

Residue Objects: A Challenge to Web Browser Security

Shuo Chen
Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA
shuochen@microsoft.com

Hong Chen*
Department of Computer Science

Purdue University
West Lafayette, IN 47907, USA

chen131@cs.purdue.edu

Manuel Caballero
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052, USA

v-mcab@microsoft.com

Abstract

A complex software system typically has a large number of
objects in the memory, holding references to each other to
implement an object model. Deciding when the objects
should be alive/active is non-trivial, but the decisions can
be security-critical. This is especially true for web
browsers: if certain browser objects do not disappear when
the new page is switched in, basic security properties can
be compromised, such as visual integrity, document
integrity and memory safety. We refer to these browser
objects as residue objects. Serious security vulnerabilities
due to residue objects have been sporadically discovered in
leading browser products in the past, such as IE, Firefox
and Safari. However, this class of vulnerabilities has not
been studied in the research literature. Our work is
motivated by two questions: (1) what are the challenges
imposed by residue objects on the browser’s logic
correctness; (2) how prevalent can these vulnerabilities be
in today’s commodity browsers. As an example, we
analyze the mechanisms for guarding residue objects in
Internet Explorer (IE), and use an enumerative approach to
expose and understand new vulnerabilities. Although only
the native HTML engine is studied so far, we have already
discovered five new vulnerabilities and reported them to IE
developers (one of the vulnerabilities has been patched in a
Microsoft security update). These vulnerabilities
demonstrate a diversity of logic errors in the browser code.
Moreover, our study empirically suggests that the actual
prevalence of this type of vulnerabilities can be higher than
what is perceived today. We also discuss how the browser
industry should respond to this class of security problems.

Categories and Subject Descriptors D.4.6 [Operating
Systems]: Security and Protection – invasive software;
access controls

General Term Security

Keywords browser security; residue object; component
object model (COM);

1. Introduction

Managing lifetimes for objects and deciding when
they should be active are non-trivial in real-world software
systems because there are many objects hosting and
referencing each other at runtime. The mechanisms for
managing objects can be security critical in some systems.
This is especially true for web browsers. Web pages move
in and out of a browser through navigations. After a web
page is navigated away, the correct navigation semantics
should simply be that “the old page is gone. Period.” If
certain objects in the old page do not disappear when the
new page is switched in, the objects can become security
hazards. Security properties at different levels can be
compromised, such as visual integrity, document integrity
and memory safety, as will be explained in Section 2.

The focus of this paper is on residue objects, i.e., the
objects in the old page that still reside in the memory after
the navigation. Residue objects are functionally useless.
They are not intended to be used in any legitimate
circumstance. Of course, a natural question is why the
browser cannot just free them from the memory to
eliminate these security hazards. It is because of a
fundamental dilemma between the object-referencing
ability of scripts, the garbage collection and the navigation
mechanisms of modern browsers: i) using scripts, an object
X in a page can be referenced by a data structure Y that is
not within the page (of course, after the navigation of the
page, Y is still a valid object because it does not belong to
the navigated page); ii) on the other hand, because Y
references to X, the garbage-collector cannot destroy X
from the memory, otherwise Y would have a dangling
reference and the memory safety is broken. Thus, object X
has to reside in the memory and become a residue object. It
is important to note that having residue objects in the
memory is not due to any logic bug, but an expected
situation that all browsers are facing, because the HTML
specification allows an object to be referenced from
outside its hosting page.

Therefore, every browser code has built-in guarding
mechanisms to ensure that once an object becomes
residual, it cannot be invoked or displayed. These
mechanisms may seem easy to build because the policy
appears to be simple and clear. However, we studied the
SecurityFocus vulnerability repository [16] and the
existing literature (see Section 3), and found attacks
exploiting residue objects being reported sporadically

* Hong Chen worked on this project as a Microsoft Research intern.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
EuroSys’10, April 13-16, 2010, Paris, France.
Copyright © 2010 ACM 978-1-60558-577-2/10/04...$10.00.

against leading browser products, including IE, Firefox and
Safari. Despite the individual bug reports, residue objects
have not been studied as a whole problem, and thus very
little collective understanding is available. This paper is
mainly motivated by two questions: (1) why the seemingly
easy task of ensuring objects’ inactivity turns out to be
challenging in real browser implementations? (2) This
class of vulnerabilities has not yet been prevalent in public
vulnerability repositories, but is it because they are actually
rare, or because this problem space has not been
thoroughly examined by the security community?

We aim at answering the questions by finding concrete
vulnerability instances in real browser code. As an
example, we identify IE’s basic mechanisms for guarding
residue objects, then use an enumerative approach to
generate different residue objects in order to expose new
vulnerabilities in IE. We have found five new
vulnerabilities and reported them to the IE team (one of
them was patched in Microsoft February 2009 security
update). The vulnerability instances show a diversity of
logic errors, e.g., a residue window fails to be marked
“dead”; a “dead” window remains visible or allows script
execution in it; a reference is released prematurely; and an
object is partially destructed but remains exposed to
scripts. We will explain the subtle logic errors that browser
developers should be aware of in guarding residue objects.
Also, the discovered security bugs are an empirical
evidence to show that the actual prevalence of these
vulnerabilities may be considerably higher than what is
perceived today.

We acknowledge that our analysis methodology in its
current form is rather rudimentary. Although it is able to
automatically track object states in the memory, it requires
analysts’ insights to specify security invariants, which are
diverse as suggested by the vulnerabilities that we
discovered so far. Rather than the analysis approach, the
main value of this paper is to give an in-depth
understanding of the browser residue object problem itself.
We believe that the in-depth understanding can benefit the
browser industry’s on-going security efforts. In the past
two years, browser vendors are undertaking rapid
architectural enhancements, such as those on IE, Chrome,
OP [6] and Gazelle [7]. We will discuss whether these
efforts can help address the residue object problem
fundamentally.

The rest sections are organized as follows: we explain
security consequences of residue objects in Section 2, and
study historical bugs in Section 3. Section 4 presents
background knowledge for the later sections. IE’s residue-
object guarding mechanisms are described in Section 5.
Our analysis methodology is detailed in Section 6. We
present our findings in Section 7. Section 8 and 9 are
discussions and related work. We conclude in Section 10.

2. Security Damages Caused by Residue
Objects

A simple way to think about browsing is that a web
page is a family of objects, and a browser is the house.
During a navigation, the old page moves out, and the new
one moves in. However, if residue objects can interfere
with the browsing experience of the current page, some
basic security properties become difficult to maintain. We
list some possible damages, and will show vulnerability
instances in details in Section 7.

Visual spoofing: The windowing mechanism of the
browser is designed to ensure that objects are in
appropriate visual contexts. Objects displayed in a browser
tab are supposed to be the ones defined by the top-level
document of the tab, or in descendent documents explicitly
loaded by the top-level document. The origin of the top-
level document is asserted by the address bar of the tab.
Also, dialog boxes are displayed together with their
opening tabs. If some out-of-context objects, neither
defined in the top-level document nor in any descendant
document, visually appear in the tab, the security goal of
the windowing mechanism is defeated. Speaking about
residue objects in particular, if an HTML object or a dialog
box in the old page is present in the visual context of the
new page, the user has no way to understand how to trust
the page even when the address bar is examined. Figure 1
shows such a scenario: the logo of the IEEE, which is an
object in the front tab before the tab is navigated to
http://www.acm.org, remains in the tab. The logo is
visually blended into the new page.

