querying inter-
face to the user.

• We use typed documents to represent structure in fat
queries and documents (bug descriptions and associ-
ated data). We show how typed documents can be
used to encode domain specific similarity information.
We also show how typed documents can be generically
transformed into bags of words so that they can be in-
dexed and searched using existing search engines. We
show how probabilistic inference can be used to gener-
ate a ranked list of people, source files, functions and
binaries related to the query.

• We present an evaluation of DebugAdvisor from our
experience deploying it to over 100 users in Microsoft’s
Windows servicing group. The feedback from users
(empirical as well as anecdotal) has been positive. We
present precision and recall numbers to demonstrate
that individual algorithms in DebugAdvisor are ef-
fective.

The remainder of the paper is organized as follows. Sec-
tion 2 provides some examples to motivate various tech-
niques used in DebugAdvisor. Sections 3 and 4 describe
the two phases of DebugAdvisor. Section 5 presents data
and experience from deploying DebugAdvisor, and Section
6 covers related work.

2. EXAMPLES
We give some examples to motivate algorithms in the two

phases of DebugAdvisor.
To motivate the need for features in the first phase, con-

sider the bug description shown in Figure 3. This bug
description contains two parts. The first part is natural
language text. It mentions that the problem is a “dead-
lock”, and names an object ObpInitKillMutant, which is a
semaphore on which threads are blocked. The second part is
an extract from a call stack of one thread. The first part is
unstructured and the second part has some structure. Sup-
pose we want to search for similar bug descriptions in a
database. For this purpose, the first and second parts need
to be treated differently. The first part can be handled us-
ing full text search, since it has no structure. For the second
part, we want to match other bug descriptions whose call
stacks are “similar” to the call stack in Figure 3. The defi-
nition of a “similarity” between stacks is very particular and

The customer experiences some deadlocks on a server. The problem is
random and may occur from several times a week to once a month. The
system looks hung because the global resource ’ObpInitKillMutant’ is
help by a thread which tries to close a file for ever. So all the
processes having a thread waiting on ’ObpInitKillMutant’ stop working
fine. Drivers such as TCP/IP continue to respond normally but it’s
impossible to connect to any share.

Problem Impact:
The impact is high since the servers have to be rebooted when the
problem occurs. As no one can connect to the server anymore(net use),
the production is down. The problem was first escalated as a
severity A.

..
0: kd> !thread 82807020
ChildEBP RetAddr Args to Child
80210000 80c7a028 80c7a068 ntkrnlmp!KiSwapThread+0x1b1
80c7a074 00000000 00000000 ntkrnlmp!KeWaitForSingleObject+0x1b8
80c7a028 00000000 00000000 ntkrnlmp!IopAcquireFileObjectLock+0x58
82a6d7a0 80c7a028 00120089 ntkrnlmp!IopCloseFile+0x79
82a6d7a0 80c7a010 80f6da40 ntkrnlmp!ObpDecrementHandleCount+0x112
00000324 7ffdef01 00000000 ntkrnlmp!NtClose+0x170
00000324 7ffdef01 00000000 ntkrnlmp!KiSystemService+0xc9
00000324 80159796 000000c9 ntkrnlmp!ZwClose+0xb
000000c9 e185f648 00000000 ntkrnlmp!ObDestroyHandleProcedure+0xd
809e3008 801388e4 82a6d926 ntkrnlmp!ExDestroyHandleTable+0x48
00000001 82a6d7a0 7ffde000 ntkrnlmp!ObKillProcess+0x44
00000001 82a6d7a0 82a6d7f0 ntkrnlmp!PspExitProcess+0x54
00000000 f0941f04 0012fa70 ntkrnlmp!PspExitThread+0x447
ffffffff 00000000 00002a60 ntkrnlmp!NtTerminateProcess+0x13c
ffffffff 00000000 00002a60 ntkrnlmp!KiSystemService+0xc9
00000000 00000000 00000000 NTDLL!NtTerminateProcess+0xb

Figure 3: A bug description

FAILURE_BUCKET_ID: 0x8E_CLASSPNP!TransferPktComplete+1f5
SYMBOL_NAME: CLASSPNP!TransferPktComplete+1f5
MODULE_NAME: CLASSPNP
IMAGE_NAME: CLASSPNP.SYS
FAILURE_BUCKET_ID: 0x8E_CLASSPNP!TransferPktComplete+1f5
BUCKET_ID: 0x8E_CLASSPNP!TransferPktComplete+1f5

Figure 4: Extracts from another bug description

domain specific. The actual addresses in the call stack are
not important for similarity —thus the first three columns
in the stack trace can be ignored, and two stacks are similar
if they have the same functions in the same order. Thus,
for the bug description in in Figure 3, the function names
such as ObpDecrecmentHandleCount, ZwClose, ObpDestroy-
HandleProcedure, ExDestroyHandleTable, ObKillProcess

and the order in which they appear are important for deter-
mining similarity with respect to other call stacks.

