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Abstract 

A complex software system typically has a large number of 
objects in the memory, holding references to each other to 
implement an object model. Deciding when the objects 
should be alive/active is non-trivial, but the decisions can 
be security-critical. This is especially true for web 
browsers: if certain browser objects do not disappear when 
the new page is switched in, basic security properties can 
be compromised, such as visual integrity, document 
integrity and memory safety. We refer to these browser 
objects as residue objects. Serious security vulnerabilities 
due to residue objects have been sporadically discovered in 
leading browser products in the past, such as IE, Firefox 
and Safari. However, this class of vulnerabilities has not 
been studied in the research literature. Our work is 
motivated by two questions: (1) what are the challenges 
imposed by residue objects on the browser’s logic 
correctness; (2) how prevalent can these vulnerabilities be 
in today’s commodity browsers. As an example, we 
analyze the mechanisms for guarding residue objects in 
Internet Explorer (IE), and use an enumerative approach to 
expose and understand new vulnerabilities. Although only 
the native HTML engine is studied so far, we have already 
discovered five new vulnerabilities and reported them to IE 
developers (one of the vulnerabilities has been patched in a 
Microsoft security update). These vulnerabilities 
demonstrate a diversity of logic errors in the browser code. 
Moreover, our study empirically suggests that the actual 
prevalence of this type of vulnerabilities can be higher than 
what is perceived today. We also discuss how the browser 
industry should respond to this class of security problems.  

Categories and Subject Descriptors D.4.6 [Operating 
Systems]: Security and Protection – invasive software;  
access controls 

General Term Security 

Keywords browser security; residue object; component 
object model (COM);  

1. Introduction 

Managing lifetimes for objects and deciding when 
they should be active are non-trivial in real-world software 
systems because there are many objects hosting and 
referencing each other at runtime. The mechanisms for 
managing objects can be security critical in some systems. 
This is especially true for web browsers. Web pages move 
in and out of a browser through navigations. After a web 
page is navigated away, the correct navigation semantics 
should simply be that “the old page is gone. Period.” If 
certain objects in the old page do not disappear when the 
new page is switched in, the objects can become security 
hazards. Security properties at different levels can be 
compromised, such as visual integrity, document integrity 
and memory safety, as will be explained in Section 2. 

The focus of this paper is on residue objects, i.e., the 
objects in the old page that still reside in the memory after 
the navigation. Residue objects are functionally useless. 
They are not intended to be used in any legitimate 
circumstance. Of course, a natural question is why the 
browser cannot just free them from the memory to 
eliminate these security hazards. It is because of a 
fundamental dilemma between the object-referencing 
ability of scripts, the garbage collection and the navigation 
mechanisms of modern browsers: i) using scripts, an object 
X in a page can be referenced by a data structure Y that is 
not within the page (of course, after the navigation of the 
page, Y is still a valid object because it does not belong to 
the navigated page); ii) on the other hand, because Y 
references to X, the garbage-collector cannot destroy X 
from the memory, otherwise Y would have a dangling 
reference and the memory safety is broken. Thus, object X 
has to reside in the memory and become a residue object. It 
is important to note that having residue objects in the 
memory is not due to any logic bug, but an expected 
situation that all browsers are facing, because the HTML 
specification allows an object to be referenced from 
outside its hosting page.  

Therefore, every browser code has built-in guarding 
mechanisms to ensure that once an object becomes 
residual, it cannot be invoked or displayed. These 
mechanisms may seem easy to build because the policy 
appears to be simple and clear. However, we studied the 
SecurityFocus vulnerability repository [16] and the 
existing literature (see Section 3), and found attacks 
exploiting residue objects being reported sporadically 
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against leading browser products, including IE, Firefox and 
Safari.  Despite the individual bug reports, residue objects 
have not been studied as a whole problem, and thus very 
little collective understanding is available. This paper is 
mainly motivated by two questions: (1) why the seemingly 
easy task of ensuring objects’ inactivity turns out to be 
challenging in real browser implementations? (2) This 
class of vulnerabilities has not yet been prevalent in public 
vulnerability repositories, but is it because they are actually 
rare, or because this problem space has not been 
thoroughly examined by the security community?  

We aim at answering the questions by finding concrete 
vulnerability instances in real browser code. As an 
example, we identify IE’s basic mechanisms for guarding 
residue objects, then use an enumerative approach to 
generate different residue objects in order to expose new 
vulnerabilities in IE. We have found five new 
vulnerabilities and reported them to the IE team (one of 
them was patched in Microsoft February 2009 security 
update). The vulnerability instances show a diversity of 
logic errors, e.g., a residue window fails to be marked 
“dead”; a “dead” window remains visible or allows script 
execution in it; a reference is released prematurely; and an 
object is partially destructed but remains exposed to 
scripts. We will explain the subtle logic errors that browser 
developers should be aware of in guarding residue objects. 
Also, the discovered security bugs are an empirical 
evidence to show that the actual prevalence of these 
vulnerabilities may be considerably higher than what is 
perceived today.  

We acknowledge that our analysis methodology in its 
current form is rather rudimentary. Although it is able to 
automatically track object states in the memory, it requires 
analysts’ insights to specify security invariants, which are 
diverse as suggested by the vulnerabilities that we 
discovered so far.  Rather than the analysis approach, the 
main value of this paper is to give an in-depth 
understanding of the browser residue object problem itself. 
We believe that the in-depth understanding can benefit the 
browser industry’s on-going security efforts. In the past 
two years, browser vendors are undertaking rapid 
architectural enhancements, such as those on IE, Chrome, 
OP [6]  and Gazelle [7]. We will discuss whether these 
efforts can help address the residue object problem 
fundamentally.  

The rest sections are organized as follows: we explain 
security consequences of residue objects in Section 2, and 
study historical bugs in Section 3. Section 4 presents 
background knowledge for the later sections. IE’s residue-
object guarding mechanisms are described in Section 5. 
Our analysis methodology is detailed in Section 6. We 
present our findings in Section 7. Section 8 and 9 are 
discussions and related work. We conclude in Section 10. 