Figure 1: IEEE logo resides on the ACM homepage

 Involuntary navigation: a page visited in the past
should no longer be able to navigate the browser. We refer
to the violation of this common expectation as involuntary
navigation. Involuntary navigation is dangerous –
essentially, clicking a hyperlink in an honest page can
navigate the browser to a random website. Figure 2 shows
an attacker scenario: if the user ever visits the attacker’s
page, there will be a residue inline-frame (a.k.a. iframe)
hidden in the browser. The iframe can survive all
navigations, and thus the script in it is always running. The
browser is then navigated to the real PayPal login page.

http://www.acm.org

Logo of the IEEE is
a residue object
created in the
previous page in
this tab.

The tab behind

holds a reference

of the IEEE logo in

the front tab.

After 8 seconds, the script navigates the browser to a fake
re-login page to phish the user’s password. Therefore, in
this involuntary navigation scenario, what the user
perceives is exactly as if the login page voluntarily
navigated to the re-login page. Essentially, once the
browser has ever visited an untrusted page, future
navigations can be controlled by the script residing in the
browser even after the untrusted page is navigated away.

Figure 2: Involuntarily navigate to a fake login page

Cross-domain access: the basic access control policy
on web documents is known as the same-origin policy
[15], which prevents scripts from a.com from accessing a
page from b.com. However, it is possible that a reference
to an object in the old page from a.com is still valid after
the new page from b.com is switched in – a scenario
similar to the old family still having certain types of
accesses to an object inside the house after the new family
moves in. The existence of the residue objects makes the
same-origin-policy difficult to implement securely.

Memory corruption: Being a classic vulnerability
category, memory corruption is of course a serious security
concern. Once the memory safety is violated, the potential
damage is difficult to estimate because the control flow at
the binary executable level can be diverted, and sometimes
security-critical data can be overwritten. Residue objects
impose additional complexity to maintaining memory
safety because when a page is navigated away, internal
objects may be partially destroyed, and thus become
inconsistent, which result in dangling references, etc. If
malicious code can access residue objects, it is likely that
the dangling references are exposed. We will show two
memory corruption bugs found by us, one of which is able
to corrupt the EIP register.

3. Historical Bugs in Major Browsers

Instances of vulnerabilities related to residue objects
have been documented individually in public sources, such

as SecurityFocus bug repository [16] and academic papers
[2][3], although they were not categorized in a single class
in the existing literature. These bugs exist in various
browsers – IE, Firefox and Safari. Though the quantity of
these bugs documented in the literature does not seem big
yet, it is because the overall problem has not been
systematically studied. We will show later that when a
browser is under a focused examination, many new bugs
are uncovered.

Table 1 lists some documented bugs. The right-most
column describes the consequences. Note that “a script
persisting across navigations” can result in visual spoofing
(if the script creates visible objects) and involuntary
navigation (if the script navigates the browser), as we
described earlier.

Table 1: Historical Bugs in IE, Firefox and Safari
(Further details in the appendix)

Source Date Browser Consequence
SecurityFocus: ID 5196 2002-07 IE Cross-domain access
SecurityFocus: ID 5841 2002-10 IE Cross-domain access
SecurityFocus: ID 6028 2002-10 IE Cross-domain access
SecurityFocus: ID 13230 2005-04 Firefox A script can persist

across navigations.
SecurityFocus: ID 17671 2006-04 Firefox Memory corruption
SecurityFocus: ID 24286 2007-06 Firefox A script can persist

across navigations.
Section 4.2 of paper [3] 2007 IE Cross-domain access
Section 4.2 of paper [2] 2009 Safari Cross-domain access

All the published exploits share a common four-step
pattern: step 1 – a web page is loaded into the browser;
step 2 – an object inside the page is held by a reference;
step 3 – the page is navigated away or unloaded, making
the object a residue object; step 4 – the reference is used to
invoke the residue object. For example, Table 2 shows one
of the exploits. It first loads empty.html from the same
website into the browser, and holds the inner frame by a
global variable ref, then navigates the frame to a different
website. Unexpectedly, the DOM of the new page can be
accessed through ref – a cross domain attack.

Table 2: Exploit of Vulnerability 5196 in SecurityFocus
<object id=“data” data=“empty.html” type=“text/html”>
</object> //step1: load a page
var obj = document.getElementById(“data”)
var ref = obj.object; //step2: hold an inner object
ref.location.href = “http://targetSite.com”; //step3: navigate
setTimeout(“read(ref.cookie)”,500); //step4: invoke ref. Attack!

Although all exploits follow the four-step pattern of
“creating, holding, navigating and invoking”, the exact
cause of each bug is not clear unless we examine the
internals of the browsers. In the next section, we will
present some basic knowledge about garbage collection
and object referencing. The knowledge is a basis for
understanding the object management in browser code, and
the challenges to ensure its effectiveness.

(1) The attacker runs a

script in this iframe.

(2) The script in the iframe

navigates the tab to PayPal. The

iframe is now a hidden residue

object, but the script is running

in it.

(3) Wait for

8 seconds

(4) The hidden script

navigates the tab to a

fake re‐login page.

Fake re‐login page

4. Background Knowledge of Garbage
Collection and Browser Objects

This section covers some very basic concepts about
garbage-collection, reference counting, COM object and
ActiveX object. Readers familiar with these concepts can
read through the section quickly.

4.1. Garbage collection algorithms
A real-world software system, such as a browser,

consists of a large number objects, cross-referencing each
other to form the data structures that are necessary for
complex functionalities. Object X no longer needing to
access object Y does not implies that object X can destruct
object Y from the memory, because object Z may access it
later. Coordinating object destructions among different
code modules in an ad-hoc manner is error-prone and not
scalable in a complex system. This is the reason for
garbage collection algorithms.

In systems built in C++, a commonly used algorithm is
reference-counting, a.k.a. refcounting. Each object keeps a
refcount to indicate how many of its references have been
passed out to other data structures, a.k.a. reference holders.
When a data structure obtains a reference of the object, it
increases the refcount of the object by 1. This operation is
known as “AddRef”. When the reference is no longer
needed, the holder calls the “Release” operation to
decrease the refcount by 1, indicating that this holder will
not use the reference in the future. When the refcount
becomes 0, the object is automatically freed from the
memory. Refcounting is in fact a contract between holders
and objects. The holders never directly free the objects, but
only release the references.

Languages such as Java and C# treat objects and
references as first-class citizens. The language runtimes
usually have built-in garbage collectors, whose algorithms
are based on object reachability – starting from persistent
data structures, the object reference graph is traversed to
decide which objects are reachable. All unreachable
objects are freed. The main advantage of reachability-
based collection is the elimination of memory leaks due to
circular references.