Sometimes bug descriptions contain several attributes and
values, as shown in Figure 4. In such situations, the associa-
tion between the attribute and value is important while de-
termining similarity between two bug reports. For instance,
a bug report with an attribute IMAGE_NAME having the value
CLASSPNP.SYS is more similar to the bug report in Figure 4
than another report that has both the terms IMAGE_NAME

and CLASSPNP.SYS at different parts of the document, but
not related together as an attribute-value pair.

Call stacks and image names are just two examples of
features in bug descriptions. There are several other features
such as semaphores, mutexes, memory dumps, exceptions
etc. Each of them have their own domain specific notions
of similarity. In Section 3, we propose a notion of similarity
between typed documents, which can be implemented using
any existing search engine as a black-box. This allows us to
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Type BaseType = String
| Int

Type NamedDoc = Value(BaseType)
| KeyValuePair(BaseType ∗ Doc)

Type Doc = Null
| Base(BaseType)
| Bag(NamedDoc set)
| Ordered(NamedDoc list)

Type D̂oc = Bag( Base set)

Figure 6: Typed documents

leverage enormous amount of progress that has been made
in indexing and search engines over the past decade.

To motivate the need for link analysis in the second phase,
consider the relationship graph shown in Figure 5. In this
graph, there are 5 bug descriptions b1, b2, b3, b4, b5, and
4 people Gopal, Sriram, Vipin and Hongkang and 4 binaries
p1.dll, p2.dll, p3.dll and p4.dll.

Suppose we start with a query for which the first phase
returns the set of bugs { b2, b5 }. The objective of the
second phase is to use these bugs as “seeds” and find people
and binaries related to these bugs. We note that Vipin is
related to b2 and b5, and that the binaries {p1.dll, p2.dll,
p3.dll} are related to { b2, b5 }. Further, since Hongkang is
related to the binaries {p1.dll, p2.dll, p3.dll}, we want
to infer that Hongkang is related to the bugs { b2, b5 } as
well. Thus, we want to infer { Hongkang, Vipin } as the set
of people related to the bugs { b2, b5 }.

Probabilistic inference using factor graphs provides a uni-
form way to do this analysis over large relationship graphs
and obtain a ranked list of people, bugs, binaries, and func-
tions that are most closely related to the seeds. Further
details can be found in Section 4.

3. FIRST PHASE
The first phase of DebugAdvisor needs to match docu-

ments from a corpus that are similar to a fat query. This is
related to the open research problem of similarity detection

between documents.3 A major difficulty in the debugging
domain is the variegated mixture of structured and unstruc-
tured data in the repositories. We need domain expertise
to specify domain specific notions of structure and similar-
ity. At the same time, we desire to reuse existing robust
IR infrastructure for full-text search. Our approach is to
uniformly represent both queries and information sources as
a collection of features, which are formalized as typed docu-
ments. Typed documents help us meet the conflicting goals
of representing domain specific structure and using generic
index and search infrastructure. Domain experts can rep-
resent features as typed documents, and we present generic
techniques to transform typed documents to bags of words
for reusing index and search infrastructure.

Typed Documents and Similarity. The specification of
a typed document is given in Figure 6 in ML-style syntax.
A document Doc is one of (1) a null document, (2) base type
(integer or string), (3) a bag of named documents (which
is an unordered set), or (4) an ordered list of named doc-
uments. A named document NamedDoc is either a value of
base type or a key-value pair consisting of a key (of base
type) and a value (of document type).

In contrast with typed documents, full-text search can be
thought of as implementing a similarity metric between a
less expressive type structure, namely a bag of terms. More
precisely, a full-text search engine operates over the (impov-

erished) type structure D̂oc from Figure 6. A full-text search

engine implements retrieval based on a score function Ŝcore :

(D̂oc× D̂oc)→ Int, where Ŝcore(Bag(q), Bag(d)) is given by
the nested sum

∑
t∈q

∑
s∈d (if (t = s) then 1 else 0).

Our goal here is to define and implement a similarity metric
between typed documents represented by the type Doc.

Note that the grammar for typed documents forces the oc-
currence of a key at each level of the recursive type structure.
In the rest of this paper, we assume that each key occurs only
once in a type definition. Thus, each sub-document of a doc-
ument can be uniquely scoped using a sequence of keys used
to reach the sub-document from the root. We define a func-
tion Score: Doc × Doc→ Int that maps a pair of documents
to an integer score. Intuitively, Score(q, d) is a measure of
the similarity between q and d. The more similar q and d
are, the higher the value of Score(q, d). Figure 7 defines
Score inductively over the type structure of its arguments.

