
What’s Decidable about Weak Memory Models?

Mohamed Faouzi Atig1, Ahmed Bouajjani2,
Sebastian Burckhardt3, and Madanlal Musuvathi3

1 Uppsala University, Sweden, mohamed faouzi.atig@it.uu.se
2 LIAFA, Paris Diderot Univ. & CNRS, France, abou@liafa.jussieu.fr

3 Microsoft Research Redmond, USA, {sburckha,madanm}@microsoft.com

Abstract. We investigate the decidability of the state reachability problem in
finite-state programs running under weak memory models. In [3], we have shown
that this problem is decidable for TSO and its extension with the write-to-write or-
der relaxation, but beyond these models nothing is known to be decidable. More-
over, we have shown that relaxing the program order by allowing reads or writes
to overtake reads leads to undecidability.
In this paper, we refine these results by sharpening the (un)decidability frontiers
on both sides. On the positive side, we introduce a new memory model NSW (for
non-speculative writes) that extends TSO with the write-to-write relaxation, the
read-to-read relaxation, and support for partial fences. We present a backtrack-
free operational model for NSW, and prove that it does not allow causal cycles
(thus barring pathological out-of-thin-air effects). On the negative side, we show
that adding the read-to-write relaxation to TSO causes undecidability, and that
adding non-atomic writes to NSW also causes undecidability.
Our results establish that NSW is the first known hardware-centric memory model
that is relaxed enough to permit both delayed execution of writes and early exe-
cution of reads for which the reachability problem is decidable.

1 Introduction

The memory consistency model (or simply, the memory model) of a shared-memory
multiprocessor is a low-level programming abstraction that defines when and in what or-
der writes performed by one processor become visible to other processors. The simplest
memory model, sequential consistency [16], requires that the operations performed by
the processors should appear as if these operations are interleaved in a consistent global
order. Despite its simplicity and appeal, most contemporary hardware platforms support
weak (relaxed) memory models for performance reasons [2, 13].

The effects of weak memory models can be counterintuitive and difficult to un-
derstand even for very small programs. Not surprisingly, relaxed memory models are
an active research area today. Much progress has been made to aid programmers, in
the form of verification or model-checking algorithms [8, 15, 26, 4], testing tools [11,
18], analyses that check whether programs are exposed to specific relaxations [7, 9, 20],
fence insertion tools [14, 15, 17], verified compilation [10, 24, 23], and formal models
that closely approximate commercial multiprocessors [21, 22, 25].

Nevertheless, many foundational questions about weak memory models remain. For
instance, given a finite-state concurrent program under weak memory model, what is the

2 M. F. Atig, A. Bouajjani, S. Burckhardt, M. Musuvathi

complexity of deciding if a particular erroneous state can be reached? What is the most
relaxed model for which the safety verification problem is decidable? Understanding
the answers to these questions is crucial for model checking safety properties of pro-
grams under a relaxed memory model and for checking if a program exhibits the same
behavior under different memory models.

w→ r (Write-to-read order). The effect of a write may be delayed past a subsequent read.
This relaxation enables the use of per-processor write buffers. Specifically, when execut-
ing a write, a processor may buffer the value to be written in its local buffer and continue
executing before the buffered value becomes globally visible.

w→ w (Write-to-write order). A processor may swap the order of two writes. For instance,
if using a write buffer as described above, writes may exit the buffer in a different order
than they entered.

r → r/w (Read-to-read/write order). A processor may change the order of a read and a
subsequent read or write. This enables out-of-order execution techniques that help to
hide latency of memory accesses. We further distinguish between r→ r (read-to-read)
and r→ w (read-to-write) relaxations.

RLWE (Read local writes early). A processor may read its own writes even if they are not
globally visible yet (i.e. before the exit the buffer). For example, if a processor executes
a read from a location for which there are pending writes in the local buffer, it can imme-
diately forward the value of the last such write from the buffer to the read.

RRWE (Read remote writes early). A processor may read other processors’ writes even if
they are not globally visible yet. For example, a write in a local buffer may be directly
forwarded to some remote processors before it exits the buffer.

RWF (read-read and write-write fences). A processor may issue a read-read (write-write)
fence to prevent reordering of reads (writes) that precede the fence with reads (writes)
that succeed it.

Fig. 1. Definition Acronyms that represent relaxations/features, following the terminology in [2].

Memory Model Name Reach. Problem
{w→ r, RLWE} TSO decidable [3]
TSO∪{w→ w} - decidable [3]
TSO∪{w→ w, RWF} PSO decidable [new]
PSO∪{r→ r} NSW decidable [new]
TSO∪{r→ r/w} - undecidable [3]
TSO∪{r→ w} - undecidable [new]
NSW∪{RRWE} - undecidable [new]

Fig. 2. Summary of previously known and unknown
results about the decidability of the reachability
problem on weak memory models. The acronyms
are defined in Fig. 1.

In prior work [3], we have pre-
sented some early decidability results
for relaxed memory models. In this pa-
per, we refine these results with a pre-
cise study of relaxations that lead to
the undecidability of memory models.
Fig. 1 describes the relaxations stud-
ied in this paper and Fig. 2 summarizes
our results and comparison with prior
work.

Our results show (perhaps surpris-
ingly) that relaxations that are com-
monly considered as counter-intuitive
by programmers coincide with those that lead to undecidability. For instance, we show
that adding the read-to-write relaxation to TSO (total store order) results in an undecid-
able memory model. In such a relaxation, a processor eagerly makes a write visible to
other processors before a prior read has completed. Such speculative writes can result
in causal cycles, a well known memory model hazard [12, 19]. On the other hand, a

What’s Decidable about Weak Memory Models? 3

memory model that avoids this relaxation but otherwise remains general by allowing
read-to-read, write-to-read, and write-to-write relaxations together with read-read and
write-write fences is actually decidable. We call this memory model NSW (non specu-
lative writes) and study its properties. Finally, we show that adding non-atomic writes
to NSW leads to undecidability. Such non-atomic writes can lead to counter-intuitive
IRIW (independent reads of independent writes) effects [6].

Along the same vein, we show that NSW, which is the most relaxed model known
to be decidable, exhibits the following desirable properties:

– NSW enables significant optimizations; specifically, (1) it permits a write to be
moved down (later) in the program execution past any other read or write (by de-
laying it in a buffer), and (2) it permits reads to be moved up (earlier) in the program
execution, before any read or write (even before a read on whose value it depends).

– The performance impact of prohibiting the read-to-write relaxation (which is the
only ordering relaxation remaining in NSW) can be ameliorated by write buffers:
even if we disallow writes to become visible to other processors (i.e. exit the write
buffer) before all preceding reads have completed, we may still allow writes to enter
into the buffer while older reads are still pending.

– Since NSW does not permit writes to become visible to other processors before all
older loads by the same processor have completed, causal cycles and out-of-thin-air
behaviors are impossible. We formalize and prove this fact in Section 3.6.

– In operational memory models, reordering of dependent memory accesses is usu-
ally modeled by nondeterministically guessing the read value and validating it later.
In some sense, such models are not very constructive as they may require backtrack-
ing if a guess can not be validated later on. We discovered a way to eliminate all
such guesses from our operational model for NSW, obtaining an alternative opera-
tional model that is backtrack-free (Section 5).

– The relaxations in NSW do not depend on any notion of data/control-dependencies.
Not only does this greatly simplify the formalism, but it also avoids subtle sound-
ness problems with compiler optimizations that may break dependencies [5].

To establish that the state reachability problem for NSW is decidable, we proceed
in two steps. First, we define an operational model for NSW where reads do not need to
be stored, but still allowing the precise simulation of all their possible reorderings due
to the read-to-read relaxation (section 5). The key idea for tackling this issue consists,
roughly speaking, in using a buffer storing the history of all the past memory states,
in addition to informations about the most recent value read by each process on each
variable. The whole model has actually three levels of buffers, each of them related
to one of the considered relaxations (write-to-write, write-to-read, and finally read-to-
read). We think that this step has its own interest from the point of view of modeling
and of understanding the effects of each of the considered relaxations, regardless from
the decidability issue. Then, in a second step (section 6), we prove that the defined
operational model can be transformed, while preserving state reachability, into a system
that is monotonic w.r.t. a well quasi-ordering on the set of its configurations. This allows
to deduce that the model has a decidable state reachability problem, using [1]. Both
steps are nontrivial and are based on new and quite subtle constructions.