4.2. Objects in IE and Firefox
Microsoft’s Component Object Model (a.k.a. COM) is

a programming framework that support runtime loading,
hosting and componentizing code modules [1]. Internet
Explorer (IE) uses COM to build browser’s internal
components and objects. Cross-Platform-COM, a.k.a.
XPCOM, is a framework developed by Mozilla [10].
Firefox uses XPCOM. COM and XPCOM are very similar.
At the most basic level, every object defines methods:
AddRef and Release for refcounting.

An ActiveX object is a COM object that contains a
number of properties, sub-objects and methods, each
known as a “dispatch”, identified by a “dispatch ID”.

Every ActiveX object has the method Invoke to apply an
operation on the object according to a dispatch ID.

The ActiveX technology is generic enough to build
objects of different scales. Not only HTML elements and
Javascript variables, but also the entire HTML engine and
the Javascript engine, are built as ActiveX objects.
Moreover, both the HTML engine and Javascript engine
themselves can host ActiveX objects in their address
spaces. The mechanism in HTML engine is to use the
<object> tag. For Javascript engine, it is through “new
ActiveXObject(ID)”. Because the HTML engine
itself is an ActiveX object, it can be hosted inside a
Javascript engine or another HTML engine.

Similarly, Mozilla’s technology for building scriptable
XPCOM objects is XPConnect [11]. As an object hosting
mechanism, XPCOM has some similarities with COM: an
XPCOM object can be hosted in the Javascript engine by
calling Components.classes(ID); Mozilla’s HTML
engine also supports <object> to import XPCOM objects.

5. Understanding the Mechanisms for
Guarding Residue Objects

We stated earlier that residue objects are due to a
fundamental dilemma between the scripting capability, the
garbage collection and the navigation, and thus every
browser needs to build mechanisms for guarding residue
objects. Historically, making these mechanisms secure has
been challenging, as shown by the reported vulnerabilities
in IE, Firefox and Safari in various sources.

We choose IE as a concrete browser implementation to
understand the challenges of guarding residue objects.
Through the study of the source code, we get basic
understanding about the guarding mechanisms at the
C++/COM level. The object management in the browser is
based on the object-capability model [12]: it tries to ensure
that a component can access an object only if it has a
reference to the object. The key mechanisms are below.

5.1. CWindow and CDocument objects
<Window> and <document> are standard HTML

elements. The relationship between <document> and
<window> is easy to understand – a document object is
hosted in a window object. Upon a navigation, the old
document is gone, but the window persists. At the C++
level, they are represented by the COM classes CWindow
and CDocument (The initial character “C” indicates a class
name). Each HTML file being rendered by the browser is
instantiated as a CDocument object, representing an
HTML document. Each CDocument object is hosted in a
CWindow object. A tab, a frame, an iframe or a dialog box
is a CWindow object.

The protections for <window> and <document>
elements are critical in the browser logic. The access
control on HTML DOM (document object model)
structures is enforced in per-document-granularity: the

browser needs to block any access to a document from a
different domain or any access to a document that has been
navigated away. Being the fence surrounding the
document, the window object needs to ensure many critical
security properties. The window has its unique security
challenges: i) it serves as a persistent object in the
navigation; ii) it is directly exposed to arbitrary scripts
because even pages from a different domain can
legitimately hold a reference of the window; iii) display
management and mouse-event handling rely on the
security of windowing.

5.2. CWinProxy – the proxy class of CWindow
In an object-capability system, “proxy objects” are

used to impose security checks. This idea is analogous to a
gift card as a “proxy object” of cash. Gift card and cash
have the same functionality – making payments, but the
card issuer can impose access policies or revoke it, while
cash has an unconditional purchasing power.

In browser implementations, cross-window security
checks are necessary because the HTML specification
allows the <window> element to be referenced from a
different domain.1 In such a scenario, if the script in the
different domain could hold the CWindow object of the
<window> element, the script would be able to
unconditionally invoke all functionalities of the CWindow,
with no respect to the same-origin-policy. To address this
problem, CWinProxy is defined as the proxy object of
CWindow so that the reference from the script to a
CWindow object is indirect. CWinProxy implements the
same interfaces as CWindow. However, when a method of
a CWinProxy object is invoked, it always performs the
same-origin-check, then invokes the actual CWindow
object to fulfill the actual functionality.

IE follows some general guidelines about CWindow
and CWinProxy: a reference of a CWindow object should
only be passed to an object inside its own window. When
an object outside the window requests a reference of the
window, IE passes a CWinProxy object out.

5.3. Validities of CWindow, CWinProxy and
CDocument
Every CWindow/CWinProxy/CDocument object is

associated with a Boolean flag to indicate whether the
object is valid for access. When a CWindow/CWinProxy
/CDocument object is initially created, it is marked as
valid. During the complex procedure of navigation, some
objects can be marked as invalid, based on a fairly
convoluted logic that may be error-prone. Any attempt to
invoke an invalid object should get an access_denied
error, and the operation is aborted.

1 A script of a.com is allowed to execute ref=window.open
(“http://b.com”). In this case, ref is a reference to a <window>
element in a different domain. However, accessing ref.document
is disallowed.

Controlling and checking object validities are the key
mechanism to prevent residue objects from being invoked.
The general guideline is that i) objects should be
invalidated when their hosting pages have been navigated
away or unloaded; ii) the validity of an object should be
checked when the object is accessed. At the first glance,
this guideline seems straightforward to follow. However,
in the next two sections, we will see in the reality why it is
complicated to guard residue objects.

6. Our Enumerative Approach for Studying
Residue Objects

In this section, we describe our approach of examining
the logic correctness of the guarding mechanisms, which is
to generate different residue objects, and observe the
browser’s memory states. Specifically, it consists of two
steps: (1) at the HTML/Javascript level, we use a tactic to
enumerate different scenarios for object-creation, cross-
referencing and navigation; (2) at the C++ level, we
augment the browser to log critical function calls. Then, an
analysis tool is built to derive the reference relationships
and the object validity states from the logs. This level of
insight enables us to see the internal states of the browser,
and often gives new leads to the exposures of real
vulnerabilities.

6.1. Tactic for Generating Residue Objects
The vulnerability reports in Section 3 suggest the steps

for generating residue objects: we need a “navigational
window” (NavWin), which contains an object InnerObject.
We need a persistent window (PrstWin) from which
InnerObject is referenced. Both windows are in the same
domain to allow the cross-window reference. NavWin is
then navigated to another page, InnerObject will become a
residue object. This tactic is shown in Figure 3.

Figure 3: The tactic for generating residue objects

The nesting relation of PrstWin and NavWin is not
essential, but for the convenience of our test case
enumeration. In actual exploits, the relation between them
can be flexible – PrstWin can also be a sibling of NavWin,
or the two windows can be in different tabs. Of course
PrstWin cannot be a child of NavWin, otherwise it will not
be persistent after NavWin is navigated away. This tactic is
shown as an HTML/Javascript template in Table 3.