2. Security Damages Caused by Residue 
Objects 

A simple way to think about browsing is that a web 
page is a family of objects, and a browser is the house. 
During a navigation, the old page moves out, and the new 
one moves in. However, if residue objects can interfere 
with the browsing experience of the current page, some 
basic security properties become difficult to maintain. We 
list some possible damages, and will show vulnerability 
instances in details in Section 7. 

Visual spoofing: The windowing mechanism of the 
browser is designed to ensure that objects are in 
appropriate visual contexts. Objects displayed in a browser 
tab are supposed to be the ones defined by the top-level 
document of the tab, or in descendent documents explicitly 
loaded by the top-level document. The origin of the top-
level document is asserted by the address bar of the tab. 
Also, dialog boxes are displayed together with their 
opening tabs. If some out-of-context objects, neither 
defined in the top-level document nor in any descendant 
document, visually appear in the tab, the security goal of 
the windowing mechanism is defeated. Speaking about 
residue objects in particular, if an HTML object or a dialog 
box in the old page is present in the visual context of the 
new page, the user has no way to understand how to trust 
the page even when the address bar is examined. Figure 1 
shows such a scenario: the logo of the IEEE, which is an 
object in the front tab before the tab is navigated to 
http://www.acm.org, remains in the tab. The logo is 
visually blended into the new page. 

 
Figure 1:  IEEE logo resides on the ACM homepage 

 Involuntary navigation: a page visited in the past 
should no longer be able to navigate the browser. We refer 
to the violation of this common expectation as involuntary 
navigation. Involuntary navigation is dangerous – 
essentially, clicking a hyperlink in an honest page can 
navigate the browser to a random website. Figure 2 shows 
an attacker scenario: if the user ever visits the attacker’s 
page, there will be a residue inline-frame (a.k.a. iframe) 
hidden in the browser. The iframe can survive all 
navigations, and thus the script in it is always running. The 
browser is then navigated to the real PayPal login page. 

http://www.acm.org  

Logo of the IEEE is 
a residue object 
created in the 
previous page in 
this tab. 

 

The tab behind 

holds a reference 
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After 8 seconds, the script navigates the browser to a fake 
re-login page to phish the user’s password. Therefore, in 
this involuntary navigation scenario, what the user 
perceives is exactly as if the login page voluntarily 
navigated to the re-login page. Essentially, once the 
browser has ever visited an untrusted page, future 
navigations can be controlled by the script residing in the 
browser even after the untrusted page is navigated away. 

 
Figure 2: Involuntarily navigate to a fake login page 

Cross-domain access: the basic access control policy 
on web documents is known as the same-origin policy 
[15], which prevents scripts from a.com from accessing a 
page from b.com. However, it is possible that a reference 
to an object in the old page from a.com is still valid after 
the new page from b.com is switched in – a scenario 
similar to the old family still having certain types of 
accesses to an object inside the house after the new family 
moves in. The existence of the residue objects makes the 
same-origin-policy difficult to implement securely.    

Memory corruption: Being a classic vulnerability 
category, memory corruption is of course a serious security 
concern. Once the memory safety is violated, the potential 
damage is difficult to estimate because the control flow at 
the binary executable level can be diverted, and sometimes 
security-critical data can be overwritten. Residue objects 
impose additional complexity to maintaining memory 
safety because when a page is navigated away, internal 
objects may be partially destroyed, and thus become 
inconsistent, which result in dangling references, etc. If 
malicious code can access residue objects, it is likely that 
the dangling references are exposed. We will show two 
memory corruption bugs found by us, one of which is able 
to corrupt the EIP register.   

3. Historical Bugs in Major Browsers 

Instances of vulnerabilities related to residue objects 
have been documented individually in public sources, such 

as SecurityFocus bug repository [16] and academic papers 
[2][3], although they were not categorized in a single class 
in the existing literature. These bugs exist in various 
browsers –  IE, Firefox and Safari. Though the quantity of 
these bugs documented in the literature does not seem big 
yet, it is because the overall problem has not been 
systematically studied. We will show later that when a 
browser is under a focused examination, many new bugs 
are uncovered. 

Table 1 lists some documented bugs. The right-most 
column describes the consequences. Note that “a script 
persisting across navigations” can result in visual spoofing 
(if the script creates visible objects) and involuntary 
navigation (if the script navigates the browser), as we 
described earlier.  

Table 1: Historical Bugs in IE, Firefox and Safari 
(Further details in the appendix) 

Source Date Browser  Consequence
SecurityFocus: ID 5196 2002-07 IE Cross-domain access 
SecurityFocus: ID 5841 2002-10 IE Cross-domain access 
SecurityFocus: ID 6028 2002-10 IE Cross-domain access 
SecurityFocus: ID 13230 2005-04 Firefox A script can persist 

across navigations. 
SecurityFocus: ID 17671 2006-04 Firefox Memory corruption 
SecurityFocus: ID 24286 2007-06 Firefox A script can persist 

across navigations. 
Section 4.2 of paper [3] 2007 IE Cross-domain access 
Section 4.2 of paper [2] 2009 Safari Cross-domain access 

All the published exploits share a common four-step 
pattern: step 1 – a web page is loaded into the browser; 
step 2 – an object inside the page is held by a reference; 
step 3 – the page is navigated away or unloaded, making 
the object a residue object; step 4 – the reference is used to 
invoke the residue object. For example, Table 2 shows one 
of the exploits. It first loads empty.html from the same 
website into the browser, and holds the inner frame by a 
global variable ref, then navigates the frame to a different 
website. Unexpectedly, the DOM of the new page can be 
accessed through ref – a cross domain attack. 

Table 2: Exploit of Vulnerability 5196 in SecurityFocus 
<object id=“data” data=“empty.html” type=“text/html”>         
</object>                                                           //step1: load a page   
var  obj = document.getElementById(“data”) 
var ref = obj.object;                             //step2: hold an inner object 
ref.location.href = “http://targetSite.com”;            //step3: navigate 
setTimeout(“read(ref.cookie)”,500);    //step4: invoke ref. Attack! 