4 M. F. Atig, A. Bouajjani, S. Burckhardt, M. Musuvathi

2 Preliminary definitions and notations

Let k ∈ N such that k ≥ 1. Then, we denote by [k] the set {1, . . . ,k}. Let Σ be a finite
alphabet. We denote by Σ∗ the set of all words over Σ, and by ε the empty word. The
length of a word w ∈ Σ∗ is denoted by length(w). (We assume that length(ε) = 0.) For
every i∈ [length(w)], let w(i) denote the symbol at position i in w. For a∈ Σ and w∈ Σ∗,
we write a ∈ w if a appears in w, i.e., ∃i ∈ [length(w)] such that a = w(i).

Given a sub-alphabet Θ⊆ Σ and a word u ∈ Σ∗, we denote by u|Θ the projection of
u over Θ, i.e., the word obtained from u by erasing all the symbols that are not in Θ.

Let k ≥ 1 be an integer and E be a set. Let e = (e1, . . . ,ek) ∈ Ek be a k-dim vector
over E. For every i ∈ [k], we use e[i] to denote the i-th component of e (i.e., e[i] = ei).
For every j ∈ [k] and e′ ∈ E, we denote by e[j← e′] the k-dim vector e′ over E defined
as follows: e′[j] = e′ and e′[l] = e[l] for all l 6= j.

Let E and F be two sets. We denote by [E → F] the set of all mappings from E to
F . Assume that E is finite and that E = {e1, . . . ,ek} for some integer k ≥ 1. Then, we
sometimes identify a mapping g ∈ [E→ F] with a k-dim vector over F .

3 Weak Memory Models

3.1 Shared memory concurrent systems

Let D be a finite data domain, and X = {x1, . . . ,xm} a finite set of variables valued in D.
Let M denote the set Dm, i.e., the set of all possible valuations of the variables in X .

For a given finite set of process identities I, let Ω(I,X ,D) be the set of operations
of the form: (1) “no operation”: nop, (2) read: r(i, j,d), (3) write: w(i, j,d), (4) atomic
read-write : arw(i, j,d,d′), (5) read fence: rfence(i), and (6) write fence: wfence(i),
where i ∈ I, j ∈ [m], and d,d′ ∈ D. Intuitively, r(i, j,d) (resp. w(i, j,d)) means that
process i reads (resp. writes) the data d from (resp. to) the variable x j. The semantics of
atomic read-writes and of read/write fences will be explained in section 3.2.

A concurrent system over D and X is a tuple N = (P1, . . . ,Pn) such that for every
i ∈ [n], Pi = (Pi,∆i) is a finite-state process where (1) Pi is a finite set of control states,
and (2) ∆i ⊆ Pi×Ω({i},X ,D)×Pi is a finite set of labeled transitions.

Let P=P1× . . .×Pn. For convenience, we write p op−−→i p′ instead of (p,op, p′)∈∆i,
for any p, p′ ∈ Pi and op ∈ Ω({i},X ,D). We denote by Ω(N) ⊆ Ω([n],X ,D) the set
of operations used in N . Given an operation ω = op(i, j,d) with op ∈ {r,w}, i ∈ [n],
j ∈ [m], and d ∈ D, let proc(ω) = i, var(ω) = j, and data(ω) = d.

3.2 Memory models

The executions of a concurrent system are obtained by interleaving the operations is-
sued by its different processes. In the Sequential Consistency (SC) model, the order
between operations of a same process is preserved. Relaxations of this program or-
der lead to the definition of various weak memory models. However, fences (i.e., bar-
riers) can be used to impose the serialization of some operations at some execution
points. An operation arw(i, j,d,d′) is equivalent to the atomic execution of the sequence

What’s Decidable about Weak Memory Models? 5

r(i, j,d);w(i, j,d′), with the additional assumption that this operation is never reordered
with any other operation of the same process. Therefore, this operation can emulate a
full fence, i.e., a fence such that any two operations by the same process occurring
before and after (in program order) the full fence cannot be swapped. The operation
wfence(i) (resp. rfence(i)) is a fence for writes (resp. reads) only, i.e., writes (resp.
reads) that occur before and after a write fence (resp. read fence) cannot be swapped.

3.3 A Semantics based on Rewrite Rules

We consider memory models corresponding to a set of program order relaxations
defined by permutation rules between the operations. Given read/write operations
op1,op2 ∈ {w, r}, relaxing the op1 to op2 order consists in allowing that operations
of the class op2 are allowed to overtake operations of the class op1 in a computation,
provided that these operations are issued by the same process, and that they are acting
on different variables. This corresponds to defining a set of rewrite rules:

op1(i, j,d)op2(i,k,d
′) ↪→ op2(i,k,d

′)op1(i, j,d) (1)

for any i ∈ [n], j,k ∈ [m], j 6= k, and d,d′ ∈ D.
In addition to permutations between reads and writes, we consider that reads and

write fences issued by the same process can always be swapped, and the same holds
concerning writes and read fences. Then, we consider the following set of rewrite rules
RWF defining the semantics of read/write fences: For any i ∈ [n], j ∈ [m], d ∈ D,

wfence(i)r(i, j,d) ↪→ r(i, j,d)wfence(i) (2)
r(i, j,d)wfence(i) ↪→ wfence(i)r(i, j,d)

rfence(i)w(i, j,d) ↪→ w(i, j,d)rfence(i)

w(i, j,d)rfence(i) ↪→ rfence(i)w(i, j,d)

We also consider the following set RLWE (Read Local Write Early) of rewrite rules:

w(i, j,d)r(i, j,d) ↪→ w(i, j,d) (3)

for any i ∈ [n], j ∈ [m], d ∈D. These rules say that a read that occurs after a write of the
same value on the same variable by the same process can be validated immediately.

Then, we consider that a memory model M is defined by the choice of a set of rewrite
rules defining the allowed relaxations of the program order. For instance, we define in
this framework the two well known models TSO and PSO as follows:

TSO = RWF∪RLWE∪{w→ r}
PSO = RWF∪RLWE∪{w→ r, w→ w}

Clearly, TSO can be simulated under PSO by inserting a wfence before each write
operation. Notice that using read fences in TSO and PSO is not relevant since reads
cannot be swapped in these models. Similarly, using write fences in TSO is not relevant.
But the possibility of using write fences in PSO is important. Without write fences, it
is not possible to simulate TSO under PSO.

6 M. F. Atig, A. Bouajjani, S. Burckhardt, M. Musuvathi

Given a process Pi of N , and two control states p, p′ ∈ Pi, a computation trace of
Pi from p to p′ is a finite sequence τ = ω0 · · ·ω`−1 ∈ Ω({i},X ,D)∗ such that there are
p0 · · · p` ∈ P∗i such that p= p0, p′ = p`, and for every j ∈ {0, . . . , `−1}, (p j,ωi, p j+1)∈
∆i. The set of computation traces of Pi from p to p′ is denoted by T (Pi, p, p′).

Let R be a set of rewrite rules over traces defining a memory model M. Given a
rewrite rule ρ = α ↪→ β, where α,β ∈ Ω(N)∗, and a computation trace τ ∈ Ω(N)∗,
we define a rewriting relation ↪→ρ between traces as follows: τ ↪→ρ τ′ if τ = τ1ατ2
and τ′ = τ1βτ2 for some τ1,τ2 ∈ Ω(N)∗. As usual, ↪→∗ρ denotes the reflexive-transitive
closure of ↪→ρ. These definitions are generalized in the obvious way to sets of rules
and sets of computation traces. Given a set of rewrite rules R, the closure of a set of
traces T , denoted by [T]R, is the smallest set containing T and which is closed under
the application of the rules in R, i.e., [T]R = {τ′ ∈Ω(N)∗ : τ ∈ T ∧ τ ↪→∗R τ′}.

Given two traces τ1 and τ2, the shuffle of the two traces is the set of traces ob-
tained by interleaving the elements of τ1 and τ2 while preserving the original order
between elements of each trace. Formally, the operator ‖ is defined inductively as fol-
lows: (1) ε‖τ = τ‖ε = τ, and (2) ω1τ1‖ω2τ2 = ω1(τ1‖ω2τ2)∪ω2(ω1τ1‖τ2) for every
ω1,ω2 ∈ Ω(N), and for every τ,τ1,τ2 ∈ Ω(N)∗. The definition can be extended in a
straightforward manner to a finite number of traces.