If the documents q and d are base type expressions, then
Score is defined to be 1 if they are identical and 0 if they are
not identical. Suppose the first two arguments to Score are
bags of documents. Then Score(Bag(q), Bag(d)) is defined to
be sum of the scores of matching the elements of q and d.
The auxiliary function Match : NamedDoc×NamedDoc→ Int

returns the score of base types if the arguments are base
types. If the arguments are key-value pairs, Match returns
the score between the values of the two documents if the
keys match, and 0 otherwise.

Suppose the first two arguments to Score are ordered lists
of documents. An n-gram of a sequence q is a contiguous
sub-sequence of q of length n. NGram(q, n) is set of all n-
grams of a sequence q. Then Score(Ordered(q), Ordered(d))
is the sum of the scores of matching n-grams for q and d.
In practice, we consider n-grams for values of n equal to 1
(unigrams) and 2 (bigrams).

3Please see [21] for a recent approach to the problem, appli-
cable to the domain of on-line news articles.



Score(Base(q), Base(d)) = if (q = d) then 1 else 0

Score(Bag(q), Bag(d)) =
∑

s∈q

∑
t∈d Match(s, t)

Score(Ordered(q), Ordered(d)) =
∑

n∈{1,2}
∑

t∈NGram(q,n)
∑

s∈NGram(d,n) NGramMatch(s, t, n)

Match(Value(t), Value(t′)) = Score(Base(t), Base(t′))

Match(KeyValuePair(k1, v1), KeyValuePair(k2, v2)) = if (k1 = k2) then Score(v1, v2) else 0

NGramMatch(s, t, n) =
∏

i=1..n Match(si, ti)

Figure 7: Scoring Typed Queries. Cases not given (eg. Match(Value(t), KeyValuePair(k, v), c)) are defined as 0.

T (Null) = {}
T (Base(x)) = {x}
T (Bag({v1, v2, . . . , vn})) = d1≤i≤nN (vi)
T (Ordered({v1, v2, . . . , vn})) = d1≤i≤nN (vi) d

d1≤i≤(n−1)Join(N (vi),N (vi+1))

N (Value(x)) = {x}
N (KeyValuePair(k, x)) = Prefix(k, T (x))

Prefix(s, X) = {s#x | x ∈ X}
Join(X, Y ) = {x#y | x ∈ X, y ∈ Y }

x#y = x◦“ $%$ ”◦y,
where ◦ denotes string concatenation

Figure 8: Transformation from typed documents to
bags of words

We assume here implicitly that the type structure of the
query and document match. For parts of the parse tree
that do not match Score is implicitly defined to be 0. For
instance, Match(Value(t), KeyValuePair(k, v)) is 0 since it
does not match any of the templates given in Figure 7.

In addition to the constructors shown in Figure 6, our
queries also allow annotating arbitrary subtrees with integer
weights. That is, we allow queries to contain another con-
structor WeightedQuery(Int∗Doc), and we extend the Score
function from Figure 7 as: Score(WeightedQuery(w, q), d) =
w× Score(q, d). This allows us to write our features in such
a way that more importance is given to matching certain
important parts of the query (such as call stacks).

Transformation. A salient feature of our implementation
is that it leverages existing technology for full-text search.
Thus, we are able to use any full-text search engine as a
subroutine, to implement indexing and searching typed doc-
uments.

We now show how to implement the score function Score :
(Doc × Doc) → Int described in Figure 7 using the score

function Ŝcore : (D̂oc× D̂oc)→ Int. The key idea is to use a

transformation T : Doc → D̂oc such that for any two typed

documents d1 and d2 we have that Ŝcore(T (d1), T (d2)) is
equal to Score(d1, d2).

Intuitively, T (d) walks the parse tree of the typed docu-
ment d and transforms every internal node to a bag of words
(where each word belongs to the base type). The transfor-
mation T is defined in Figure 8. Even though we use set
notation to represent bags, we note that bags differ from
sets in that the same element can occur more than once.
Thus {a, b, a} is a bag and is identical to {a, a, b} —the or-
dering of elements is irrelevant. We use d to denote union

operator on bags. Given two bags b1 and b2 we have that
b1 d b2 contains all the elements in b1 together with all the
elements in b2. If an element e appears n1 times in b1 and
n2 times in b2, then e appears (n1 + n2) times in b1 d b2.