Although all exploits follow the four-step pattern of 
“creating, holding, navigating and invoking”, the exact 
cause of each bug is not clear unless we examine the 
internals of the browsers. In the next section, we will 
present some basic knowledge about garbage collection 
and object referencing. The knowledge is a basis for 
understanding the object management in browser code, and 
the challenges to ensure its effectiveness. 

(1) The attacker runs a 

script in this iframe. 

(2) The script in the iframe 
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4. Background Knowledge of Garbage 
Collection and Browser Objects  

This section covers some very basic concepts about 
garbage-collection, reference counting, COM object and 
ActiveX object. Readers familiar with these concepts can 
read through the section quickly.   

4.1. Garbage collection algorithms 
A real-world software system, such as a browser, 

consists of a large number objects, cross-referencing each 
other to form the data structures that are necessary for 
complex functionalities. Object X no longer needing to 
access object Y does not implies that object X can destruct 
object Y from the memory, because object Z may access it 
later. Coordinating object destructions among different 
code modules in an ad-hoc manner is error-prone and not 
scalable in a complex system. This is the reason for 
garbage collection algorithms. 

In systems built in C++, a commonly used algorithm is 
reference-counting, a.k.a. refcounting. Each object keeps a 
refcount to indicate how many of its references have been 
passed out to other data structures, a.k.a. reference holders. 
When a data structure obtains a reference of the object, it 
increases the refcount of the object by 1. This operation is 
known as “AddRef”. When the reference is no longer 
needed, the holder calls the “Release” operation to 
decrease the refcount by 1, indicating that this holder will 
not use the reference in the future. When the refcount 
becomes 0, the object is automatically freed from the 
memory. Refcounting is in fact a contract between holders 
and objects. The holders never directly free the objects, but 
only release the references.  

Languages such as Java and C# treat objects and 
references as first-class citizens. The language runtimes 
usually have built-in garbage collectors, whose algorithms 
are based on object reachability – starting from persistent 
data structures, the object reference graph is traversed to 
decide which objects are reachable. All unreachable 
objects are freed. The main advantage of reachability-
based collection is the elimination of memory leaks due to 
circular references.  

4.2. Objects in IE and Firefox  
Microsoft’s Component Object Model (a.k.a. COM) is 

a programming framework that support runtime loading, 
hosting and componentizing code modules [1]. Internet 
Explorer (IE) uses COM to build browser’s internal 
components and objects. Cross-Platform-COM, a.k.a. 
XPCOM, is a framework developed by Mozilla [10]. 
Firefox uses XPCOM. COM and XPCOM are very similar. 
At the most basic level, every object defines methods: 
AddRef and  Release for refcounting.  

An ActiveX object is a COM object that contains a 
number of properties, sub-objects and methods, each 
known as a “dispatch”, identified by a “dispatch ID”. 

Every ActiveX object has the method Invoke to apply an 
operation on the object according to a dispatch ID.  

The ActiveX technology is generic enough to build 
objects of different scales. Not only HTML elements and 
Javascript variables, but also the entire HTML engine and 
the Javascript engine, are built as ActiveX objects. 
Moreover, both the HTML engine and Javascript engine 
themselves can host ActiveX objects in their address 
spaces. The mechanism in HTML engine is to use the 
<object> tag.  For Javascript engine, it is through “new 
ActiveXObject(ID)”. Because the HTML engine 
itself is an ActiveX object, it can be hosted inside a 
Javascript engine or another HTML engine. 

Similarly, Mozilla’s technology for building scriptable 
XPCOM objects is XPConnect [11]. As an object hosting 
mechanism, XPCOM has some similarities with COM: an 
XPCOM object can be hosted in the Javascript engine by 
calling Components.classes(ID); Mozilla’s HTML 
engine also supports <object> to import XPCOM objects.  

5. Understanding the Mechanisms for 
Guarding Residue Objects 

We stated earlier that residue objects are due to a 
fundamental dilemma between the scripting capability, the 
garbage collection and the navigation, and thus every 
browser needs to build mechanisms for guarding residue 
objects. Historically, making these mechanisms secure has 
been challenging, as shown by the reported vulnerabilities 
in IE, Firefox and Safari in various sources.  

We choose IE as a concrete browser implementation to 
understand the challenges of guarding residue objects. 
Through the study of the source code, we get basic 
understanding about the guarding mechanisms at the 
C++/COM level. The object management in the browser is 
based on the object-capability model [12]: it tries to ensure 
that a component can access an object only if it has a 
reference to the object. The key mechanisms are below. 

5.1. CWindow and CDocument objects 
<Window> and <document> are standard HTML 

elements. The relationship between <document> and 
<window> is easy to understand – a document object is 
hosted in a window object. Upon a navigation, the old 
document is gone, but the window persists. At the C++ 
level, they are represented by the COM classes CWindow 
and CDocument (The initial character “C” indicates a class 
name). Each HTML file being rendered by the browser is 
instantiated as a CDocument object, representing an 
HTML document. Each CDocument object is hosted in a 
CWindow object. A tab, a frame, an iframe or a dialog box 
is a CWindow object.  

The protections for <window> and <document> 
elements are critical in the browser logic. The access 
control on HTML DOM (document object model) 
structures is enforced in per-document-granularity: the 



 

browser needs to block any access to a document from a 
different domain or any access to a document that has been 
navigated away. Being the fence surrounding the 
document, the window object needs to ensure many critical 
security properties. The window has its unique security 
challenges: i) it serves as a persistent object in the 
navigation; ii) it is directly exposed to arbitrary scripts 
because even pages from a different domain can 
legitimately hold a reference of the window; iii) display 
management and mouse-event handling rely on the 
security of windowing.  