Given two vectors of control states p,p′ ∈P, the set of computation traces in N from
p to p′ in the memory model M (defined by R), denoted by TM(N ,p,p′), is defined by

[T (P1,p[1],p′[1])]R ‖ . . . ‖ [T (Pn,p[n],p′[n])]R

We define a relation [〉 between memory states corresponding to the execution of
operations in Ω(N). Given d,d′ ∈M, we have, for every i ∈ [n] and for every j ∈ [m]:

– d[w(i, j,d)〉d′ if d′ = d[j← d],
– d[r(i, j,d)〉d′ if d[j] = d and d = d′,
– d[arw(i, j,d,d′)〉d′ if d[j] = d and d′ = d[j← d′],
– d[op〉d′ with op ∈ {nop,wfence(i), rfence(i)}, if d = d′.

We extend this definition to sequences of operations, and therefore to computation
traces. A state of N is a pair 〈p,d〉 where p ∈ P and d ∈ M. For a given memory
model M, we define a reachability relation ReachMN between states of N as follows. Let
s = 〈p,d〉 and s′ = 〈p′,d′〉 be two states of N . We consider that ReachMN (s,s′) holds if
there exists a trace τ ∈ TM(N ,p,p′) such that d[τ〉d′.

3.4 The State Reachability Problem

The state reachability problem for a memory model M consists in, given a concurrent
system N and two states s and s′ of N , checking whether ReachMN (s,s′) holds. We have:

Theorem 1 ([3]). The state reachability problem for TSO is decidable.

We also proved in [3] the decidability of the state reachability problem for a model
with both w→ w and w→ r relaxations, but without considering write fences. There-
fore, the so-called PSO in [3] is incomparable with TSO (since write fences are neces-
sary to simulate TSO under that model), and is strictly less expressive (w.r.t. the set of

What’s Decidable about Weak Memory Models? 7

computation traces) than the PSO as defined in this paper. We show also in [3] that the
state reachability problem is undecidable for the model where all four read/write relax-
ations are considered. We prove, using a reduction of Post’s Correspondence Problem,
the following stronger result:

Theorem 2. The state reachability problem for TSO ∪{r→ w} is undecidable.

3.5 NSW: A Model with Non Speculative Writes

We have seen in Section 3.4 that including the r → w relaxation to TSO results in
a memory model with an undecidable state reachability problem. Motivated by this,
we introduce a memory model called NSW (for Non Speculative Writes) obtained by
discarding this relaxation, i.e., by considering the following set of rules:

NSW = RLWE∪RWF∪{w→ r, w→ w, r→ r}

Clearly, the NSW model subsumes TSO and PSO, and since it allows out-of-order
reads, it is actually a strictly more relaxed model than PSO. Notice that PSO can be
simulated under NSW by inserting a rfence after each read operation. We show later
that the state reachability problem problem for NSW is decidable. In the next section,
we discuss another desirable property of the NSW memory model.

3.6 Absence of Causality Cycles in NSW

Let po denote the program order relation corresponding to the order in which operations
of each thread are issued by the program. Then, one can define a dependency relation
between operations of a same process that reflects the data and control dependencies.
We adopt here a conservative definition by considering that all operations occurring
after a read operation, in the program order, are dependent from that read. Formally,
this corresponds to the following dependency relation.

dep= po∩ ({r}×{r,w,arw}) (4)

Second, we define a read-from relation, denoted rf, that associates with each read
event of the computation a write event such that w(i,k,d)→rf r(j,k,d) if the r(j,k,d)
operation issued by process P j takes the value d that has been written by the operation
w(i,k,d) issued by process Pi on the variable xk. Then, the causality relation corre-
sponding to the considered computation is defined by c = dep ∪ rf.

x = y = 0
P1 P2
(1) r(x,1) (3) r(y,1)
(2) w(y,1) (4) w(x,1)

x = y = 1

It can be seen that under the model SC ∪{r→w}, there are
programs having computations with a cyclic causality relation.
An example of such a program is given on the right. It is clear
that under the SC model, the four operations of this program
cannot belong to a same computation from x = y = 0 to x =
y = 1. However, using the r→ w relaxation, it is possible by permuting (1) and (2), to
execute the four operations in the following order (2),(3),(4),(1). This computation
contains the causality cycle: (2)→rf (3)→dep (4)→rf (1)→dep (2). We prove that by
discarding the r→ w relaxation, NSW avoids causal cycles.

8 M. F. Atig, A. Bouajjani, S. Burckhardt, M. Musuvathi

Theorem 3. Every computation of any concurrent system under the NSW model has
an acyclic causality relation.

Notice that since this theorem relies on the conservative definition of dependency
given above (4), it also holds for any refinement of the dependency relation.

4 An Operational Model for NSW

We provide an operational model for NSW where configurations are formed by a vector
of control states, one per process, a memory state giving the valuation of the shared
variables, and an event structure where pending operations, issued by the different pro-
cesses but not yet executed, are stored. This event structure defines a partial order be-
tween these operations reflecting the constraints imposed by the memory model on the
order of their execution. We start by defining the notion of event structure. Then, we
define a first operational model where the stored operations can be reads, writes, or
write fences. (Nop’s, atomic read-writes, and read fences do not need to be stored.)

4.1 Event structures

Let E be an enumerable set of of events. An event structure over an alphabet Σ is a
tuple S = (E,;,λ) where E is a finite subset of E , ;⊆ E×E is a partial order over
E, and λ : E→ Σ is a mapping associating with each event a symbol in Σ.

Given an event e ∈E\E and a symbol a ∈ Σ, we denote by S� [e← a] the structure
(E ∪{e},;,λ′) such that λ′(e) = a and λ′(e′) = λ(e′) for all e′ ∈ E. Given an event
e ∈ E, we denote by S� e the structure (E ′ = E \ {e},; |E ′ ,λ|E ′). Moreover, given
e,e′ ∈ E, we denote by S⊕ e ; e′ the event structure (E,(; ∪{(e,e′)})∗,λ). These
notations can be generalized to sets (of events and transitions) in the obvious way.

Given a concurrent system N = (P1, . . . ,Pn), an event structure S over N is an
event structure over Ω(N). Given i∈ [n] and j ∈ [m], let E(i, j) = {e∈ E : ∃d ∈D. ∃op∈
{w, r}. λ(e) = op(i, j,d)}. An event structure over Ω(N) is well-formed if, for every i
and j, the relation ; |E(i, j) is a total order. We assume in the rest of the paper that all
event structures over N are well-formed. This condition corresponds to the fact that
read/write operations on the same variable should not be reordered.

Let Ê(i, j) = E(i, j) ∪ {e ∈ E : λ(e) = wfence(i)}. For every i ∈ [n] and j ∈ [m],
let RE(i, j) = {e ∈ E : ∃d ∈ D. λ(e) = r(i, j,d)}, and let WE(i, j) = {e ∈ E : ∃d ∈
D. λ(e) = w(i, j,d)}. For every e ∈ E, we use data(e) to denote data(λ(e)).

4.2 An Operational Model with Stored Reads

We associate with the concurrent system N a transition system (Conf N ,⇒N) where
Conf N is a set of configurations, and ⇒N⊆ Conf N ×Conf N is a transition relation
between configurations. A configuration of N (an element of Conf N) is any triple
(p,d,S) where p ∈ P, d ∈ M, and S is an event structure over N . The transition re-
lation ⇒N is the smallest relation such that for every p,p′ ∈ P, for every d,d′ ∈ M,
and for every S = (E,;,λ), S ′ = (E ′,;′,λ′) two event structures over N , we have

What’s Decidable about Weak Memory Models? 9

(p,d,S)⇒N (p′,d′,S ′) if there is an i ∈ [n], and there are p, p′ ∈ Pi, such that p[i] = p,
p′ = p[i← p′], and one of the following cases hold:

1. Nop: p nop−−−→i p′, d = d′, and S = S ′.
2. Write: p w(i, j,d)−−−−−→i p′, d = d′, and ∃e ∈E \E such that S ′ = ((S� [e←w(i, j,d)])⊕
{e′; e : e′ ∈ max(Ê(i, j))}.

3. RLWE: p r(i, j,d)−−−−→i p′, d = d′, S ′ = S, WE(i, j) 6= /0 with em = max(WE(i, j)), @e ∈
RE(i, j). em ; e, and data(em) = d.

4. Read: p r(i, j,d)−−−−→i p′, d = d′, either WE(i, j) = /0 or data(max(WE(i, j))) 6= d, and
∃e, f ∈ E \E such that S ′= ((S�{[e← r(i, j,d)], [f ← wfence(i)]})⊕ ({e′; e :
e′ ∈ max(E(i, j))}∪{e ; f})).

5. ARW: p arw(i, j,d,d′)−−−−−−−→i p′,
⋃m

`=1 Ê(i,`) = /0, d[j] = d, d′ = d[j← d′], and S = S ′.