For a document equal to Null, we have that T (Null)
is the empty bag denoted by {}. For a document of
the form Base(x), we have that T (Base(x)) is given by
the bag x which contains one element, namely x. For a
document of the form (Bag({v1, v2, . . . , vn})) we have that
T (Bag({v1, v2, . . . , vn})) is given by the union of the bags
obtained by transforming each of v1, v2, . . . vn using N . The
function N : NamedDoc → D̂oc maps named documents
to bags of words. If a named document is of the form
KeyValuePair(k, x), we have that N (KeyValuePair(k, x)) is
obtained by concatenating the prefix k and a special char-
acter sequence, say “ $%$ ”, to every element in T (x). We
assume that the special character sequence “ $%$ ” does not
appear anywhere in the original typed document. To see the
rationale for this prefix operation, recall the definition of
Match(KeyValuePair(k1, v1), KeyValuePair(k2, v2), c) from
Figure 7. Recall that Match evaluates to 0 if the keys k1 and
k2 do not match, and evaluates to Score(v1, v2, c#k1) other-
wise. Prefixing k to every element in T (x) has an identical

effect during the computation of Ŝcore on the transformed
document.

For a document of the form (Ordered({v1, v2, . . . , vn}))
we have that T (Ordered({v1, v2, . . . , vn})) is given by the
union of the bags obtained by transforming each of the uni-
grams v1, v2, . . . vn using N , as well as the union of bigrams
obtained by joining every successive pair of transformed vi’s
using the operator Join. The operator Join(X,Y ) obtains
a cross product of terms in the two bags X and Y . To
see the rationale for the join operation recall the definition
Score(Ordered(q), Ordered(d), c) from Figure 7. Note that
the definition of Score(Ordered(q), Ordered(d), c) sums up
the scores of all matching unigrams and bigrams of q and d.

The following theorem relating Score and Ŝcore, can be
established by induction over the type structure of typed
documents.

Theorem 1. For any two typed documents q and d, we

have that the score Score(q, d) is equal to Ŝcore(T (q), T (d)).

Example. Consider a section of the call stack from
Figure 3. The feature parser for call stack extracts
the ordered list Ordered([ntkrnlml!KiSwapThread,

ntkrnlml!KeWaitForSingleObject, ...,

ntkrnlml!TerminateProcess]) as a typed document
representing the feature. Note that the feature parser trims
memory address values and suffixes such as +x0x1b1 from



q = Ordered([KiSwapThread, KeWaitForSingleObject,
IopAcquireFileObjectLock, IopCloseFile])

d1 = Ordered([A, KiSwapThread, KeWaitForSingleObject,B])
d2 = Ordered([KiSwapThread, C, IopAcquireFileObjectLock,D])

T (q) = {KiSwapThread, KeWaitForSingleObject,
IopAcquireFileObjectLock, IopCloseFile
KiSwapThread_$%$_KeWaitForSingleObject,
KeWaitForSingleObject_$%$_IopAcquireFileObjectLock,
IopAcquireFileObjectLock_$%$_IopCloseFile }

T (d1) = {A, KiSwapThread, KeWaitForSingleObject, B,
A_$%$_KeWaitForSingleObject
KiSwapThread_$%$_KeWaitForSingleObject,
B_$%$_KeWaitForSingleObject }

T (d2) = {KiSwapThread, C, IopAcquireFileObjectLock, D,
KiSwapThread_$%$_C
C_$%$_IopAcquireFileObjectLock,
IopAcquireFileObjectLock_$%$_D }

Figure 9: Example to illustrate the transformation

each stack frame and retains only the function name. We
illustrate the Score function and the transformation T
using a smaller ordered list below.

Suppose, we have typed documents representing a query
q and two bug descriptions d1 and d2 as shown in Fig-
ure 9. Score(q, d1, ε) = 3, since q and d1 have two
matching unigrams, namely [KiSwapThread], [KeWait-

ForSingleObject], and one matching bigram, namely
[KiSwapThread, KeWaitForSingleObject]. We also have
that Score(q, d2, ε) = 2, since q and d2 have two matching
unigrams namely [KiSwapThread], [IopAcquireFileOb-

jectLock]. This matches our intent that q is more simi-
lar to d1 than to d2 since there are two contiguous func-
tion names KiSwapThread and KeWaitForSingleObject that
match between q and d1. On the other hand, if we had
treated q, d1 and d2 as bags of words then we would have
that Score(q, d1, ε) = Score(q, d2, ε) = 2, and the ordering
and sequencing of words will not be taken into account.

Figure 9 also shows the values of T(q), T (d1)
and T (d2). Assuming a constant IDF of 1,

we have that Ŝcore(T (q), T (d1)) = 3 since
T (q) and T (d1) have three terms in common,
namely KiSwapThread, KeWaitForSingleObject, and
KiSwapThread_$%$_KeWaitForSingleObject. We also

have that Ŝcore(T (q), T (d2)) = 2 since T (q) and T (d2)
have two terms in common, namely KiSwapThread,
and IopAcquireFileObjectLock. Recalling the val-
ues of Score(q, d1, ε) and Score(q, d2, ε) we note

that Score(q, d1, ε) = Ŝcore(T (q), T (d1)) = 3, and

Score(q, d2, ε) = Ŝcore(T (q), T (d2)) = 2.