Persistent window (PrstWin)

Navigational window
(NavWin)

Persistent window (PrstWin)

Navigational window
(NavWin)

Object to hold
(InnerObject)

Make a reference from PrstWin to the object,
and navigate NavWin

Object to hold
(InnerObject)

?

The template defines Javascript variables NavWin and
ref as global variables. The template contains three code
snippets, denoted as snippets #1–#3, corresponding
to steps 1-3 discussed in Section 3: NavWin-Creation,
Object-Referencing, and NavWin-Navigation. We studied
the HTML functionalities supported by the browser, and
found several different mechanisms to realize each step.
By combining these mechanisms, we produce the set of
test cases.
Table 3: HTML/Javascript Template for PrstWin.html
<script> var NavWin, ref;
</script>

*** snippet #1: create the navigational window
(NavWin) to host a page named “page1.html”.
Assign this window to the jscript variable
“NavWin”.

<script>
function GetInnerObject() {
 *** snippet #2: return an object inside navWin
 as InnerObject
}
function DoNavigation() {
 *** snippet #3: specify the navigation
 behavior for navWin
}

setTimeout(“ref=GetInnerObject();”,time1);
setTimeout(“DoNavigation()”,time2);
</script>

6.1.1. Creation of NavWin
In snippet #1, there are different ways to create

NavWin. Table 4 shows some mechanisms.

Table 4: Some mechanisms for loading an HTML page

Loading a page by iframe (in the current HTML engine):
<iframe id=NavWinElem src=“page1.html”>
</iframe>
<script> NavWin=NavWinElem.contentWindow;
</script>

Loading a page by hosting an HTML engine as an ActiveX
object in the current HTML engine:
<object data=“page1.html” type=“text/html”
id=obj> </object>
<script> NavWin=obj.object.parentWindow;
</script>

Loading a page by hosting a HTML engine as an ActiveX
object in the current Javascript engine:

obj=new ActiveXObject(‘htmlFile’);
NavWin=obj.parentWindow;
NavWin.location=“page1.html”;

For example: (1) The most straightforward mechanism
is to define an iframe (or a frame) to load a page; (2) We
described earlier that both the HTML engine and the
Javascript engine can host ActiveX objects. Because the
HTML engine itself is an ActiveX object, a window can be
hosted by loading an HTML engine as an ActiveX object
in PrstWin. In this scenario, NavWin and PrstWin are in
different HTML engines; (3) Similarly, Javascript engine

can also host an ActiveX object, which is through “new
ActiveXObject()”. For example, the ID of the ActiveX
object for the HTML engine is “htmlFile”. Using this
method, an HTML engine is created in the address space of
the Javascript engine.

In addition to HTML, other types of web documents,
such as XML, Adobe Flash and Microsoft SilverLight, can
be hosted by loading the corresponding runtimes as
ActiveX objects. Currently, we have been focused on the
native HTML only, and have not explored the mechanisms
of loading other content types.

6.1.2. Referencing the inner object and
navigating NavWin
 Once NavWin is created, snippet #2 is to return an

object (including properties and methods) in NavWin as an
inner object to be held from PrstWin.

In snippet #3, there are various mechanisms to
navigate NavWin to page2.html, such as: open
(“page2.html”,”NavWin”), NavWin.location
=“page2.html”, NavWin.Navigate(“page2.
html”) and other navigation statements. Their internal
execution paths are slightly different, which may affect the
behaviors of page unloading and garbage-collection.

The Javascript code in Table 3 specifies that at time1,
a reference is made from PrstWin to obtain the inner object
by “ref=GetInnerObject()”, then the navigation
happens at time2.

6.2. Examining browser’s memory states
The goal of each test case is to leave residue COM

objects in the memory. In order to examine the exact
reference relations of the COM objects, their validities and
their refcounts, we added monitoring code in the browser
to log critical function calls, and built an analysis tool to
derive the states of COM objects from the log.

6.2.1. Event logging
For the simplicity of presentation, we refer to method

calls as “events”. We log all events of construction,
destruction, addRef, release, validation and invalidation of
CWindow, CWinProxy and CDocument objects. For every
event, the log entry contains the method name, the object,
its address, as well as important attributes of the object,
e.g., the CWindow object associated to each CWinProxy
object, etc. Because COM references do not contain the
explicit information about these holders (i.e., objects
holding the references), we also need to log the call stack
for every event to help identify the holder. By logging all
these events, we obtain the entire history of the state
changes about CWindow/CWinProxy/CDocument objects
when a test case runs through the browser.

6.2.2. Filtering out AddRef/Release pairs
We are interested in the objects that hold the

references of residue objects after the navigation, but at the

logging time, it is too early to know which object will
become residue objects, so we have to log the references to
every CWindow/CWinProxy/CDocument. The numbers of
log entries are very large even for very simple test cases.
For example, we sampled a number of logs, and found that
the average number of entries is 1329.

Fortunately, many events are AddRefs and Releases,
which can be canceled out if we can match them in pairs
based on their holders. The matching is technically non-
trivial because an object is usually referenced by multiple
holders, but the individual COM references do not identify
their holders. To tackle this problem, we need to assign an
identity to each reference. Since a reference in C++ is
simply a pointer stored in a memory location, the memory
location can be used as the identity, which we refer to as
the holder-mem of the reference. An AddRef log entry and
a Release log entry are a pair if they have the same holder-
mem. Logging the holder-mem information requires adding
code in the call sites of AddRef/Release. We have added
the logging code in 76 such call sites throughout the
browser code, and are able to match almost all the
AddRef/Release pairs, and massively reduce the numbers
of events in the logs.
6.2.3. Constructing object charts to examine the

reference states
After filtering out the AddRef/Release pairs, the

AddRef entries remaining in the log are those not released
at the time when the logging ends. We developed a tool to
construct an object chart based on the filtered log. Table 5
gives a simple test case to illustrate the reference graph
obtained by the tool. In this test case, the inner object
returned by GetInnerObject is the document in
NavWin. We then navigate the NavWin from page1.html
to page2.html, both being blank HTML pages.

Table 5: A simple test case
<iframe id=NavWinElem src=“page1.html”>
</iframe>
<script>
NavWin=NavWinElem.contentWindow;
function GetInnerObject() {
 return NavWin.document;
}
function DoNavigation() {
 NavWin.navigate(“page2.html”);
}
… the rest of the code in Table 3 …
When this test case runs on the browser, we obtain the

object chart in Figure 4. Each object is shown by its class
name and its address. The events of this object are shown
along the time axis, with C for creation, D for destruction,
x for invalidation and v for validation. The destructed
objects are grayed out. Each CWinProxy entry also
displays the address of the CWindow object that it
represents.