6. Read fence: p rfence(i)−−−−−→i p′,
⋃m

j=1 RE(i, j) = /0, d = d′, and S = S ′.

7. Write fence: p wfence(i)−−−−−−→i p′, d = d′, and ∃e ∈ E \ E such that S ′= ((S� [e ←
wfence(i)])⊕{e′; e : ∃k. 1≤ k ≤ m and e′ ∈ max(Ê(i,k))}).

8. Memory update: p = p′, and there is an event e such that e is a minimal of ;,
λ(e) = w(i, j,d) for some d ∈ D, d′ = d[j← d], and S ′= S� e.

9. Read validation: p = p′, d′ = d, and there is an event e such that e is a minimal of
;, λ(e) = r(i, j,d), d[j] = d, and S ′= S� e.

10. Write fence elimination: p = p′, d′ = d, and there is an event e such that e is a
minimal of ;, λ(e) = wfence(i), and S ′= S� e.

Let us explain each case. A write operation w(i, j,d) is simply added to the structure
by introducing a new event e labelled with this operation, which is inserted after all
write fences issued by Pi as well as all the write/read operations of Pi on x j.

A read operation r(i, j,d) can be validated immediately (point 3) if S still contain a
write of Pi on x j (and there is no read of Pi on xi after this write), and the last of such
an operation writes precisely the value d on x j. Otherwise, (in point 4) a read operation
r(i, j,d) is simply added to the structure S after all reads/writes of Pi on x j. Notice, that
the event associated with this read operation is not ordered w.r.t. write fences that are
maximal in S (i.e., the read is allowed to overtake such write fences). Moreover, a new
write fence is inserted after the read. This ensures that, as long as this read has not been
validated, it cannot be overtaken by any write.

An atomic read-write operation, which acts as a fence on all operations of the pro-
cess Pi, can be executed only when all events before it have been executed. A read fence
issued by Pi is executed immediately (it is not stored in S) if there is no reads in S issued
by Pi. A write fence is inserted in S after all the events issued by Pi.

Writes are removed from S and used to update the main memory when these op-
erations correspond to minimal events of S. Similarly, reads are validated w.r.t. the
main memory and removed from S if they correspond to minimal events. Finally, a
write fence can simply be removed from S when it becomes minimal.

Let S/0 denote the empty event structure. Then, we have:

Theorem 4. For every states s and s′, we have ReachNSWN (s,s′) iff (s,S/0)⇒∗N (s′,S/0).

10 M. F. Atig, A. Bouajjani, S. Burckhardt, M. Musuvathi

5 From Event Structures to FIFO Buffers

We provide in this section a model for NSW using FIFO buffers where reads and fences
are never stored. We proceed in two steps. First, we provide an alternative operational
model for NSW where reads can be immediately validated using informations about the
sequence of states that the memory had in the past. The history of the memory states is
stored in an additional FIFO buffer. Then, we show that it is also possible to get rid of
wfences by converting event structures into two-level structures of write buffers.

5.1 Eliminating reads from event structures

We present hereafter a new operational model where reads are validated using an ad-
ditional buffer storing memory states, called history buffer. The idea is the following.
Consider a read operation r(i, j,d) issued by process Pi that can be validated during a
computation from a write operation w(k, j,d) issued by process Pk. Then, if at the mo-
ment r(i, j,d) is issued w(k, j,d) has not yet been issued, it is actually possible for Pi to
wait until Pk produces w(k, j,d). The reason is that issuing w(k, j,d) by Pk can’t depend
from the actions of Pi after r(i, j,d), because otherwise, this would mean that there is a
read by Pk before w(k, j,d) which needs (i.e., is causally dependent from) a write of Pi
occurring after r(i, j,d). But this would imply the existence of a causality cycle, which
contradicts the fact that such cycle do not exist in NSW computations due to the fact that
writes cannot overtake reads (see Thm. 3). Therefore, it is always possible to consider
computations where reads are validated w.r.t. writes that have been issued in the past.
However, since some actions must exit the event structure of the system configuration
(due to fences), we need to maintain the history of all past memory states in a buffer.

Then, we use a buffer such that the last element represents actually the current
state of the memory, and where the other elements represent the precedent states of
the memory in the order they have been produced. Notice that a history buffer is never
empty since it must contain at least one element representing the state of the memory.

Now, since reads can be swapped, their validation can use writes that might be
issued in a different order. However, reads by the same process on a same variable
must be done in a coherent way, i.e., they should read from states occurring in the same
order. To ensure that, we introduce pointers π(i, j) on the history buffer defining for each
process Pi and each variable x j the oldest memory state that can be observed. Then, to
validate a read on x j by Pi, we should find a memory state that occurs after π(i, j) in
the buffer where x j has the right value. Actually, to simplify the construction, we allow
that a pointer can move in a nondeterministic way toward the tail of the buffer (i.e., the
most recent element). Then, to validate an operation r(i, j,d), we simply require that
the value of x j in the element pointed by π(i, j) is precisely d. Also, when a write event
w(i, j,d) exits the event structure and is used to update the memory, the pointer π(i, j)
is moved to the last element of the history buffer (i.e., the current state of the memory)
since this is the only value of x j that is visible to Pi.

Notice that the relevant part of the history buffer at any moment is formed by the
elements between the last element (current state of the memory) and the oldest element
that is pointed by π.

What’s Decidable about Weak Memory Models? 11

To give the formal description of our model, we need to introduce some definitions
concerning buffers and their manipulation. An event structure (E,;,λ) is totally or-
dered when ; is a total order. We use such structures to encode FIFO buffers. Given a
buffer B= (E,;,λ) over an alphabet Σ, and a symbol a ∈ Σ, let add(B,a) be the buffer
(E ′,;′,λ′) such that (1) E ′=E∪{e} for some e∈E\E, (2) if E = /0 then ;′= {(e,e)},
otherwise ;′= (;∪{(max(E),e)})∗, and (3) λ′ = λ∪ [e 7→ a]. Then, if λ(min(B)) = a,
let remove(B,a) be the buffer (E ′,;′,λ′) such that (1) E ′ = E \{min(E)}, (2) ;′=;

|E ′ , and (3) λ′ = λ|E ′ . We also define the predicate Empty which is true when the buffer
has an empty set of events. When the buffer B is not empty, we denote by tail(B) (resp.
head(B)) the element λ(max(E)) (resp. λ(min(E))).

Given a concurrent system N , a history buffer of memory states is a tuple H =(E,;
,λ,π) where (E,;,λ) is a buffer over M (the set of all memory states) such that E 6= /0,
and π : [n]× [m]→ E is a mapping associating with each process and each variable an
event in E. We say that a history buffer is unitary if H is reduced to a singleton (i.e.,
π(i, j) = max(E) for all i ∈ [n] and j ∈ [m]).

Then, we are ready to define the transition system of the new model. A configuration
is a tuple 〈p,S ,H 〉 where, as in the previous model p ∈ P is a vector of control states
of each of the processes and S is an event structure, and where H is a history buffer
over M. The new transition relation VN is the smallest relation s.t. for every p,p′ ∈ P,
S = (E,;,λ),S ′= (E ′,;′,λ′) two event structures over N , and H = (B,π) and H ′ =
(B′,π′) two history buffers over M, where B= (H,;H ,λH) and B′= (H ′,;H ′ ,λH ′) are
two buffers over M, we have 〈p,S ,H〉VN 〈p′,S ′,H ′〉 if there is an i ∈ [n], and there
are p, p′ ∈ Pi, such that p[i] = p, p′ = p[i← p′], and one of the following cases holds:

1. Nop: p nop−−−→i p′, S = S ′, and H = H ′.
2. Write: p w(i, j,d)−−−−−→i p′, H =H ′, and ∃e∈E \E such that S ′= ((S� [e←w(i, j,d)])⊕
{e′; e : e′ ∈ max(Ê(i, j))}.

3. Write fence: p wfence(i)−−−−−−→i p′, H = H ′, and ∃e ∈ E\ E such that S ′= ((S� [e←
wfence(i)])⊕{e′; e : ∃k. 1≤ k ≤ m and e′ ∈ max(Ê(i,k))}).

4. RLWE: p r(i, j,d)−−−−→i p′, S = S′, H = H ′, WE(i, j) 6= /0, and data(max(WE(i, j))) = d.
5. Move pointer: p = p′, S = S′, B= B′, and ∃ j ∈ [m]. ∃e ∈ H. π(i, j);H e and π′ =

π[(i, j)← e].