Term Frequency and Inverse Document Frequency.

The above description of Score and Ŝcore are simplistic in
that matches among all terms are weighted equally. In prac-
tice, search engines weight terms inversely proportional to
the frequency with which they occur in the corpus. This has
the effect of weighting matches on infrequently occurring
terms higher than matches on frequently occurring terms.

More precisely, Ŝcore(Bag(q), Bag(d)) is given by the nested
sum

∑
t∈q

∑
s∈d (if (t = s) then IDF (t) else 0). Here, we

note that IDF (t) is equal to log N
DF(t)

, where N is the num-

ber of documents in the corpus and DF (t) is the number of
times term t appears in the corpus. (see Section 6 of [16]
for an introduction to IDF ).

Implementation. Our implementation of T is done in C#
using a visitor that walks over the parse tree of features (see
Figure 1 for where the transformer fits into the architec-
ture of the first phase). The documents for DebugAdvisor
come from a variety of sources. There are two kinds of doc-
uments that we index for the first phase of DebugAdvisor:
(1) bug records from the Windows bug databases, (2) debug
logs from actual debugging sessions that happen from stress
breaks and from debug sessions that are done by developers
and testers. For collecting debug logs, we have implemented
a wrapper around the kernel debugger, which logs all com-
mands issued by the user and responses from the debugger
into a text file. The wrapper allows the developer to record
the bug identifier (if it exists) for the current debugging ses-
sion.

We use 4 features: (1) bag of interesting words, such
as “impersonating”, “exclusive”, “deadlock”, “hang”, “over-
flow”, “multicore”, etc (represented as a bag), (2) debug
commands issued with their output results from the debug-
ger (represented as bag of key-value pairs), (3) values of spe-
cial attributes such as CURRENT_IRQL, PROCESS_NAME, MOD-

ULE_NAME, BUCKET_ID, etc. (represented as bag of key-value
pairs), and (4) stack frame (represented as an ordered list).

4. SECOND PHASE
The results from the first phase can be thought as an

“expansion” of the original query, and the second phase aims
to leverage information from the expanded query to infer
related entities. The benefit of this query expansion can
be quite significant, because often the raw query (say just a
stack trace from a machine being debugged) matches a set of
related bugs and these bugs have a number of explicit links
to related entities. However, just listing the links explicitly
included in the set of bugs found in the first phase is not
enough. Important relationships can be found by performing
transitive closure on the relationship graph starting with the
set of bugs found in the first phase. The goal of the second
phase is to perform such a transitive closure and retrieve a
ranked list or related entities.

A relationship graph is a weighted multi-partite graph
G = 〈V,E〉, where the set V of vertices is partitioned into
n mutually disjoint partitions {V1, V2, . . . , Vn}, such that
E ⊆ V × V × Nat contains only edges between two ver-
tices in different partitions. That is, if 〈s, t, w〉 ∈ E, and
s ∈ Vi and t ∈ Vj , then we have that i 6= j. The third com-
ponent of the edge w is a weight, a natural number, which
is a measure of the relationship from s to t —-the larger the
weight, the tighter the relationship.

The vertices of the relationship graph used by DebugAd-
visor have one partition Vbugs for bug descriptions (this in-
cludes bug reports as well as logs from interactive debug-
ging sessions as mentioned in Section 2), one partition for
Vfiles , one partition Vfunctions for functions, and one partition
Vpeople for people. We use an existing tool called BCT [20] to
build this relationship graph from various data repositories.
For every resolved bug in the bug database, BCT looks for
check-ins in source code version control that are associated
with fixing the bug, and computes functions and source files
that were changed to fix the bug, and the people who made
those changes. BCT creates relationship links between these
entities using such an analysis.

The output of the first phase, R1, is a set of bug descrip-
tions that are highly related to the query. That is R1 ⊆



Vbugs . The goal of the second phase is to use R1 as a start-
ing point to perform link analysis on the relationship graph
and compute a 4-tuple R2 = 〈vbugs , vfiles , vfunctions , vpeople〉,
where vbugs ⊆ Vbugs , vfiles ⊆ Vfiles , vfunctions ⊆ Vfunctions ,
vpeople ⊆ Vpeople .

The second phase attempts to identify vertices R2 in the
relationship graph that are most correlated with the vertices
R1 that are produced by the first phase. Formally, a rela-
tionship graph can be viewed as a Markov chain (see [16])
with |V | vertices, and a |V | × |V | transition probability ma-
trix each of whose entries lies in the interval [0, 1]. The tran-
sition probabilities are obtained by normalizing edge weights
of the relationship graph such that the sum of the normal-
ized edge weights going out of each vertex is 1. We desire
to compute the steady state probability distribution over
the vertices of the Markov chain for a random walk starting
at vertices R1. We want to return the vertices with large
steady state probabilities in each of the vertex partitions as
the result R2 of the second phase.