Figure 4: The object chart of the simple test case

The rightmost column in the chart shows the refcounts
when the test case is finished. For example, the refcount of
the CWindow representing NavWin is 4. The call stacks
corresponding to the four references can be viewed by
opening this particular entry. By examining the call stacks,
we are able to see which data structures are holding
references of this object. Figure 5 illustrates the four
references of NavWin being held by various data structures
when the test case finishes, including: (1) a reference from
a window proxy held in PrstWin. It corresponds to the
Javascript variable “NavWin” in Table 5; (2) a reference
from a window proxy known as the “trusted proxy”. The
trusted proxy is used by NavWin’s own objects to access
NavWin; (3) a reference from the document inside
NavWin corresponding to the parentWindow property
of the document; (4) a reference from an object of the type
CWebOC2. The insights about which objects are holding
references of the target objects are valuable for us to see all
potential access paths to the target objects.

Figure 5: The references to the CWindow of NavWin,

corresponding to the circled number in Figure 4

6.2.4. Limitations of the Analysis Approach
Currently, the analysis approach is still rudimentary,

as its only goal is to identify residue objects, record their
states and expose the reference relationships, which can be
done automatically. However, as stated earlier, leaving
residue objects in the memory does not necessarily imply
security violations. It requires the analyst’s insights to

2 Because a browser can load non-HTML documents, such as
those in PDF or MS Word, a generic window type is needed,
which is CWebOC in IE. The functionality of WebOC is out of
the scope of the discussion here. We simply show that every
reference holder is revealed by the analysis approach.

PrstWin

NavWin

COM Reference
Window

Document

WinProxy

WebOC

CDocument(00410090) + +(1)
CWindow(036BE2D0): PrstWin + +(3)
CWinProxy(00409EA0).036BE2D0 + +(1)
CDocument(0040F748) + C x +(1)
CWindow(0375F148): NavWin + C xxv +(4)
CWinProxy(05FD5E10).0375F148 + C +(4)
CWinProxy(05FD5E80).0375F148 + C D +
CWinProxy(05FD5EF0).036BE2D0 + CPD +
CDocument(05FFDEA8) + C +(1)
CWinProxy(05FD6510).0375F148 + C +(1)
CWinProxy(06048E58).036BE2D0 + C +(3)
CDocument(05FFDF38) + C +(1)

CDocument for page1.html

CDocument for page2.html

Four
references
in Figure 5

 C: create D: destruct
 x:invalidate v: re-validate
(.): refcount

Start stop

specify the conditions to examine if the residue objects
cause security consequences. In the next section, we
explain real vulnerability cases and their violated
conditions. Currently we are not clear about the complete
set of these conditions as they appear to be very diverse. In
this sense, we acknowledge that our understanding of the
overall problem is still limited, and so is the analysis
approach.

7. Recognizing the Challenges of the Residue
Object Guarding Logic

This section explains the five new vulnerabilities
found in our analysis. These vulnerability instances reveal
many unexpected pitfalls to topple the effectiveness of the
guarding mechanisms in Section 5. They also suggest that
the prevalence of vulnerabilities caused by residue objects
is probably much higher than what the existing literature
recognized, thus the problem deserves more investigations.

7.1. Pitfall #1: “Invalidated” ≠ “Invisible”
We begin with a test case that is slightly more

complex than the one in Section 6.2.3: we place an iframe
in page1.html, which is loaded by NavWin. This iframe,
namely InnerWin, is returned as the object to be held by
PrstWin. Figure 6 shows the scenario and some entries in
the object chart of this scenario.

Figure 6: Holding an iframe as the inner object

We observe that InnerWin is invalidated, but is still in
the memory. As stated in Section 2, visual spoofing is one
of the potential consequences of residue objects. When an
object is physically in the memory, even if it is marked as
invalid, there is still the possibility of being visible,
because the validity is just a Boolean flag of the object for
access control, which does not necessarily imply its
visibility.

The security of display can be independent from the
access control. For example, in the above case, the iframe
InnerWin visually disappears when NavWin is navigated.
It is a secure behavior. However, besides iframe, there are
other objects implemented using CWindow, such as
modalDialog, modelessDialog and popup. ModalDialog
and modelessDialog have their own window borders, so
they are less of a visual spoofing concern. The popup

object 3 is particularly interesting: it is usually used to
implement tool tips in the hosting window, and does not
have its own window border. We found that when a popup
object created inside NavWin is held by PrstWin, it will
remain visible, despite the invalidation, after the navigation
of NavWin. Having this observation, we construct the
visual spoofing scenario previously shown in Figure 1: we
host PrstWin and NavWin in different tabs, create and hold
a popup object to show the IEEE logo in NavWin, then
navigate NavWin to http://www.acm.org. The logo is thus
visually blended into the ACM page.

7.2. Pitfall #2: confusion due to the polymorphism
of a pointer
Polymorphism is an important concept in the object-

oriented programming: objects of concrete classes can be
referenced by pointers of their abstract base class, and thus
the detailed differences between the concrete classes are
ignored. We stated earlier that a CWinProxy object is
essentially a fake CWindow object: they share a common
base class. In the browser code, an object of CWinProxy or
CWindow is often referenced by a pointer of the base
class, so the actual type of the object is not clear in the
source code. We found a vulnerability apparently due to
the confusion of such a pointer.

The issue surfaces when we hold a method of the inner
window and navigate the middle window, and try to invoke
it in the future. The GetInnerObject method is as
follows.

function GetInnerObject() {
 return InnerWin.setTimeout;
}

The object chart of this scenario is similar to the one in
Figure 6: the CWindow for InnerWin is invalid, while the
two CWinProxy objects for InnerWin are still valid. The
CWinProxy object from PrstWin to InnerWin has the
refcount 2 (shown in the small circle in Figure 6). One of
the two references is made in the constructor of
CWinProxy and the other is made from a
CFuncPointer object highlighted in the call stack
below:

The CFuncPointer object is the COM object

representing a method of an HTML element, such as
window.setTimeout. The class definition of

3 The term “popup” is overloaded. Some people refer to a newly
created window as a popup, e.g., as in the term “popup blocker”.
In this paper, it refers to the specific object created by
createPopup(), often used as a tool tip inside the hosting window.

Stack top -> CWinProxy::AddRef
CFuncPointer::AddRef
CAttrArray::Set
VAR::InvokeByName
CScriptRuntime::Run

Call by a
polymorphic
pointer

 The real type of the polymorphic pointer is
CWinProxy, as suggested by the call stack.

Persistent window (PrstWin)

CDocument(00455EF8) + C x +(1)
CWindow(00474038):NavWin + C xxv +(3)
CDocument(063C5EB8) + C x +(1)
CWindow(06377A28) : InnerWin + C xx +(3)
CWinProxy(063D0470).06377A28 + C +(2)
CWinProxy(063C9A70).06377A28 + C +(3)

Navigational window
(NavWin)

Inner window
(the object to hold)

function GetInnerObject()
{
 return InnerWin;
}

To be explained in Section 7.2

ref

CFuncPointer contains a method ID and a polymorphic
pointer of the base class. However, the call stack clearly
shows that setTimeout is associated with the
CWinProxy object of the inner window, not the CWindow
object of it. This is a key insight that cannot be obtained at
the Javascript/HTML level. Because the CWinProxy object
is still valid, setTimeout can still be invoked to
schedule a delayed-execution in the invalidated inner
window. Earlier in Figure 2, we showed an involuntary
navigation attack against PayPal.com homepage based on
this bug: a few seconds after the browser lands on the
PayPal homepage, a script in the invalid (hidden) iframe
navigates the browser to a fake page.