5.2. CWinProxy – the proxy class of CWindow 
In an object-capability system, “proxy objects” are 

used to impose security checks. This idea is analogous to a 
gift card as a “proxy object” of cash. Gift card and cash 
have the same functionality – making payments, but the 
card issuer can impose access policies or revoke it, while 
cash has an unconditional purchasing power. 

In browser implementations, cross-window security 
checks are necessary because the HTML specification 
allows the <window> element to be referenced from a 
different domain.1 In such a scenario, if the script in the 
different domain could hold the CWindow object of the 
<window> element, the script would be able to 
unconditionally invoke all functionalities of the CWindow, 
with no respect to the same-origin-policy. To address this 
problem, CWinProxy is defined as the proxy object of 
CWindow so that the reference from the script to a 
CWindow object is indirect. CWinProxy implements the 
same interfaces as CWindow. However, when a method of 
a CWinProxy object is invoked, it always performs the 
same-origin-check, then invokes the actual CWindow 
object to fulfill the actual functionality.  

IE follows some general guidelines about CWindow 
and CWinProxy: a reference of a CWindow object should 
only be passed to an object inside its own window. When 
an object outside the window requests a reference of the 
window, IE passes a CWinProxy object out.  

5.3. Validities of CWindow, CWinProxy and 
CDocument  
Every CWindow/CWinProxy/CDocument object is 

associated with a Boolean flag to indicate whether the 
object is valid for access. When a CWindow/CWinProxy 
/CDocument object is initially created, it is marked as 
valid. During the complex procedure of navigation, some 
objects can be marked as invalid, based on a fairly 
convoluted logic that may be error-prone. Any attempt to 
invoke an invalid object should get an access_denied 
error, and the operation is aborted. 

                                                            
1  A script of a.com is allowed to execute ref=window.open 
(“http://b.com”). In this case, ref is a reference to a <window> 
element in a different domain. However, accessing ref.document 
is disallowed. 

Controlling and checking object validities are the key 
mechanism to prevent residue objects from being invoked. 
The general guideline is that i) objects should be 
invalidated when their hosting pages have been navigated 
away or unloaded; ii) the validity of an object should be 
checked when the object is accessed. At the first glance, 
this guideline seems straightforward to follow. However, 
in the next two sections, we will see in the reality why it is 
complicated to guard residue objects.  

6. Our Enumerative Approach for Studying 
Residue Objects  

In this section, we describe our approach of examining 
the logic correctness of the guarding mechanisms, which is 
to generate different residue objects, and observe the 
browser’s memory states. Specifically, it consists of two 
steps: (1) at the HTML/Javascript level, we use a tactic to 
enumerate different scenarios for object-creation, cross-
referencing and navigation; (2) at the C++ level, we 
augment the browser to log critical function calls. Then, an 
analysis tool is built to derive the reference relationships 
and the object validity states from the logs. This level of 
insight enables us to see the internal states of the browser, 
and often gives new leads to the exposures of real 
vulnerabilities. 

6.1. Tactic for Generating Residue Objects  
The vulnerability reports in Section 3 suggest the steps 

for generating residue objects: we need a “navigational 
window” (NavWin), which contains an object InnerObject. 
We need a persistent window (PrstWin) from which 
InnerObject is referenced. Both windows are in the same 
domain to allow the cross-window reference. NavWin is 
then navigated to another page, InnerObject will become a 
residue object. This tactic is shown in Figure 3.  

 
Figure 3: The tactic for generating residue objects 

The nesting relation of PrstWin and NavWin is not 
essential, but for the convenience of our test case 
enumeration. In actual exploits, the relation between them 
can be flexible –  PrstWin can also be a sibling of NavWin, 
or the two windows can be in different tabs. Of course 
PrstWin cannot be a child of NavWin, otherwise it will not 
be persistent after NavWin is navigated away. This tactic is 
shown as an HTML/Javascript template in Table 3. 

Persistent window (PrstWin)

Navigational window 
(NavWin) 
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Navigational window 
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Object to hold 
(InnerObject) 
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and navigate NavWin  

Object to hold 
(InnerObject) 
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The template defines Javascript variables NavWin and 
ref as global variables. The template contains three code 
snippets, denoted as snippets #1–#3, corresponding 
to steps 1-3 discussed in Section 3: NavWin-Creation, 
Object-Referencing, and NavWin-Navigation. We studied 
the HTML functionalities supported by the browser, and 
found several different mechanisms to realize each step. 
By combining these mechanisms, we produce the set of 
test cases.  
Table 3: HTML/Javascript Template for PrstWin.html 
<script>  var NavWin, ref;   
</script> 

*** snippet #1: create the navigational window 
(NavWin) to host a page named “page1.html”. 
Assign this window to the jscript variable 
“NavWin”. 

<script> 
function GetInnerObject() { 
  *** snippet #2: return an object inside navWin 
                  as InnerObject  
} 
function DoNavigation() { 
  *** snippet #3: specify the navigation 
                  behavior for navWin 
} 

setTimeout(“ref=GetInnerObject();”,time1);   
setTimeout(“DoNavigation()”,time2);     
</script> 

6.1.1. Creation of NavWin 
In snippet #1, there are different ways to create 

NavWin. Table 4 shows some mechanisms.  

Table 4: Some mechanisms for loading an HTML page 

Loading a page by iframe (in the current HTML engine): 
<iframe id=NavWinElem src=“page1.html”> 
</iframe> 
<script> NavWin=NavWinElem.contentWindow; 
</script> 

Loading a page by hosting an HTML engine as an ActiveX 
object in the current HTML engine: 
<object data=“page1.html” type=“text/html” 
id=obj> </object> 
<script> NavWin=obj.object.parentWindow; 
</script> 

Loading a page by hosting a HTML engine as an ActiveX 
object in the current Javascript engine: 

obj=new ActiveXObject(‘htmlFile’); 
NavWin=obj.parentWindow; 
NavWin.location=“page1.html”; 

For example: (1) The most straightforward mechanism 
is to define an iframe (or a frame) to load a page; (2) We 
described earlier that both the HTML engine and the 
Javascript engine can host ActiveX objects. Because the 
HTML engine itself is an ActiveX object, a window can be 
hosted by loading an HTML engine as an ActiveX object 
in PrstWin. In this scenario, NavWin and PrstWin are in 
different HTML engines; (3) Similarly, Javascript engine 

can also host an ActiveX object, which is through “new 
ActiveXObject()”. For example, the ID of the ActiveX 
object for the HTML engine is “htmlFile”. Using this 
method, an HTML engine is created in the address space of 
the Javascript engine. 