In our implementation, we use factor graphs [15] to com-
pute these steady state probabilities. We associate one
Bernoulli random variable with each vertex in V . The ran-
dom variable for each element in R1 is set to an initial dis-
tribution where the variable takes a value 1 with probability
0.9 and 0 with probability 0.1. All the other random vari-
ables (associated with vertices in V \R1) are set to have an
initial distribution where the variable takes a value 1 with
probability 0.5 and 0 with a probability 0.5. For every edge
e = 〈u, v, w〉 which associates verities u and v with weight
w, we add a factor Fe (a probabilistic constraint) which con-
strains the joint probability distribution of the random vari-
ables Xu and Xv associated with u and v. The constraint Fe

states that Xu and Xv take the same value with probability
p and different values with probability 1 − p. The value of
the parameter p depends on the weight w (normalized with
the weights of other edges connected to u and v). We use
factor graph inference [15] to compute the posteriori prob-
abilities of each random variable, and choose the random
variables with highest posteriori probabilities for result set
R2. Our implementation of DebugAdvisor uses the factor
graph package Infer.NET [1].

5. EVALUATION
We have deployed DebugAdvisor to the Windows Ser-

viceability group inside Microsoft. Engineers in this team
are spread across two locations —Redmond (USA) and Hy-
derabad (India). We want to address two questions: (1) How
effective is DebugAdvisor in serving the needs of our users?
(2) How effective are the various components of DebugAd-
visor when compared with existing approaches like full-text
search? We answer the first question with usage numbers,
user feedback logged in the tool, and anecdotal feedback
through emails from users, and interviews with users. We
answer the second question by comparing precision-recall
numbers for the two phases of DebugAdvisor with exist-
ing techniques.

5.1 Usage and feedback
Over the past 6 months, we have done 2 major releases

and 3 minor (bug fix) releases of DebugAdvisor. The first
major release was done for a small early-adopter commu-
nity of about 10 engineers. We received useful feedback
from this early-adopter community. Users gave us several

Description Value
Number of users 129
Number of queries 628
Unsolicited responses: recommendation useful 161
Unsolicited responses: recommendation not useful 47
Percentage unsolicited responses: useful 78%
Number of active bugs where we solicited responses 20
Solicited responses: recommendation useful 15
Solicited responses: recommendation not useful 5
Percentage solicited responses: useful 75%

Figure 10: User responses

requirements to make the tool useful to them: (1) additional
bug databases that they wanted us to index and search, (2)
need to automatically update the indexes as new bugs get
filed (ensuring that the search done by DebugAdvisor in-
cludes recent bug reports), (3) request to index and search
through actual logs of debug sessions. We addressed most of
these issues and made an enhanced release to the entire Win-
dows Serviceability group. The scale and engineering effort
required for the current release of DebugAdvisor service
is non-trivial. The service currently indexes 2.36 million
records (including bug reports, attachments to bug reports,
debug logs, etc) collected over several years. The DebugAd-
visor service also builds and analyzes relationships between
users, files, functions and bug reports, using data from sev-
eral hundred thousand version control check-ins.

We log all users and all queries to the DebugAdvisor
service. Usage statistics are given in Figure 10. We have had
129 users, and 628 queries in the first 4 weeks since the
current release. For each item we recommend (bug reports,
people, files, etc) our UI offers the facility to respond stating
if the recommendation was useful or not useful. We received
208 responses (given voluntarily by users), and 78% of the
responses state that recommendations were useful.

We performed another study on 20 randomly picked ac-
tive bugs from the bug database. We used DebugAdvisor
to search for related information, and then contacted the bug
owner (i.e, the person who is working on the bug) with the
information returned by DebugAdvisor, and asked them
for feedback on whether the search results returned were use-
ful. As shown in Figure 10, 75% of these responses stated
that search results were useful. In addition, we note that in
3 cases (out of 20) an exact duplicate of the active bug was
found leading to immediate resolution of the bug.

5.2 Anecdotal evidence
Anecdotal evidence from users has been positive.

Stress break. An engineer debugging a failure during
stress testing sent us the following email: “We had one break
today from DTP41 testing. So the first thing I did was to
go to http://debugadvisor, copied the stack from the break
into the search query, and pressed Search. And right there
the first bug given back by DebugAdvisor, which is the exact
match for this break. I didn’t even need to check the other
results it returned.”

Customer support. An engineer from customer support
sent us the following email: “..and my query worked success-
fully. Additionally, the second bug in the list returned the
right match, as my debugging found it is the same issue and
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Figure 11: Sizes of queries from users.

now I can request a port to Windows 2008. Thanks for the
help!”