The unique aspect of this vulnerability is that despite
the residue object being invalidated and a validity check
being performed, the logic is still flawed because the check
is performed on a wrong object, presumably due to the
confusion of the polymorphic pointer in CFuncPointer.

7.3. Pitfall #3: cross-engine invalidation
The residue object guarding logic becomes more

challenging when different windows are in different
HTML engines. We found a vulnerability in which the
navigation does not trigger the necessary invalidation of a
window in another HTML engine.

The test case is similar to Figure 6, except that the
inner window is not an iframe inside NavWin, but a
window in a new HTML engine hosted in NavWin. More
specifically, NavWin contains the following <object>
element. The window created by the <object>, referred to
as the inner window, is returned by
GetInnerObject().

<object id=obj data=“inner.html”
type=“text/html”> </object>
function GetInnerObject() {
 InnerWin = obj.object.parentWindow;
 return InnerWin;
}

The inner window is in fact the top window of the new
HTML engine created by <object>. We made an
interesting observation about the CWindow object of the
inner window: the “x”, indicating the invalidation event, is
missing in the object chart. The fact that the inner window
is in a separate HTML engine complicates the invalidation
logic and makes it error-prone. This error allows us to set a
timer in the inner window for delayed execution of scripts,
or display a dialog box or a popup object in NavWin’s
visual context.

This vulnerability shows that because the navigation
can be started from one HTML engine instance and the
target page can be hosted by another, cross-engine
communication is needed to invalidate the page properly.

7.4. Pitfall #4: Erroneous refcounting
In the above scenarios, we see that because the residue

objects are not securely guarded, they can later show their
appearance in unexpected circumstances. On the other
hand, when the browser frees the residue objects from the
memory prematurely, there are possibilities of leaving
dangling references in the hands of attack scripts, which
result in memory safety bugs. We found such a
vulnerability by observing the object chart.

In the scenario discussed in Section 7.2, PrstWin holds
a reference of a method of the inner window. In the test
case below, the inner object is a method of NavWin instead.

function GetInnerObject() {
//We hold NavWin’s method, not InnerWin’s
 return NavWin.setTimeout;
}

The object chart below exposes a fairly obvious
problem: the refcount of the CWinProxy object of NavWin
should be at least 2, because the constructor of CWinProxy
sets the refcount one, and the CFuncPointer object of
setTimeout also holds a reference of NavWin, as explained
in Section 7.2. However, the object chart of this case
shows the refcount 1. We searched in the event log and
observed that the CFuncPointer object releases the
reference during the navigation of NavWin, despite the
holding of the method in variable ref. Obviously there is
an error in refcounting.

Once this insight is obtained, causing the memory
safety violation is easy: we navigate PrstWin to a blank
page, thus NavWin is removed from PrstWin. This
removal causes the last reference of the problematic
CWinProxy to be released, and thus free the CWinProxy
object from the memory. Since the variable ref still holds
a reference to NavWin.setTimeout, invoking this
method will trigger the dangling reference of the non-
existent CWinProxy object. We observe that all the four
bytes of the EIP register are corrupted and the browser’s
control flow is diverted randomly. A heap spray attack [13]
can potentially cause a malicious binary code to run. After
we reported this bug, Microsoft patched it in the February
2009 security hot fix.

CWindow(039B96C8) : InnerWin + C +(3)
CWinProxy(0585CFB8).039B96C8 + C +(3)
CWinProxy(057EB7E8).039B96C8 + C +(1)

The “x” is missing. The CWindow
of InnerWin is not invalidated.

CWindow(0371FDD8) + C xxv +(3)
CWinProxy(03745D80).0371FDD8 + C +(4)
CWinProxy(059D7150).0371FDD8 + C +(1)

Should be at least 2, if the
refcounting behavior was correct

7.5. Pitfall #5: Partially destroyed data structures
inside valid objects
For an object that is not invalidated, it is important to

ensure that none of its internal data structures is destroyed.
Otherwise the script holding the object can cause memory
violations by performing operations on this valid-but-
partially-destroyed object.

We found a memory corruption exploit using a test
case discussed in Section 7.3. The bug shown in Section
7.3 is because the CWindow object of InnerWin is not
invalidated in a cross-engine situation, so that the residue
InnerWin is fully functional after the navigation. In the
memory corruption scenario, however, we found that as
long as InnerWin contains a script in its child window,
some internal data structures of InnerWin are destroyed
after the navigation of NavWin, although the validity of
InnerWin is not revoked. We observe that any write
operation to the document in InnerWin results in a memory
violation.

7.6. Summary of the discovered vulnerabilities
The discovered vulnerabilities indicate the challenges

in actual browser implementations. Although the high-
level policy seems simple – residue objects should be
invalidated during navigations, and invalidated objects
should not be invoked, mapping this policy into a concrete
implementation is not straightforward. The decisions about
three different properties of an object need to be correlated:
(1) its existence, which is governed by the garbage-
collection algorithm; (2) its validity, which is governed by
the navigation logic; (3) its structural integrity, which is
about the existences and the validities of its descendant
objects. As shown in this section, making these decisions
in a real browser implementation can be very subtle errors,
and error-prone, e.g., in the cross-engine scenarios or due
to polymorphism of pointers.

We can classify the discovered vulnerabilities in this
section, as well as the vulnerabilities previous reported in
Section 3, into two severity levels: (1) the memory
corruption bugs are more traditional. If exploited
successfully, they allow the malicious websites to run
arbitrary binary code outside the browser sandbox,
effectively compromising the browser machine; (2) other
types of attacks do not directly compromise the browser
machine, but can fake information of a trusted website,
lure users to surrender passwords or expose sensitive
online profiles to malicious websites. Today, as people
increasingly rely on web applications to real-world tasks,
these web-based compromises also impose realistic threats.

8. Possible Responses to the Residue Object
Problem

We have seen that the correct logic for guarding
residue objects is challenging in the real browser
implementations. In this section we discuss potential

opportunities that browser vendors may take in response to
the problem. Especially, in the past two years, the browser
industry and the research community have been
undertaking some significant efforts attempting to
fundamentally improve browser security in general. It is
worth to discuss some of these efforts in the specific
context of the residue object problem.

8.1. Writing browser code in languages with
automatic garbage collectors?
Researchers have been undertaking the effort of

implementing browsers using more sophisticated
languages. For example, the HTML parser, the Javascript
engine and the browser kernel of the OP browser are
written in Java for stronger isolations [6]. The runtimes of
many contemporary languages, such as Java virtual
machines and the Common Language Runtime (CLR) for
.NET, have built-in garbage collectors that are based on
object-reachability. They do not require developers to do
refcounting, and thus eliminate the memory-corruption
bugs (if the language runtimes are correctly implemented).