In addition to HTML, other types of web documents, 
such as XML, Adobe Flash and Microsoft SilverLight, can 
be hosted by loading the corresponding runtimes as 
ActiveX objects. Currently, we have been focused on the 
native HTML only, and have not explored the mechanisms 
of loading other content types. 

6.1.2. Referencing the inner object and 
navigating NavWin 
  Once NavWin is created, snippet #2 is to return an 

object (including properties and methods) in NavWin as an 
inner object to be held from PrstWin.  

In snippet #3, there are various mechanisms to 
navigate NavWin to page2.html, such as: open 
(“page2.html”,”NavWin”), NavWin.location 
=“page2.html”, NavWin.Navigate(“page2. 
html”) and other navigation statements. Their internal 
execution paths are slightly different, which may affect the 
behaviors of page unloading and garbage-collection.  

The Javascript code in Table 3 specifies that at time1, 
a reference is made from PrstWin to obtain the inner object 
by “ref=GetInnerObject()”, then the navigation 
happens at time2.  

6.2. Examining browser’s memory states 
The goal of each test case is to leave residue COM 

objects in the memory. In order to examine the exact 
reference relations of the COM objects, their validities and 
their refcounts, we added monitoring code in the browser 
to log critical function calls, and built an analysis tool to 
derive the states of COM objects from the log.   

6.2.1. Event logging 
For the simplicity of presentation, we refer to method 

calls as “events”. We log all events of construction, 
destruction, addRef, release, validation and invalidation of 
CWindow, CWinProxy and CDocument objects. For every 
event, the log entry contains the method name, the object, 
its address, as well as important attributes of the object, 
e.g., the CWindow object associated to each CWinProxy 
object, etc. Because COM references do not contain the 
explicit information about these holders (i.e., objects 
holding the references), we also need to log the call stack 
for every event to help identify the holder. By logging all 
these events, we obtain the entire history of the state 
changes about CWindow/CWinProxy/CDocument objects 
when a test case runs through the browser.  

6.2.2. Filtering out AddRef/Release pairs 
We are interested in the objects that hold the 

references of residue objects after the navigation, but at the 



 

logging time, it is too early to know which object will 
become residue objects, so we have to log the references to 
every CWindow/CWinProxy/CDocument. The numbers of 
log entries are very large even for very simple test cases. 
For example, we sampled a number of logs, and found that 
the average number of entries is 1329.  

Fortunately, many events are AddRefs and Releases, 
which can be canceled out if we can match them in pairs 
based on their holders. The matching is technically non-
trivial because an object is usually referenced by multiple 
holders, but the individual COM references do not identify 
their holders. To tackle this problem, we need to assign an 
identity to each reference. Since a reference in C++ is 
simply a pointer stored in a memory location, the memory 
location can be used as the identity, which we refer to as 
the holder-mem of the reference. An AddRef log entry and 
a Release log entry are a pair if they have the same holder-
mem. Logging the holder-mem information requires adding 
code in the call sites of AddRef/Release. We have added 
the logging code in 76 such call sites throughout the 
browser code, and are able to match almost all the 
AddRef/Release pairs, and massively reduce the numbers 
of events in the logs.   
6.2.3. Constructing object charts to examine the 

reference states 
After filtering out the AddRef/Release pairs, the 

AddRef entries remaining in the log are those not released 
at the time when the logging ends. We developed a tool to 
construct an object chart based on the filtered log. Table 5 
gives a simple test case to illustrate the reference graph 
obtained by the tool. In this test case, the inner object 
returned by GetInnerObject is the document in 
NavWin. We then navigate the NavWin from page1.html 
to page2.html, both being blank HTML pages. 

Table 5: A simple test case 
<iframe id=NavWinElem src=“page1.html”> 
</iframe> 
<script> 
NavWin=NavWinElem.contentWindow; 
function GetInnerObject() { 
   return   NavWin.document; 
} 
function DoNavigation() { 
  NavWin.navigate(“page2.html”); 
} 
… the rest of the code in Table 3 … 
When this test case runs on the browser, we obtain the 

object chart in Figure 4. Each object is shown by its class 
name and its address. The events of this object are shown 
along the time axis, with C for creation, D for destruction, 
x for invalidation and v for validation. The destructed 
objects are grayed out. Each CWinProxy entry also 
displays the address of the CWindow object that it 
represents. 

 

Figure 4: The object chart of the simple test case 

The rightmost column in the chart shows the refcounts 
when the test case is finished. For example, the refcount of 
the CWindow representing NavWin is 4. The call stacks 
corresponding to the four references can be viewed by 
opening this particular entry. By examining the call stacks, 
we are able to see which data structures are holding 
references of this object. Figure 5 illustrates the four 
references of NavWin being held by various data structures 
when the test case finishes, including: (1) a reference from 
a window proxy held in PrstWin. It corresponds to the 
Javascript variable “NavWin” in Table 5; (2) a reference 
from a window proxy known as the “trusted proxy”. The 
trusted proxy is used by NavWin’s own objects to access 
NavWin; (3) a reference from the document inside 
NavWin corresponding to the parentWindow property 
of the document; (4) a reference from an object of the type 
CWebOC2. The insights about which objects are holding 
references of the target objects are valuable for us to see all 
potential access paths to the target objects.  