Other positive feedback. Several users sent us their pos-
itive experience without mentioning specific details about
the issues they tried the tool on. One user’s feedback said:
“This tool seems smart in searching related bugs based on
stack pattern match. I pasted a callstack and clicked search
button and I got some useful information for the related bug,
[other tools do] not have such feature like search by bulk text.”

Another user said: “..right on 3x in a row! idea: display
some sort of relevance/confidence indicator for each guess.
It is very useful to use full description to search for related
bug. It is very accurate in finding related bugs.”

Another user said: “Nailed it on the very first result! Im-
pressive, indeed :) Will there be a possibility of search word
highlighting in the future?”

Negative feedback. However, not every user found what
they were looking for. One user said “I threw a few queries
at it and it returned nothing interesting. Do we still need to
wait until a critical mass of debug logs is built up or some-
thing?” .

After some investigation, we found that this user’s team
works on very recently filed bugs, and ones for which we
are less likely to have historical data similar to the issues
under investigation. We believe that this team will benefit
more from indexing and searching logs from recent debug-
ging sessions. We are pushing wider adoption of our debug-
ger wrapper that automates collection of debug logs in this
team.

Another user said “252422 and 251122 are very similar
bugs for search query [and they are returned by DebugAdvi-
sor] but are separated by a large number of unrelated results,
leading me not to look at the proper related bugs.” In this
case, we got the relevant information, but did not rank them
appropriately. We are investigating tuning our ranking al-
gorithm using the data we collected from such feedback.

5.3 Quantitative Data
Query size and performance. Figure 11 shows distri-
bution of query sizes from the 628 queries collected over 4
weeks of deployment. We note that more than 65% of the
queries were over 1K bytes, and about 25% of the queries
were over 5K bytes. Response time for queries depends on
query size. For short queries (a few words) response times
range over 15 to 20 seconds. Average query times for fat
queries —ranging in size from 4K to 30K— is about 2 min-
utes. The longest query time we have ever encountered is
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Figure 12: Precision and recall for first phase of
DebugAdvisor(challenging queries).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 4 6 8 10
P

re
ci

si
o

n
/R

e
ca

ll

Number of retrieved results

Precision (features)

Recall (features)

Precision (full-text)

Recall (full-text)

Figure 13: Precision and recall for first phase of
DebugAdvisor(all queries).

5 minutes. A common sentiment among DebugAdvisor
users is that they are willing to wait for a few minutes as
long as the tool produces a useful result, because the previ-
ous alternative they had (querying various repositories with
ad-hoc small queries and combining the results manually)
was very painful and time consuming.

Precision and recall. Suppose we retrieve k documents
in response to a query. Suppose r of these documents fall
within the expected results, and there are a total of t ex-
pected results (note that r ≤ k and r ≤ t). Then, precision
is defined as the ratio r

k
, and recall is defined as the ratio

r
t

[16]. A high precision value indicates that most results
retrieved were useful, and a high recall value indicates that
most useful results were retrieved.

Measuring precision and recall for a tool such as De-
bugAdvisor is tricky because it is very hard to specify a
complete set of expected results for any query. We took the
following approach. We picked 50 queries from existing
bug reports at random, studied them extensively over a pe-
riod of several months, and manually constructed a set of
expected search results for each of these queries.4

During manual analysis of bug pairs classified as “related”
(and therefore expected to be found by the system), we no-
ticed that several of them, especially those classified as “du-
plicate”, have significant portions of matching text in the
query —a quick glance is all that is needed to realize that it is

4When using an existing bug report as a query, we concate-
nate all the text in the bug report and use it as a fat query.
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the same issue. However, significantly, we noted that about
30% of the related bug pairs we examined required nontriv-
ial analysis of content to determine their relatedness, often
because a substantial portion of the text is different (such as
when a symptom of an operating system bug manifests it-
self through different applications.) We classify these kinds
of queries as “challenging”. Of the 50 queries we analyzed
(which were chosen at random), we found that 16 queries
were challenging. Figure 12 compares precision and recall
numbers for these challenging queries between DebugAd-
visor’s first phase and full-text search. We note that De-
bugAdvisor improves recall by 33% on these queries. With
all queries (including challenging and duplicate queries), De-
bugAdvisor’s first phase improves recall by 14% as shown
in Figure 13.

We also performed precision-recall comparisons for queries
from actual users, using the responses that users found to
be useful as the expected set of golden results. Compared
to the first phase of DebugAdvisor, we found that full-
text search is able to recall only 65% of the results found to
be useful by our users, clearly illustrating the value of our
feature-based approach.