The bugs at the DOM access control level and the
visual representation level, however, cannot be addressed
by having a more sophisticated garbage collector. When
exploiting these bugs, the attack script always holds at least
one reference to the object in order to avoid garbage
collection, because the bottom line of any garbage-
collector is that it cannot free such a object – if the
garbage-collection algorithm is based on refcounting, the
refcount of the object is at least 1, and thus it is not
collectable; if the algorithm is based on object reachability,
the object is reachable from a persistent data structure, and
thus not collectable. In other words, the bugs above the
memory level are a problem orthogonal to the choice of the
underlying garbage collection algorithms.

8.2. Enhancing the browser’s architecture for
security?
A recent direction of browser architectural

enhancements is to host web contents in different
processes. We argue that the effectiveness of this general
approach needs to be qualified to avoid overstatements. It
is clear that when the attacker can execute binary code in a
browser process (e.g., through a buffer overrun bug), the
process boundary can prevent the process from directly
overwriting the memory of other processes. This is a
significant advantage over the “monolithic process”
architecture.

However, a residue object bug enables the attack script
to access an object through a path of references obtained
from the browser. In such a scenario, whether each
reference crosses the process boundary is unimportant: in
fact, COM programs observe very few barriers of the
process boundary, because of the DCOM architecture [16].
A COM object can be easily created in another process,
and anyone holding its reference can invoke it without

knowing that it is a cross-process invocation. For example,
IE8 deploys a multi-process architecture to render different
windows. We tested IE8 using the five exploits that we
found in IE7: three of them still work against IE8; the
exploit in Section 7.4 has been blocked specifically in
response to our bug reporting; the other exploit (in Section
7.2) does not seem to work against IE8 because of an
access policy of DOM is changed. These test results
suggest that if the object reference policies remain
unchanged, merely placing different windows in different
processes will not address the residue object problem.
Instead, the key question to investigate is when and why
some references exist in the subtle corner-case situations,
and how to specify precisely the DOM access policies to
restrict the references but still permit legitimate
functionalities.

Chrome also deploys a multi-process architecture so
that different windows can be placed in different processes.
Four browsing models are implemented in Chrome:
monolithic, process-per-browsing-instance, process-per-
site-instance and process-per-site, each having a specific
policy for hosting windows in different processes. The
architecture is mainly designed for robustness and
responsiveness of the browser [14]. Similar to IE8, we
argue that such process-based isolations are not fine-
grained enough to address the residue object problem that
is mainly about COM-level references and accesses.

It is encouraging that the research community is
looking into more profound security enhancements.
Browser prototypes, such as OP [6] and Gazelle [7],
demonstrate a number of endeavors which may address the
residue object problem. OP and Gazelle not only deploy
multi-process architectures, but also spend much effort on
the policies on top of the architectures. For example,
Gazelle defines how to treat subdomains, manage display
regions and potentially sacrifice a small degree of
compatibility to change some access control policies. In
the development process of the OP browser, formal
methods were used to check the implementation against the
same-origin-policy and certain display properties. We
believe that these steps toward a more secure object model
will be the key efforts to address the problem that we
discuss in this paper. Of course, OP and Gazelle are not
full-fledged browsers yet. With more functionalities
supported, dealing with the logic complexity and the
compatibility will become more challenging.

8.3. Systematic testing of browser security logic?
Besides the direction taken by OP and Gazelle, we

believe that systematic testing is another promising
approach to address the problem.

The analysis approach presented in this paper gives a
sketch of a testing methodology. In order to expose logic
bugs, we need to enumerate the mechanisms for creating
documents, holding objects and navigating windows. In a
modern browser, there are several object models, such as

the HTML DOM, the XML DOM, the Flash DOM, etc.
They all need to be examined. When a test case runs on the
browser, we need to log and analyze critical events of
refcounting, validity change and visual disappearance.
These events contain the crucial information to expose the
class of bugs, according to our experience.

9. Related Work
Browser security is becoming an important research

area. A number of recent papers discuss specific classes of
browser vulnerabilities, such as DNS-rebinding [8],
dynamic pharming [9] and cross-domain attacks [3]. A
recent paper describes a class of vulnerabilities called
Javascript capability leaks [2], which is a type of cross-
domain bugs in browsers. Some techniques for defeating
cross-domain attacks are proposed, e.g., script accenting
[3] and Javascript reference leak detection [2]. Because a
subset of residue object bugs result in cross-domain
accesses, these defense techniques are good mitigations for
such bugs. However, they are not designed to mitigate
other types of residue object bugs.

Residue objects are the objects that are functionally
useless but stay in the memory. In a broad sense, research
about excessive data lifetime is related to our work. Chow
et al found that many privacy-sensitive data, such as
Windows logon password, remain in user or kernel
memory for indefinite periods after their memory blocks
are returned back to the system [5]. This is a privacy
concern because if the system is compromised at the
binary-executable level, the attacker can dump the memory
to get the data. Chow et al proposed a secure deallocation
mechanism to zero the data blocks within a short period of
time after they are freed [4].

10. Conclusions and Future Work

Residue object is a problem that all browsers need to
face, because it is due to a fundamental dilemma between
the basic mechanisms in browsers: the scripting capability
of HTML, the garbage collection and the navigation. When
not properly guarded, residue objects can cause violations
of basic security properties, such as visual spoofing,
involuntary navigation, cross-domain access and memory
corruption. We show that IE, Firefox and Safari had this
type of vulnerabilities publicly reported in the past.

We conducted a focused study about IE’s mechanisms
for guarding residue objects. Our analysis approach is to
examine the browser’s logic by enumerating different
residue objects and deriving object states at the memory
level. Using this approach, we discovered five new
vulnerabilities, one of which was patched by Microsoft in a
hot-fix. More importantly, this study gives answers to our
initial motivating questions: (1) we use concrete examples
to show why the seemingly simple guarding mechanisms
are difficult to implement securely, and where some of the
pitfalls are; (2) we empirically show that the actual

prevalence of this type of vulnerabilities can be significant,
if the browsers are under a focused examination.

We argue that the problem deserves more efforts from
the industry due to the non-trivial logic involved. Since the
browser industry today is undertaking serious efforts to
fundamentally improve the overall security of browser
products, it is necessary to recognize the residue object
problem so that it can be fundamentally addressed in such
efforts. By formulating the problem and showing concrete
instances, this work gives the initial endeavor toward the
exploration in this problem space.

For the future work, we plan to study non-HTML
document types, such as XML, Adobe Flash and Microsoft
SliverLight. These runtimes have their own document
object models, their own same-origin policies, and the
interoperability with HTML/Javascript. We believe that
there are also subtle logic errors of this type.

Further down the road, we plan to extend the study on
other browsers. We did a preliminary study about the
residue-object-guarding code of Firefox, and identified the
objects representing window and document, as well as the
flag indicating validity. The detailed mechanisms in
Firefox are different from IE, e.g., in Firefox, writing
HTML texts and scripts to a residue document object
(nsHTMLDocument) seems legitimate, but scripts should
not be allowed to run in residue documents. These
mechanisms involve window reference holdings and
validity flag settings, etc. They also need to be thoroughly
examined because they seem as non-trivial as the ones in
IE.