6. Read: p r(i, j,d)−−−−→i p′, S = S′, H = H ′, WE(i, j) = /0, and ∃d ∈ M such that
λH(π(i, j)) = d and d[j] = d.

7. Read fence: p rfence(i)−−−−−→i p′, S= S′, H = H ′, and π(i, j) = max(H) for every j ∈ [m].

8. ARW: p arw(i, j,d,d′)−−−−−−−→i p′, S= S′,
⋃m

`=1 Ê(i,`) = /0, π(i, `) = max(H) for every ` ∈ [m],
there is a d = tail(B) such that d[j] = d and B′ = add(B,d[j ← d′]), and π′ =
π[(i, `)← max(H ′)]`∈[m].

9. Memory update: p = p′, ∃e ∈ min(E) such that λ(e) = w(i, j,d) for some j ∈ [m]
and d ∈D, S ′= S�e, B′ = add(B,d) where d = tail(H)[j← d], and π′ = π[(i, j)←
max(H ′)].

10. Write fence elimination: p = p′, H = H ′, d′ = d, and ∃e ∈ min(E) such that λ(e) =
wfence(i), and S ′= S� e.

12 M. F. Atig, A. Bouajjani, S. Burckhardt, M. Musuvathi

Theorem 5. Let s = (p,d) and s′ = (p′,d′) be two states of N , and let H and H ′
be two unitary history buffers over M such that tail(H) = d and tail(H ′) = d′. Then,
(s,S/0)⇒∗N (s′,S/0) if and only if 〈p,S/0,H〉V∗N 〈p

′,S/0,H ′〉.

5.2 Eliminating write fences from event structures

We show in this section that we can avoid storing write fences and to convert event
structures into write buffers. The idea is the following. We observe that the projection
of the event structure on the events of a same process is, roughly speaking, a sequence
of partial orders, each of these partial orders corresponding to the set of write events
occurring between two successive write fences. These partial order have also the prop-
erty that they are unions of m total orders, each of them corresponding to the set of
writes to a same variable. These total orders can naturally be manipulated using m
FIFO buffers WB(i,1), . . . ,WB(i,m). Then, to simulate the whole sequence of partial or-
ders corresponding the events of a process, we need to reuse the same buffers after each
write fence, while ensuring that all writes occurring before the write fence are executed
before all those occurring after it. The solution for that is to introduce for each process
Pi an additional buffer WB(i,m+1) used to flush the buffers WB(i,1), . . . ,WB(i,m) after
each write fence without imposing that their content is directly written in the memory.

Then, the architecture of our model is as follows. Each process Pi has two levels
of buffers, a first level with m write buffers storing the writes for each variable, and a
second level with one buffer used to serialize the writes before committing them to the
main memory. Then, we have the history buffer, the last element of which represents
the current state of the memory, and the rest of its elements represent the history of all
past memory states. Pointers on this buffer allow to each process to know what is the
oldest value it can read on each variable.

We give hereafter the formal definition of our model. A configuration in this model
is a tuple of the form 〈p,(WB(i, j))

j∈[m+1]
i∈[n] ,H〉 where p ∈ P, for every i ∈ [n] and ev-

ery j ∈ [m + 1], WB(i, j) is a write buffer, and H is a history buffer over M. Then,
we define the transition relation →N between configurations as the smallest relation

such that for every p,p′ ∈ P, for every two vectors of store buffers (WB(i, j))
j∈[m+1]
i∈[n]

and (WB′(i, j))
j∈[m+1]
i∈[n] , where WB(i, j) = (B(i, j),;(i, j),λ(i, j)) and WB′(i, j) = (B′(i, j),;

′
(i, j)

,λ′(i, j)) for all i and j, and for every two history buffers H = (B,π) and H ′ = (B′,π′),
where B = (H,;H ,λH) and B′ = (H ′,;H ′ ,λH ′) are two buffers over M, we have
〈p,(WB(i, j))

j∈[m+1]
i∈[n] ,H〉 →N 〈p′,(WB′(i, j))

j∈[m+1]
i∈[n] ,H ′〉 if there are i ∈ [n], and p, p′ ∈ Pi,

such that p[i] = p, p′ = p[i← p′], WB(k, j) = WB(k, j) for every k ∈ [n] \ {i} and every
j ∈ [m+1], and one of the following cases holds:

1. Nop: p nop−−−→i p′, WB(i, j) =WB′(i, j) for every j ∈ [m+1], and H = H ′.

2. Write: p w(i, j,d)−−−−−→i p′, H = H ′, WB(i,k) = WB′(i,k) for every k ∈ ([m+ 1] \ { j}, and
WB′(i, j) = add(WB(i, j),w(i, j,d)).

3. Write fence: p wfence(i)−−−−−−→i p′, Empty(WB(i, j)) for all j ∈ [m], WB(i,s) =WB′(i,s) for all
s ∈ [m+1], and H = H ′.

What’s Decidable about Weak Memory Models? 13

4. Transfer write: p = p′, H = H ′, ∃ j ∈ [m]. WB(i,k) = WB′(i,k) for every k ∈ ([m] \
{ j}), and ∃ω = head(WB(i, j)). WB′(i, j) = remove(WB(i, j),ω) and WB′(i,m+1) =

add(WB(i,m+1),ω).

5. RLWE from WB(i, j), j ∈ [m]: p r(i, j,d)−−−−→i p′, H = H ′, WB(i,k) = WB′(i,k) for every
k ∈ [m+1], and data(tail(WB(i, j))) = d.

6. RLWE from WB(i,m+1): p r(i, j,d)−−−−→i p′, H = H ′, WB(i,k) = WB′(i,k) for every k ∈
[m+1], Empty(WB(i, j)), the set W(i,m+1) = {e ∈ B(i,m+1) : ∃d′ ∈ D. λ(i,m+1)(e) =
w(i, j,d′)} is not empty, and data(max(W(i,m+1)) = d.

7. Read: p r(i, j,d)−−−−→i p′, H = H ′, WB(i,k) = WB′(i,k) for every k ∈ [m + 1],
Empty(WB(i, j)), the set W(i,m+1) defined above is empty, and ∃d ∈ M such that
λH(π(i, j)) = d and d[j] = d.

8. Move pointer: p = p′, B = B′, WB(i,k) = WB′(i,k) for every k ∈ [m+ 1], and ∃ j ∈
[m]. ∃e ∈ H. π(i, j);H e and π′ = π[(i, j)← e].

9. ARW: p arw(i, j,d,d′)−−−−−−−→i p′, Empty(WB(i, j)) and Empty(WB′(i, j)) for every j ∈ [m+1],
π(i, `) = max(H) for every ` ∈ [m], there is a d = tail(B) such that d[j] = d and
B′ = add(B,d[j← d′]), and π′ = π[(i, `)← max(H ′)]`∈[m].

10. Read fence: p rfence(i)−−−−−→i p′, WB(i,k) = WB′(i,k) for every k ∈ [m+ 1], H = H ′, and
π(i, `) = max(H) for every ` ∈ [m].

11. Memory update: p = p′, WB(i,k) = WB′(i,k) for every k ∈ [m], head(WB(i,m+1)) =

w(i, j,d) for some j ∈ [m] and d ∈ D, WB′(i,m+1) = remove(WB(i,m+1),w(i, j,d)),
B′ = add(B,d) where d = tail(H)[j← d], and π′ = π[(i, j)← max(H ′)].

Theorem 6. Let s = (p,d) and s′ = (p′,d′) be two states of N , and let H and H ′ be two
unitary history buffers over M such that tail(H) = d and tail(H ′) = d′. Then, (s,S/0)⇒∗N
(s′,S/0) if and only if 〈p,S/0,H〉 →∗N 〈p

′,S/0,H ′〉, where S/0 denotes an [n]× [m+ 1]-dim
vector of empty write buffers.

It is worth noting that for PSO, i.e., when read fences are systematically inserted
after reads, the operational model we define has always a history buffer of size 1 (i.e.,
reduced to the memory state). Notice that still we need two levels of write buffers for
PSO due to the use of write fences. For TSO, write buffers for each variable (WB(i, j)
for j ∈ [m]) are not needed since writes are immediately followed by write fences. This
coincides with the operational model defined, e.g., in [3].

6 The state reachability problem of NSW

We show hereafter that the state reachability problem of NSW is decidable. For that,
we use the framework defined in [1] which establishes that state reachability can be
solved using backward reachability analysis in the following case: Given a well quasi-
ordering (WQO) � on configurations4, if the system is monotonic w.r.t. �, i.e., larger

4 Recall that a well quasi-ordering � over a set E is an ordering such that for every infinite
sequence e1,e2, . . . of elements of E, there exist two integers i < j such that ei � e j.