Figure 14 presents recall numbers for related people re-
trieved by the second phase of DebugAdvisor. We find
that the recall varies depending on how many results from
the first phase are used to seed the second phase. We find
that best recall numbers for the second phase are obtained
by using 5 top results from the first phase to seed the sec-
ond phase. If we use less than 5 results, we seem to be
missing some important seeds, and if we use a larger num-
ber of results (say 10), we seem to be introducing noise into
the starting seeds. Figure 14 compares the recall for factor
graphs with a null-hypothesis approach (the latter just re-
turns the people associated with the seeds from first phase
without doing any search). We find that recall improves
with factor graphs for larger values of retrieved results. We
are working on improving our ranking algorithm to manifest
this improvement for smaller number of retrieved results.

Threats to validity. All empirical studies were done with
the Windows bug data. While Windows is an extremely
large and diverse software base with over 100 million lines of
code, ranging from GUI to low-level kernel components, fur-

ther work is needed to evaluate if results generalize to other
projects. It is possible that some users were unsatisfied with
the tool, but did not send a negative response. This could
affect the reported percentage of positive responses. Our
precision and recall numbers were computed with a modest
set of randomly selected queries. Though these were selected
at random, further work is needed to evaluate if empirical
results generalize to a larger data set. The main difficulty
in scaling evaluation of precision and recall to larger data
sets is the manual effort needed to determine the set of all
expected results.

6. RELATED WORK
Mining software repositories and using the computed in-

formation to help improve the productivity of programming
tasks has been an active area of research for the past sev-
eral years. Kim, Pan and Whitehead have used historical
data from fixed bugs in version control to detect project-
specific bugs that still exist in the code [13]. The eROSE
tool mines software version histories and uses mined infor-
mation to suggest other places that need to be changed when
the programmer attempts to change a method or a class [24].
The Vulture tool correlates information mined from source
code modification history, vulnerability reports, and soft-
ware component structure to provide risk assessments of
areas of code that are more likely to be sources of future
vulnerabilities [17]. Our work mines software repositories to
help programmers and testers during debugging.

The presence of duplicate bugs in software repositories
has received much attention. Runesan et a.l [18] propose
using natural language processing techniques, and Jalbert
and Weimer [12] propose using textual similarity and clus-
tering techniques to detect duplicate bug reports. Wang et
al. propose combining similarity information from both nat-
ural language text and execution traces to detect duplicate
bugs [23]. Bettenburg et al. propose detecting and merging
duplicate bug reports so as to give developers maximum in-
formation from various sources to diagnose and fix bugs [3].
Bettenburg et al. present a study on what constitutes a good
bug report by conducting surveys with open-source develop-
ers and bug reporters [2]. Interestingly, their paper states
that the presence of a stack trace is one of the most impor-
tant desideratum for a developer to resolve the bug quickly.
The mixture of structured and unstructured information in
bug reports has been noticed before. Bettenburg et al. have
proposed a tool infoZilla to extract structural information
from bug reports [4]. The first phase of DebugAdvisor
is the next step in this line of research —we allow domain
experts to identify structure in bug reports, and propose a
transformation that allows such domain specific notions of
similarity to be implemented using existing search engines
that are structure agnostic. The distinguishing features of
our work are two fold: (1) We allow our users to query our
system using a “fat query” which is a textual concatenation
of all the information they have about the issue in hand,
including text from emails, text from logs of debug sessions,
viewing core dumps in the debugger, etc. (2) Our tool archi-
tecture and the notion of typed documents enables a clean
and systematic way to incorporate domain-specific knowl-
edge into an information retrieval system for handling fat
queries. This enables leveraging the domain expert’s knowl-
edge about feature similarity while still reusing existing ro-
bust and scalable infrastructures for full-text search.



Just as there are duplicates in bug reports, there are clones
in code. Clone detection is an active area of current re-
search [11]. Structural similarity between pieces of code can
be used to improve productivity of programming tasks. Cot-
trell et al. automatically extract structural relationships be-
tween code for the purpose of generalization tasks [7], and in
particular code reuse [8]. While these works employ heuris-
tics to discover structural similarity between pieces of source
code, the architecture of DebugAdvisor uses typed docu-
ments to enable domain experts to specify structure in bug
reports in a domain-specific manner.

We are not the first to build relationship graphs between
various artifacts. The Hipikat recommendation system [9,
10] builds and uses a relationship graph that relates var-
ious software artifacts. Similar relationship graphs have
since been built by others, for example, see Gina Venolia’s
Bridge [22] and Alex Tarvo’s BCT [20]. Random walks on
such relationship graphs have also been suggested before.
The Fran tool [19] performs random walks on call graphs
to recommend related API functions. The distinguishing
feature of our work is to layer the search in two phases: The
first phase uses similarity between bug reports to find other
bug reports related to the current report. The second phase
uses random walks on the relationship graph starting at the
bug reports identified by the first phase to provide recom-
mendations of related people, source files and functions.
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