Acknowledgements:

We thank Emre Kiciman and Zhenbin Xu for valuable
technical discussions. We also thank anonymous reviewers
and our shepherd Ashvin Goel for insightful comments.

References:

[1] Don Box, “Essential COM,” ISBN 0-201-63446-5, Addison-
Wesley 1998

[2] Adam Barth, Joel Weinberger, and Dawn Song. “Cross-
Origin JavaScript Capability Leaks: Detection, Exploitation,
and Defense,” In Proc. of the 18th USENIX Security
Symposium, 2009

[3] Shuo Chen, David Ross, Yi-Min Wang, “An Analysis of
Browser Domain-Isolation Bugs and A Light-Weight
Transparent Defense Mechanism,” in ACM Conference on
Computer and Communications Security (CCS), Alexandria,
VA, Oct-Nov 2007.

[4] Jim Chow, Ben Pfaff, Tal Garfinkel, Mendel Rosenblum,
“Shredding Your Garbage: Reducing Data Lifetime Through
Secure Deallocation.” In Proceedings of the 14th USENIX
Security Symposium, August 2005.

[5] Jim Chow, Ben Pfaff, Tal Garfinkel, Mendel Rosenblum,
“Understanding data lifetime via whole system simulation.”
In Proc. of the 12th USENIX Security Symposium, 2004.

[6] Chris Grier, Shuo Tang, and Samuel T. King, “Secure web
browsing with the OP web browser”, Proceedings of the
2008 IEEE Symposium on Security and Privacy, May 2008.

[7] Chris Grier, Helen J. Wang, Alexander Moshchuk, Samuel T.
King, Piali Choudhury, Herman Venter.”The Multi-Principal
OS Construction of the Gazelle Web Browser,” Proceedings
of the 18th USENIX Security Symposium, Montreal,
Canada, August 2009.

[8] Collin Jackson, Adam Barth, Andrew Bortz, Weidong Shao,
and Dan Boneh, “Protecting Browsers from DNS Rebinding
Attacks,” the Fourteenth ACM Conference on Computer and
Communications Security (CCS 2007), November 2007.

[9] Chris Karlof, Umesh Shankar, J.D. Tygar, and David
Wagner, “Dynamic Pharming Attacks and Locked Same-
origin Policies for Web Browsers,” the Fourteenth ACM
Conference on Computer and Communications Security
(CCS 2007), November 2007.

[10] Mozilla, “XPCOM”, http://www.mozilla.org/projects/
xpcom/index.html

[11] Mozilla, “XPConnect (Scriptable Components)”,
http://www.mozilla.org/scriptable/

[12] Object Capability Model.
http://c2.com/cgi/wiki? ObjectCapabilityModel

[13] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin
Zorn. “Nozzle: A Defense Against Heap-spraying Code
Injection Attacks,” Microsoft Research Technical Report
MSR-TR-2008-176, November 2008.

[14] Charles Reis, Steven D. Gribble. “Isolating Web Programs
in Modern Browser Architectures,” Eurosys 2009.
Nuremberg, Germany, April 2009.

[15] Jesse Ruderman. “The Same Origin Policy,”
http://www.mozilla.org/projects/security/components/same-
origin.html

[16] Markus Horstmann and M. Kirtland, “DCOM Architecture,”
http://msdn.microsoft.com/en-us/library/ms809311.aspx

[17] SecurityFocus Vulnerability Repository.
http://www.securityfocus.com/bid

[18] Net Applications. “Browser Market Share of March 2009”
http://marketshare.hitslink.com/browser-market-
share.aspx?qprid=0

Appendix: Bug Reports in SecurityFocus.com

A1: Bugs in IE

BugID: 5196 Date: 2002-07-10

Bug Title: Microsoft Internet Explorer OBJECT Tag Same
Origin Policy Violation Vulnerability

URL: http://www.securityfocus.com/bid/5196

Description snippet: … Malicious script code may obtain a
legitimate reference to an embedded object containing a web
page from the same domain. This script may then change the
location of the embedded object to a sensitive page, and maintain
the reference to the object. This provides full access to the DOM
of the embedded page....

Exploit code snippet:

<object id=“data” data=“empty.html” type=“text/html”>
</object>
var obj = document.getElementById(“data”) //step1
var ref = obj.object; //step2
ref.location.href = “http://targetSite.com”; //step3
setTimeout(“read(ref.cookie)”,5000); //step4

BugID: 5841 Date: 2002-10-01

Bug Title: Microsoft Internet Explorer Document Reference
Zone Bypass Vulnerability

URL: http://www.securityfocus.com/bid/5841

Description snippet: … to execute script code in the context of
other domains … access to a document object is attempted
through a saved reference ...

Exploit code snippet:

open(location+”2”).blur(); //step1
f = opener.location.assign; //step2
opener.location=“res:”; //step3
...
f(“javascript:c1.Click();c2.Click();”); //step4

BugID: 6028 Date: 2002-10-22

Bug Title: Multiple Microsoft Internet Explorer Cached Objects
Zone Bypass Vulnerability

URL: http://www.securityfocus.com/bid/6028

Description snippet: … creating a reference to several methods
of the target child window… then have the child window open
a website in a different domain ...

Exploit code snippet:

var oWin=open(“blank.html”,”victim”); //step1
[Cache line here] //”cache” means “make a ref” – step2
location.href=“http://google.com”; //step3
setTimeout(
 function () {[Exploit line(s) here]},3000 //step4
);

A2. Bugs in Firefox

BugID: 13230

Bug Title: Mozilla Suite And Firefox Global Scope Pollution
Cross-Site Scripting Vulnerability

Date: 2005-04-16

URL: http://www.securityfocus.com/bid/13230

Description snippet: A remote cross-site scripting vulnerability
affects Mozilla Suite and Mozilla Firefox because the software
fails to properly clear stored parameters.

As you browse from site to site each new page should start with
a clean slate. “shutdown” reports a technique that pollutes the
global scope of a window in a way that persists from page to
page.…

Exploit code snippet: Not disclosed to SecurityFocus

BugID: 17671

Bug Title: Mozilla Firefox iframe.contentWindow.focus
Deleted Object Reference Vulnerability

Date: 2006-04-24

URL: http://www.securityfocus.com/bid/17671

As the title suggested, this is due to a deleted object.

Exploit code snippet:

var ifr;
ifr = document.createElement(“iframe”); //step1 & step2
htmlarea.appendChild(ifr);
var doc = ifr.contentWindow.document;
doc.write(“<iframe src=' '>“); //step3: unload the object

 ifr.contentWindow.focus() //step4: invoke the object

BugID: 24286

Bug Title: Mozilla Firefox About:Blank IFrame Cross Domain
Information Disclosure Vulnerability

Date: 2007-06-04

URL: http://www.securityfocus.com/bid/24286

Description snippet: Mozilla Firefox is prone to a cross-domain
information-disclosure vulnerability because scripts may
persist across navigations.....

Exploit code snippet: Not disclosed to SecurityFocus