14 M. F. Atig, A. Bouajjani, S. Burckhardt, M. Musuvathi

configurations w.r.t. � can always simulate smaller ones, then backward reachability in
this system is guaranteed to terminate if it starts from �-upward closed sets, i.e., sets
that whenever they contain a configuration c, they also contain all �-larger one than c.

To define such ordering, we observe that a value in the memory written by some
process might be overwritten by other write operations by the same process before any
other process has had time to read it. Therefore, the effect of a write operation sent by
a process to its store buffer may never be used, and this would suggest that we should
define � to reflect the subword relation between the buffer contents. However, this in-
tuition cannot be exploited directly. As we will see below, NSW’s are not monotonic
in general w.r.t. such as subword-based relation. To circumvent this problem, we intro-
duce another model called NSW+ obtained from the NSW, where, roughly, serialization
buffers W(i,m+1) contain memory states (corresponding to cumulated effects of write op-
erations) instead of write operations and we associate one history buffer per process, and
we show that (1) the state reachability problem in a given NSW is reducible to the one
in its corresponding NSW+, and (2) every NSW+ is monotonic w.r.t. a subword-based
relation on buffers. Notice that the translation from NSW to NSW+ preserves reacha-
bility but the resulting model from this translation is not bisimilar to the original one
(and therefore monotonicity can not be transferred).

Informal introduction to NSW+: We explain hereafter how a NSW+ model is defined
starting from a given NSW. Let us first see why NSW’s are not monotonic w.r.t. the
subword relation, i.e., considering that the buffers in NSW are lossy is not sound. More
precisely, while it can be shown that it is possible to consider safely that the write buffers
WB(i, j) for all i ∈ [n] and j ∈ [m] as well as the history buffer are lossy, the serialization
buffers WB(i,m+1) for i ∈ [n] cannot be simply turned to lossy buffers. Consider first a
sequence of write operations w(i, j,d′)w(i, j,d) in the write buffer WB(i, j), for some
j ∈ [m], where w(i, j,d) is the oldest operation. Since both operations are on the same
variable x j, losing the operation w(i, j,d), i.e., replacing this sequence by just w(i, j,d′),
yields a valid computation corresponding to compaction of the two operations. Indeed,
it is possible to overwrite the value d by d′ before that any process is able to read
d. Therefore, it is possible to lose any operation in a write buffer corresponding to
a variable, except the last operation. This is especially important for the read-local-
write-early operation. Then, by considering the last symbol in each write buffer WB(i, j)
as a strong symbol (can not be lost), and turning WB(i, j) to a lossy channel does not
introduce computations that are not possible in the original program. Observe that the
number of possible such strong symbols is finite (one per write buffer WB(i, j)).

Consider now a sequence of memory states d ·d′ in the history buffer H , where d′
is the oldest state. Then, losing the memory state d′ in Mi is similar to considering that
this state has not been observed by Pi. This is perfectly valid since processes observe
the states of the memory in an asynchronous way, and therefore they may miss some
states. However, memory states in H that are pointed by some pointer π(i, j) should not
be lost, and they must be considered as strong symbol. Indeed, without these pointed
states, reads cannot be validated. In addition, we also should not lose the tail of H
(which corresponds to the current memory state) since it is used to compute the next
memory state. Then, pointed elements as well as the last element of the history buffer
must be considered as strong symbols (again the number of such symbols is finite).

What’s Decidable about Weak Memory Models? 15

It remains to consider the case of the serialization write buffer WB(i,m+1). Consider
a sequence of operations w(i, j,d′)w(i,k,d) in WB(i,m+1). Since these two operations
are on different variables, losing w(i,k,d) does not correspond to the compaction of
the two operations. To encode the compaction (or the summary) of such a sequence
of operations, we need to use a vector of values defining the last written value to each
variable by the operations in the sequence. Then, an idea is to replace the content of
WB(i,m+1) = ω` · · ·ω1 by the sequence of summaries σ` · · ·σ1 where σi is the summary
of the sequence ωi · · ·ω1. For instance, in our example, the sequence of summaries is
(x j = d′,xk = d)(xk = d). Then, losing (xk = d) does not correspond to losing the effect
of the operation w(i,k,d) since this effect is still visible in (x j = d′,xk = d). Assume
now that (xk = d) has not been lost and has been updated to the main memory. This
value of xk in the main memory can be over-written by a write operation (xk = d′′)
(d′′ 6= d) of a different process from Pi. Then, when the system decides to update (x j =
d′,xk = d) to the main memory, we should not reset the value of xk to d (since the write
operation (xk = d) has already taken effect). This shows that WB(i,m+1) (under NSW+)
must contain a valid sequence of memory states (that will be used to update the memory
in the future). Then, we can formulate a similar argument as in the case of the history
buffer to allow some of the memory states in WB(i,m+1) to be lost.

However, in order to have a valid sequence of memory states, the serialization buffer
WB(i,m+1) under NSW+ should simulate the contributions of the other processes. There-
fore, it has to insert in WB(i,m+1) the memory states resulting from writes performed by
other processes. This implies that the system should guess in advance in which order the
write operations will be updated to the main memory. This is performed under NSW+

as follows: (1) a write is removed from some write buffer WB(k, j) (chosen nondeter-
ministically), (2) a new memory state is then computed from the last state added to
WB(k,m+1), and (3) this new state is added to all the serialization buffers. Observe that a
memory state in WB(i,m+1) resulting from a write operation of a process Pk (with k 6= j)
should not be detected by Pi (since it has not been yet committed to the main memory).

Observe that the execution of each process is totally determined by the sequence of
memory states and its local configuration (i.e., its control state, its store buffer contents,
and its serialization buffer content). Therefore, under NSW+, each process Pi has its
own private copy of the history buffer H i (without any need of synchronization with
the other threads) since it has already the sequence of memory states in its serialization
buffer. Now, if a memory state is at the head of the serialization buffer WB(i,m+1) of
the process Pi, then this state will be removed from all this buffer and one copy is
transferred to its history buffer H i.

Formal definition of NSW+: A configuration of NSW+ is a tuple of the form
〈p,(WB(i, j))

j∈[m+1]
i∈[n] ,(H i)i∈[n]〉 where p and (WB(i, j))

j∈[m]
i∈[n] are defined as in the previous

section, (WB(i,m+1))i∈[n] are write buffers over F = {w(i, j,d) : j ∈ [m]∧d ∈M}, and
H i are history buffers over M. Then, we define the transition relation 7→N as the smallest

relation such that for every p,p′ ∈ P, for every two vectors of buffers (WB(i, j))
j∈[m+1]
i∈[n]

and (WB′(i, j))
j∈[m+1]
i∈[n] , where WB(i, j) = (B(i, j),;(i, j),λ(i, j)) and WB′(i, j) = (B′(i, j),;

′
(i, j)

,λ′(i, j)) for all i ∈ [n] and j ∈ [m+1], and for every two vectors of history buffers
(
H i =

16 M. F. Atig, A. Bouajjani, S. Burckhardt, M. Musuvathi

(Bi,πi)
)

i∈[n] and
(
H ′i = (B′i,π′i)

)
i∈[n], where Bi = (Hi,;Hi ,λHi) and B′i = (H ′i ,;H ′i

,λH ′i
)

are two buffers over M for all i ∈ [n], we have 〈p,(WB(i, j))
j∈[m+1]
i∈[n] ,(H i)i∈[n]〉 →N

〈p′,(WB′(i, j))
j∈[m+1]
i∈[n] ,(H ′i)i∈[n]〉 if there are i ∈ [n], and p, p′ ∈ Pi, such that p[i] = p,

p′ = p[i← p′], Hk = Hk for all k ∈ [n]\{i}, and one of the following cases holds:

1. Nop: p nop−−−→i p′, WB(k, j) =WB′(k, j) for all k ∈ [n] and j ∈ [m+1], and H i = H ′i.

2. Write: p w(i, j,d)−−−−−→i p′, H i = H ′i, WB(k,`) =WB′(k,`) for every (k, `) ∈ ([n]× [m+1])\
{(i, j)}, and WB′(i, j) = add(WB(i, j),w(i, j,d)).

3. Write fence: p wfence(i)−−−−−−→i p′, Empty(WB(i, j)) for all j ∈ [m], WB(k,`) = WB′(k,`) for
all k ∈ [n] and ` ∈ [m+1], and H i = H ′i.