 
Figure 5:  The references to the CWindow of NavWin, 

corresponding to the circled number in Figure 4 

6.2.4. Limitations of the Analysis Approach 
Currently, the analysis approach is still rudimentary, 

as its only goal is to identify residue objects, record their 
states and expose the reference relationships, which can be 
done automatically. However, as stated earlier, leaving 
residue objects in the memory does not necessarily imply 
security violations. It requires the analyst’s insights to 

                                                            
2 Because a browser can load non-HTML documents, such as 
those in PDF or MS Word, a generic window type is needed, 
which is CWebOC in IE. The functionality of WebOC is out of 
the scope of the discussion here. We simply show that every 
reference holder is revealed by the analysis approach.  

PrstWin

NavWin

COM Reference
Window 

Document 

WinProxy 

WebOC 

CDocument(00410090)          +                     +(1) 
CWindow(036BE2D0): PrstWin   +                     +(3) 
CWinProxy(00409EA0).036BE2D0 +                     +(1) 
CDocument(0040F748)          + C                 x +(1) 
CWindow(0375F148): NavWin    +  C             xxv  +(4) 
CWinProxy(05FD5E10).0375F148 +   C                 +(4) 
CWinProxy(05FD5E80).0375F148 +      C    D         + 
CWinProxy(05FD5EF0).036BE2D0 +       CPD           + 
CDocument(05FFDEA8)          +            C        +(1) 
CWinProxy(05FD6510).0375F148 +             C       +(1) 
CWinProxy(06048E58).036BE2D0 +              C      +(3) 
CDocument(05FFDF38)          +               C     +(1)  

CDocument for page1.html

CDocument for page2.html

Four 
references 
in Figure 5

 C: create           D: destruct     
  x:invalidate      v: re-validate  
(.): refcount  

Start                                    stop 



 

specify the conditions to examine if the residue objects 
cause security consequences. In the next section, we 
explain real vulnerability cases and their violated 
conditions. Currently we are not clear about the complete 
set of these conditions as they appear to be very diverse. In 
this sense, we acknowledge that our understanding of the 
overall problem is still limited, and so is the analysis 
approach. 

7. Recognizing the Challenges of the Residue 
Object Guarding Logic  

This section explains the five new vulnerabilities 
found in our analysis. These vulnerability instances reveal 
many unexpected pitfalls to topple the effectiveness of the 
guarding mechanisms in Section 5. They also suggest that 
the prevalence of vulnerabilities caused by residue objects 
is probably much higher than what the existing literature 
recognized, thus the problem deserves more investigations.     

7.1. Pitfall #1: “Invalidated” ≠ “Invisible”  
We begin with a test case that is slightly more 

complex than the one in Section 6.2.3:  we place an iframe 
in page1.html, which is loaded by NavWin. This iframe, 
namely InnerWin, is returned as the object to be held by 
PrstWin. Figure 6 shows the scenario and some entries in 
the object chart of this scenario. 

 
Figure 6: Holding an iframe as the inner object 

We observe that InnerWin is invalidated, but is still in 
the memory. As stated in Section 2, visual spoofing is one 
of the potential consequences of residue objects. When an 
object is physically in the memory, even if it is marked as 
invalid, there is still the possibility of being visible, 
because the validity is just a Boolean flag of the object for 
access control, which does not necessarily imply its 
visibility.  

The security of display can be independent from the 
access control. For example, in the above case, the iframe 
InnerWin visually disappears when NavWin is navigated. 
It is a secure behavior. However, besides iframe, there are 
other objects implemented using CWindow, such as 
modalDialog, modelessDialog and popup. ModalDialog 
and modelessDialog have their own window borders, so 
they are less of a visual spoofing concern. The popup 

object 3  is particularly interesting: it is usually used to 
implement tool tips in the hosting window, and does not 
have its own window border. We found that when a popup 
object created inside NavWin is held by PrstWin, it will 
remain visible, despite the invalidation, after the navigation 
of NavWin. Having this observation, we construct the 
visual spoofing scenario previously shown in Figure 1: we 
host PrstWin and NavWin in different tabs, create and hold 
a popup object to show the IEEE logo in NavWin, then 
navigate NavWin to http://www.acm.org. The logo is thus 
visually blended into the ACM page.  

7.2. Pitfall #2: confusion due to the polymorphism 
of a pointer 
Polymorphism is an important concept in the object-

oriented programming: objects of concrete classes can be 
referenced by pointers of their abstract base class, and thus 
the detailed differences between the concrete classes are 
ignored. We stated earlier that a CWinProxy object is 
essentially a fake CWindow object: they share a common 
base class. In the browser code, an object of CWinProxy or 
CWindow is often referenced by a pointer of the base 
class, so the actual type of the object is not clear in the 
source code. We found a vulnerability apparently due to 
the confusion of such a pointer. 

The issue surfaces when we hold a method of the inner 
window and navigate the middle window, and try to invoke 
it in the future. The GetInnerObject method is as 
follows.  

function GetInnerObject() { 
   return InnerWin.setTimeout;    
} 

The object chart of this scenario is similar to the one in 
Figure 6: the CWindow for InnerWin is invalid, while the 
two CWinProxy objects for InnerWin are still valid. The 
CWinProxy object from PrstWin to InnerWin has the 
refcount 2 (shown in the small circle in Figure 6). One of 
the two references is made in the constructor of 
CWinProxy and the other is made from a 
CFuncPointer object highlighted in the call stack 
below:   

 
The CFuncPointer object is the COM object 

representing a method of an HTML element, such as 
window.setTimeout. The class definition of 

                                                            
3 The term “popup” is overloaded. Some people refer to a newly 
created window as a popup, e.g., as in the term “popup blocker”. 
In this paper, it refers to the specific object created by 
createPopup(), often used as a tool tip inside the hosting window. 

Stack top -> CWinProxy::AddRef 
CFuncPointer::AddRef 
CAttrArray::Set 
VAR::InvokeByName 
CScriptRuntime::Run 

Call by a 
polymorphic 
pointer 

 The real type of the polymorphic pointer is 
CWinProxy, as suggested by the call stack. 