4. Transfer write: p = p′, H i = H ′i, ∃ j ∈ [m]. WB(k,`) = WB′(k,`) for all (k, `) ∈
([n]× [m] \ {(i, j)}), and ∃ω = head(WB(i, j)). WB′(i, j) = remove(WB(i, j),ω) and
for every k ∈ [n], WB′(k,m+1) = add(WB(k,m+1),w(i, j,d′)) where d[ω〉d′ and if
Empty(WB(i,m+1)) then d = tail(Bi) else w(t, `,d) = tail(WB(i,m+1)) with t ∈ [n]
and ` ∈ [m].

5. RLWE from WB(i, j), j ∈ [m]: p r(i, j,d)−−−−→i p′, H i =H ′i, WB(k,`) =WB′(k,`) for all k∈ [n]
and ` ∈ [m+1], and data(tail(WB(i, j))) = d.

6. RLWE from WB(i,m+1): p r(i, j,d)−−−−→i p′, H i = H ′i, WB(k,`) = WB′(k,`) for all
(k, `) ∈ [n]× [m + 1], Empty(WB(i, j)), the set W(i,m+1) = {e ∈ B(i,m+1) : ∃d′ ∈
M. λ(i,m+1)(e) = w(i, j,d′)} is not empty, and λ(i,m+1)(max(W(i,m+1)) = w(i, j,d)
such that d[j] = d.

7. Read: p r(i, j,d)−−−−→i p′, H i = H ′i, WB(k,`) = WB′(k,`) for every (k, `) ∈ [n]× [m+ 1],
Empty(WB(i, j)), the set W(i,m+1) defined above is empty, and ∃d ∈ M such that
λHi(πi(i, j)) = d and d[j] = d.

8. Move pointer: p = p′, Bi = B′i, WB(k,`) =WB′(k,`) for every (k, `)∈ [n]× [m+1], and
∃ j ∈ [m]. ∃e ∈ Hi. πi(i, j);Hi e and π′i = πi[(k, j)← e]k∈[n].

9. ARW: p arw(i, j,d,d′)−−−−−−−→i p′, WB(k,`) =WB′(k,`) for all (k, `) ∈ [n]× [m], Empty(WB(i, j))

and Empty(WB′(i, j)) for every j ∈ [m + 1], πi(i, `) = max(Hi) for every ` ∈ [m],
there is a d = tail(Bi) such that WB′(k′,m+1) = add(WB(k′,m+1),w(i, j,d′)) for all
k′ ∈ ([n] \ {i}), d[j] = d, B′i = add(Bi,d′), and π′i = πi[(k, `)← max(H ′i)]k∈[n],`∈[m]

where d′ = d[j← d′].

10. Read fence: p rfence(i)−−−−−→i p′, WB(k,`) =WB′(k,`) for every (k, `) ∈ [n]× [m+1], H i =

H ′i, and πi(i, `) = max(Hi) for every ` ∈ [m].
11. Memory update: p = p′, WB(k,`) = WB′(k,`) for every (k, `) ∈ ([n]× [m] \ {(i,m+

1)}), there exist t ∈ [n], j ∈ [m] and d ∈M such that head(WB(i,m+1)) = w(t, j,d),
WB′(i,m+1) = remove(WB(i,m+1),w(t, j,d)), B′i = add(Bi,d), and π′i = πi[(k, j)←
max(H ′i)]k∈[n] if t = i, otherwise π′i = πi.

We prove that the state reachability problem for a concurrent system N under NSW
can be reduced to its corresponding one for N under NSW+.

What’s Decidable about Weak Memory Models? 17

Theorem 7. Let s = (p,d) and s′ = (p′,d′) be two states of N , and let H and H ′
be two unitary history buffers over M such that tail(H) = d and tail(H ′) = d′. Then,
〈p,S/0,H〉 →∗N 〈p

′,S/0,H ′〉 iff 〈p,S ′/0,H, . . . ,H〉 7→∗N 〈p
′,S ′/0,H ′, . . . ,H ′〉 where S/0 and

S ′/0 denotes an [n]× [m+1]-dim vector of empty buffers.

The state reachability problem for NSW+: We show in the following that the state
reachability problem is decidable for the NSW+ model. As mentioned earlier, we es-
tablish this fact by proving that NSW+’s are monotonic w.r.t. a particular WQO �.

Let N be an NSW+, and let us define the relation � on the configura-
tions of N . Consider two configurations c = 〈p,(WB(i, j))

j∈[m+1]
i∈[n] ,(Hk)k∈[n]〉 and c′ =

〈p′,(WB′(i, j))
j∈[m+1]
i∈[n] ,(H ′k)k∈[n]〉, where WB(i, j) = (B(i, j),;(i, j),λ(i, j)) and WB′(i, j) =

(B′(i, j),;
′
(i, j),λ

′
(i, j)) for all i and j, and Hk = (Bk,πk) and H ′k = (B′k,π′k) with Bk =

(Hk,;Hk ,λHk) and B′k = (H ′k,;H ′k
,λH ′k

) for all k ∈ [n]. Then, we consider that c� c′ if

1. c and c′ have the same vector of control states, i.e., p = p′,
2. the content of WB(i, j) is a subword of the content WB′(i, j), while the sequences

of operations in WB(i, j) and WB′(i, j) corresponding the last operations performed
every process on each of the variables are the same, i.e., for every i ∈ [n] and
j ∈ [m+ 1], there is an injection g(i, j) from B(i, j) to B′(i, j) such that: (a) for every
e1,e2 ∈ B(i, j), λ′(i, j)(g(i, j)(e1)) = λ(i, j)(e1) and e1 ;(i, j) e2 implies g(i, j)(e1);(i, j)

g(i, j)(e2), and (b) for every k ∈ [n] and ` ∈ [m], if E(k,`) = {e ∈ B(i, j) : λ(i, j)(e) ∈
{w(k, `,d′),w(k, `,d′) |d′ ∈ M,d′ ∈ D}} and E ′(k,`) = {e ∈ B′(i, j) : λ′(i, j)(e) ∈
{w(k, `,d′),w(k, `,d′) |d′ ∈M,d′ ∈ D}}, then g(i, j)(max(E(k,`))) = max(E ′(k,`)),

3. the content of Hk is a subword of the content H ′k, while the last memory states
added to Hk and H ′k are the same, and the memory states pointed by πk(i, j) and by
π′k(i, j) are equal for every i and j, i.e., for every k ∈ [n] there is an injection gk from
Hk to H ′k such that: (a) for every e1,e2 ∈ Hk, λH ′k

(gk(e1)) = λHk(e1) and e1 ;Hk e2

implies gk(e1);H ′k
gk(e2), (b) for every i ∈ [n] and j ∈ [m], gk(πk(i, j)) = π′k(i, j),

and (c) gk(max(Hk)) = max(H ′k).

By Higman’s lemma (the subword relation is a well quasi-ordering) and standard
composition properties of well quasi-orderings, it is easy to prove the following fact.

Lemma 8 (WQO). The relation� is a WQO on the set of NSW+-configurations of N .

Then, we can prove the following important fact:

Lemma 9 (Monotonicity). For every configurations c1,c2,c′1 of a N such that c1 7→N
c2 and c1 � c′1, there exists a configuration c′2 such that c′1 7→∗N c′2 and c2 � c′2.

From [1], we know that in order to show the decidability of the state reachability
problem for NSW+, we only need to show that:

Lemma 10 (Effectiveness). Given a finite set M of �-minimals of a �-upward closed
set C, the (finite) set of �-minimals of preN(C) is effectively computable from M.

18 M. F. Atig, A. Bouajjani, S. Burckhardt, M. Musuvathi

Then, from the three lemmas above and [1], we deduce the following fact:

Theorem 11. The state reachability problem for NSW+ is decidable.

As a corollary of Theorem 7 and Theorem 11, we obtain our main result:

Corollary 12. The state reachability problem for NSW is decidable.

7 Nonatomic Writes Cause Undecidability

x = y = 0
P1 P2 P3 P4

(1) r(x,1) (4) r(y,1) (7) w(x,1) (8) w(y,1)
(2) rfence (5) rfence
(3) r(y,0) (6) r(x,0)

x = y = 1

Fig. 3. The IRIW (Independent Reads of Indepen-
dent Writes) Litmus Test. P3 writes 1 to x and P4
writes 1 to y. In parallel, P1 observes that x has
been modified before y, whereas P2 observes that
y is modified before x.