Persistent window (PrstWin) 

CDocument(00455EF8)          + C            x  +(1) 
CWindow(00474038):NavWin     +  C        xxv   +(3) 
CDocument(063C5EB8)          +   C      x      +(1) 
CWindow(06377A28) : InnerWin +    C   xx       +(3) 
CWinProxy(063D0470).06377A28 +     C           +(2) 
CWinProxy(063C9A70).06377A28 +      C          +(3)  

Navigational window  
(NavWin) 

Inner window 
(the object to hold) 

function GetInnerObject() 
{ 
      return InnerWin; 
} 

To be explained in Section 7.2

ref 



 

CFuncPointer contains a method ID and a polymorphic 
pointer of the base class. However, the call stack clearly 
shows that setTimeout is associated with the 
CWinProxy object of the inner window, not the CWindow 
object of it. This is a key insight that cannot be obtained at 
the Javascript/HTML level. Because the CWinProxy object 
is still valid, setTimeout can still be invoked to 
schedule a delayed-execution in the invalidated inner 
window. Earlier in Figure 2, we showed an involuntary 
navigation attack against PayPal.com homepage based on 
this bug: a few seconds after the browser lands on the 
PayPal homepage, a script in the invalid (hidden) iframe 
navigates the browser to a fake page.  

The unique aspect of this vulnerability is that despite 
the residue object being invalidated and a validity check 
being performed, the logic is still flawed because the check 
is performed on a wrong object, presumably due to the 
confusion of the polymorphic pointer in CFuncPointer.  

7.3. Pitfall #3: cross-engine invalidation  
The residue object guarding logic becomes more 

challenging when different windows are in different 
HTML engines. We found a vulnerability in which the 
navigation does not trigger the necessary invalidation of a 
window in another HTML engine.  

The test case is similar to Figure 6, except that the 
inner window is not an iframe inside NavWin, but a 
window in a new HTML engine hosted in NavWin. More 
specifically, NavWin contains the following <object> 
element. The window created by the <object>, referred to 
as the inner window, is returned by 
GetInnerObject(). 

<object id=obj data=“inner.html” 
type=“text/html”>  </object> 
function GetInnerObject() {   
     InnerWin = obj.object.parentWindow;  
     return InnerWin; 
}  

The inner window is in fact the top window of the new 
HTML engine created by <object>. We made an 
interesting observation about the CWindow object of the 
inner window: the “x”, indicating the invalidation event, is 
missing in the object chart. The fact that the inner window 
is in a separate HTML engine complicates the invalidation 
logic and makes it error-prone. This error allows us to set a 
timer in the inner window for delayed execution of scripts, 
or display a dialog box or a popup object in NavWin’s 
visual context. 

 

This vulnerability shows that because the navigation 
can be started from one HTML engine instance and the 
target page can be hosted by another, cross-engine 
communication is needed to invalidate the page properly. 

7.4. Pitfall #4: Erroneous refcounting 
In the above scenarios, we see that because the residue 

objects are not securely guarded, they can later show their 
appearance in unexpected circumstances. On the other 
hand, when the browser frees the residue objects from the 
memory prematurely, there are possibilities of leaving 
dangling references in the hands of attack scripts, which 
result in memory safety bugs. We found such a 
vulnerability by observing the object chart. 

In the scenario discussed in Section 7.2, PrstWin holds 
a reference of a method of the inner window. In the test 
case below, the inner object is a method of NavWin instead. 

function GetInnerObject() { 
//We hold NavWin’s method, not InnerWin’s 
       return NavWin.setTimeout;  
} 

The object chart below exposes a fairly obvious 
problem: the refcount of the CWinProxy object of NavWin 
should be at least 2, because the constructor of CWinProxy 
sets the refcount one, and the CFuncPointer object of 
setTimeout also holds a reference of NavWin, as explained 
in Section 7.2. However, the object chart of this case 
shows the refcount 1. We searched in the event log and 
observed that the CFuncPointer object releases the 
reference during the navigation of NavWin, despite the 
holding of the method in variable ref.  Obviously there is 
an error in refcounting. 

 

Once this insight is obtained, causing the memory 
safety violation is easy: we navigate PrstWin to a blank 
page, thus NavWin is removed from PrstWin. This 
removal causes the last reference of the problematic 
CWinProxy to be released, and thus free the CWinProxy 
object from the memory. Since the variable ref still holds 
a reference to NavWin.setTimeout, invoking this 
method will trigger the dangling reference of the non-
existent CWinProxy object. We observe that all the four 
bytes of the EIP register are corrupted and the browser’s 
control flow is diverted randomly. A heap spray attack [13] 
can potentially cause a malicious binary code to run. After 
we reported this bug, Microsoft patched it in the February 
2009 security hot fix. 

CWindow(039B96C8) : InnerWin +   C         +(3)
CWinProxy(0585CFB8).039B96C8 +    C        +(3)
CWinProxy(057EB7E8).039B96C8 +       C     +(1)

The “x” is missing. The CWindow
of InnerWin is not invalidated.

CWindow(0371FDD8)             +  C     xxv  +(3)
CWinProxy(03745D80).0371FDD8  +   C         +(4)
CWinProxy(059D7150).0371FDD8  +    C        +(1)

Should be at least 2, if the 
refcounting behavior was correct



 

7.5.  Pitfall #5: Partially destroyed data structures 
inside valid objects 
For an object that is not invalidated, it is important to 

ensure that none of its internal data structures is destroyed. 
Otherwise the script holding the object can cause memory 
violations by performing operations on this valid-but-
partially-destroyed object.  

We found a memory corruption exploit using a test 
case discussed in Section 7.3. The bug shown in Section 
7.3 is because the CWindow object of InnerWin is not 
invalidated in a cross-engine situation, so that the residue 
InnerWin is fully functional after the navigation. In the 
memory corruption scenario, however, we found that as 
long as InnerWin contains a script in its child window, 
some internal data structures of InnerWin are destroyed 
after the navigation of NavWin, although the validity of 
InnerWin is not revoked. We observe that any write 
operation to the document in InnerWin results in a memory 
violation.  