So far, we have considered only mod-
els that do not contain the RRWE (read
remote writes early) relaxation. In this
section, we show that adding RRWE
to NSW makes the reachability prob-
lem undecidable. The RRWE relax-
ation allows a processor to read other
processors’ writes even if they are not
globally visible yet. This makes writes
non-atomic and can be detected by the
IRIW litmus test (Fig. 3). IRIW is not
possible in NSW as defined earlier.
However, if we change the model to allow a read operation of Pi from a variable x j
to be validated by the last write issued by Pk (with k 6= i) on x j, although this write has
not been yet committed, it becomes possible.

An operational model An operational model for NSW with the RRWE relaxation can
be defined as an extension of the one defined in Sec. 4. The idea is to add to the event
structure S= (E,;,λ) a mapping σ : [n]× [m]→ E ∪{⊥}, with ⊥ /∈ E, that associates
with each process and variable, either a pointer on some event of the structure, or ⊥
when it is not defined. The pointer σ(i, j) defines an event e such that every future read
operation of Pi on the variable x j should not take its value from a write event that is
;-smaller than e. The intuition is that the validation of successive reads by the same
process on a same variable should be done in a coherent way, i.e., the writes from which
they read their values should occur in the same order. If σ(i, j) points to some event e
in the event structure, then e corresponds to the write event from which the last read
performed by the process Pi on the variable x j took its value. The fact that σ(i, j) =⊥
means that either Pi has never read a value from x j, or the last write operation on x j
(issued by some other process) that has validated a read of Pi has already been updated.

Then, to validate a read operation of Pi on x j using the RRWE, an event e must
be found such that (1) e does not occur before the event e′ = σ(i, j) or any read/write
event of Pi on x j, and (2) e is the last write operation on x j of Pk different from Pi. If
this is the case, then σ(i, j) is updated to e and constraints are added to ensure that (i)
e should be executed after the event e′ and any read/write event of Pi on x j, and (ii) e
should be executed before all writes/reads by Pi on x j coming after the validated read
operation. When a write event is executed and exits the event structure S, if this write

What’s Decidable about Weak Memory Models? 19

event is pointed by σ(i, j), then σ(i, j) is set to ⊥. Pi can perform a RLWE on x j only if
the event associated to the last write operation of Pi on x j does not occur before σ(i, j).

An atomic read-write operation arw(i, j,d,d′) can be executed only when no pend-
ing reads on the same variable still exist in the structure S, i.e., σ(i, j) =⊥. The reason
is that operations on the same variable cannot be reordered. Finally, all the other opera-
tions are defined as in Sec. 4 while keeping the pointers unchanged.

As an example, consider the IRIW litmus test (Fig. 3). Starting from(x = 0,y = 0)
and an empty event structure S, the execution of the writes (7) and (8) by P3 and P4 adds
two events e1 and e2 to S labeled by w(3,x,1) and w(4,y,1), respectively. Then, P1 and
P2 can execute their reads (1) and (4) that are validated using the RRWE relaxation,
and set the pointers σ(1,x) and σ(2,y) to e1 and e2. At this point, (2) and (5) can be
executed, and then, the reads (3) and (6) can be validated w.r.t. the content of the main
memory. Finally, the writes corresponding to e1 and e2 in S are committed to the main
memory, and this yields the memory state (x = 1,y = 1).

We can prove by a reduction of Post’s Correspondance Problem the following fact:

Theorem 13. The state reachability problem for NSW∪{RRWE} is undecidable.

8 Conclusion and Future Work

We have sharpened the decidability boundary of the reachability problem for weak
memory models by (1) introducing a model NSW which supports many important
relaxations (delay writes, perform reads early, allow partial fences) yet has a decid-
able reachability problem, and (2) showing that the read-write relaxation and the non-
atomic-stores-relaxation are problematic (cause non-decidability) if added to TSO or
NSW, respectively. Besides decidability, our work contributes in clarifying the effects
and the power of common relaxations existing in weak memory models. It provides
an insight on the formal models needed to reason about these relaxations, which can
be useful for other formal algorithmic verification approaches, including approximate
analyses. Notice that the models we introduce in Sections 4 and 5 can be also consid-
ered in the case of an infinite data domain, and the relationship between them still holds
in the same manner. It is only when we address the decidability issue that we need to
restrict ourselves to a finite data domain.

Future work may address the question of further sharpening the boundary by con-
sidering finer distinctions of the r→ w relaxation, say by making it conditional on the
absence of control- or data-dependencies. Moreover, we would like to explore the effect
of non-atomic stores in more detail, such as whether it causes undecidability in weaker
forms (e.g. if caused by static memory hierarchies) or if added to TSO rather than NSW.

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: General decidability theorems for infinite-
state systems. In: LICS. pp. 313–321 (1996)

2. Adve, S., Gharachorloo, K.: Shared memory consistency models: a tutorial. Computer
29(12), 66–76 (1996)

20 M. F. Atig, A. Bouajjani, S. Burckhardt, M. Musuvathi

3. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification problem for
weak memory models. In: POPL. pp. 7–18. ACM (2010)

4. Atig, M.F., Bouajjani, A., Parlato, G.: Getting rid of store-buffers in TSO analysis. In: CAV
(2011)

5. Boehm, H.: WG21/N2176 memory model rationales. http://open-
std.org/jtc1/sc22/wg21/docs/papers/2007/n2176.html#dependencies (March 2007)

6. Boehm, H., Adve, S.: Foundations of the C++ concurrency memory model. In: PLDI. pp.
68–78 (2008)

7. Bouajjani, A., Meyer, R., Möhlmann, E.: Deciding robustness against total store ordering.
In: ICALP (2011)

8. Burckhardt, S., Alur, R., Martin, M.: CheckFence: Checking consistency of concurrent data
types on relaxed memory models. In: PLDI. pp. 12–21 (2007)

9. Burckhardt, S., Musuvathi, M.: Effective program verification for relaxed memory models.
In: Computer-Aided Verification (CAV). pp. 107–120 (2008 Extended Version as Tech Re-
port MSR-TR-2008-12, Microsoft Research)

10. Burckhardt, S., Musuvathi, M., Singh, V.: Verifying local transformations on relaxed memory
models. In: CC’10. pp. 104–123 (2010)

11. Burnim, J., Sen, K., Stergiou, C.: Testing concurrent programs on relaxed memory mod-
els. Tech. Rep. UCB/EECS-2010-32, EECS Department, University of California, Berkeley
(Mar 2010), http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-32.html

12. Chen, C., Chen, W., Sreedhar, V., Barik, R., Sarkar, V., Gao, G.: Establishing causality as a
desideratum for memory models and transformations of parallel programs. Tech. rep., Uni-
versity of Delaware (2010)

13. Gharachorloo, K., Gupta, A., Hennessy, J.: Performance evaluation of memory consistency
models for shared-memory multiprocessors. In: ASPLOS’91. pp. 245–257 (1991)

14. Kuperstein, M., Vechev, M., Yahav, E.: Automatic inference of memory fences. In: FMCAD.
pp. 111–119 (Oct 2010)

15. Kuperstein, M., Vechev, M., Yahav, E.: Partial-coherence abstractions for relaxed memory
models. In: PLDI. San Jose, CA (Jun 2011)

16. Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. Comp. C-28(9), 690–691 (1979)

17. Linden, A., Wolper, P.: A verification-based approach to memory fence insertion in relaxed
memory systems. In: SPIN (2011)

18. Mador-Haim, S., Alur, R., Martin, M.: Generating litmus tests for contrasting memory con-
sistency models. In: Computer Aided Verification. pp. 273–287 (2010)

19. Manson, J., Pugh, W., Adve, S.: The java memory model. In: POPL. pp. pages = 378–391,
378–391 (2005)

20. Owens, S.: Reasoning about the implementation of concurrency abstractions on x86-tso. In:
ECOOP, LNCS, vol. 6183, pp. 478–503. Springer (2010)

21. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In: TPHOL (2009)
22. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding POWER mul-

tiprocessors. In: PLDI. San Jose, CA (Jun 2011)
23. Sevcik, J.: Safe optimisations for shared-memory concurrent programs. In: PLDI. pp. 306–

316 (2011)
24. Sevcik, J., Vafeiadis, V., Nardelli, F.Z., Jagannathan, S., Sewell, P.: Relaxed-memory con-

currency and verified compilation. In: POPL. pp. 43–54 (2011)
25. Sewell, P., Sarkar, S., Owens, S., Nardelli, F., Myreen, M.: x86-TSO: A rigorous and usable

programmer’s model for x86 multiprocessors. Commun. ACM 53 (2010)
26. Yang, Y., Gopalakrishnan, G., Lindstrom, G.: UMM: an operational memory model specifi-

cation framework with integrated model checking capability. Concurrency and Computation:
Practice and Experience 17(5-6), 465–487 (2005)