7.6. Summary of the discovered vulnerabilities 
The discovered vulnerabilities indicate the challenges 

in actual browser implementations. Although the high-
level policy seems simple – residue objects should be 
invalidated during navigations, and invalidated objects 
should not be invoked, mapping this policy into a concrete 
implementation is not straightforward. The decisions about 
three different properties of an object need to be correlated: 
(1) its existence, which is governed by the garbage-
collection algorithm; (2) its validity, which is governed by 
the navigation logic; (3) its structural integrity, which is 
about the existences and the validities of its descendant 
objects. As shown in this section, making these decisions 
in a real browser implementation can be very subtle errors, 
and error-prone, e.g., in the cross-engine scenarios or due 
to polymorphism of pointers.  

We can classify the discovered vulnerabilities in this 
section, as well as the vulnerabilities previous reported in 
Section 3, into two severity levels:  (1) the memory 
corruption bugs are more traditional. If exploited 
successfully, they allow the malicious websites to run 
arbitrary binary code outside the browser sandbox, 
effectively compromising the browser machine; (2) other 
types of attacks do not directly compromise the browser 
machine, but can fake information of a trusted website, 
lure users to surrender passwords or expose sensitive 
online profiles to malicious websites. Today, as people 
increasingly rely on web applications to real-world tasks, 
these web-based compromises also impose realistic threats.  

8. Possible Responses to the Residue Object 
Problem  

We have seen that the correct logic for guarding 
residue objects is challenging in the real browser 
implementations. In this section we discuss potential 

opportunities that browser vendors may take in response to 
the problem. Especially, in the past two years, the browser 
industry and the research community have been 
undertaking some significant efforts attempting to 
fundamentally improve browser security in general. It is 
worth to discuss some of these efforts in the specific 
context of the residue object problem.  

8.1. Writing browser code in languages with 
automatic garbage collectors? 
Researchers have been undertaking the effort of 

implementing browsers using more sophisticated 
languages. For example, the HTML parser, the Javascript 
engine and the browser kernel of the OP browser are 
written in Java for stronger isolations [6]. The runtimes of 
many contemporary languages, such as Java virtual 
machines and the Common Language Runtime (CLR) for 
.NET, have built-in garbage collectors that are based on 
object-reachability. They do not require developers to do 
refcounting, and thus eliminate the memory-corruption 
bugs (if the language runtimes are correctly implemented).  

The bugs at the DOM access control level and the 
visual representation level, however, cannot be addressed 
by having a more sophisticated garbage collector. When 
exploiting these bugs, the attack script always holds at least 
one reference to the object in order to avoid garbage 
collection, because the bottom line of any garbage-
collector is that it cannot free such a object – if the 
garbage-collection algorithm is based on refcounting, the 
refcount of the object is at least 1, and thus it is not 
collectable; if the algorithm is based on object reachability, 
the object is reachable from a persistent data structure, and 
thus not collectable. In other words, the bugs above the 
memory level are a problem orthogonal to the choice of the 
underlying garbage collection algorithms. 

8.2. Enhancing the browser’s architecture for 
security? 
A recent direction of browser architectural 

enhancements is to host web contents in different 
processes. We argue that the effectiveness of this general 
approach needs to be qualified to avoid overstatements. It 
is clear that when the attacker can execute binary code in a 
browser process (e.g., through a buffer overrun bug), the 
process boundary can prevent the process from directly 
overwriting the memory of other processes. This is a 
significant advantage over the “monolithic process” 
architecture.  

However, a residue object bug enables the attack script 
to access an object through a path of references obtained 
from the browser. In such a scenario, whether each 
reference crosses the process boundary is unimportant: in 
fact, COM programs observe very few barriers of the 
process boundary, because of the DCOM architecture [16]. 
A COM object can be easily created in another process, 
and anyone holding its reference can invoke it without 



 

knowing that it is a cross-process invocation. For example, 
IE8 deploys a multi-process architecture to render different 
windows. We tested IE8 using the five exploits that we 
found in IE7: three of them still work against IE8; the 
exploit in Section 7.4 has been blocked specifically in 
response to our bug reporting; the other exploit (in Section 
7.2) does not seem to work against IE8 because of an 
access policy of DOM is changed. These test results 
suggest that if the object reference policies remain 
unchanged, merely placing different windows in different 
processes will not address the residue object problem.  
Instead, the key question to investigate is when and why 
some references exist in the subtle corner-case situations, 
and how to specify precisely the DOM access policies to 
restrict the references but still permit legitimate 
functionalities. 

Chrome also deploys a multi-process architecture so 
that different windows can be placed in different processes. 
Four browsing models are implemented in Chrome: 
monolithic, process-per-browsing-instance, process-per-
site-instance and process-per-site, each having a specific 
policy for hosting windows in different processes. The 
architecture is mainly designed for robustness and 
responsiveness of the browser [14]. Similar to IE8, we 
argue that such process-based isolations are not fine-
grained enough to address the residue object problem that 
is mainly about COM-level references and accesses.   

It is encouraging that the research community is 
looking into more profound security enhancements. 
Browser prototypes, such as OP [6] and Gazelle [7], 
demonstrate a number of endeavors which may address the 
residue object problem. OP and Gazelle not only deploy 
multi-process architectures, but also spend much effort on 
the policies on top of the architectures. For example, 
Gazelle defines how to treat subdomains, manage display 
regions and potentially sacrifice a small degree of 
compatibility to change some access control policies. In 
the development process of the OP browser, formal 
methods were used to check the implementation against the 
same-origin-policy and certain display properties.  We 
believe that these steps toward a more secure object model 
will be the key efforts to address the problem that we 
discuss in this paper. Of course, OP and Gazelle are not 
full-fledged browsers yet. With more functionalities 
supported, dealing with the logic complexity and the 
compatibility will become more challenging.  

8.3. Systematic testing of browser security logic? 
Besides the direction taken by OP and Gazelle, we 

believe that systematic testing is another promising 
approach to address the problem.  

The analysis approach presented in this paper gives a 
sketch of a testing methodology. In order to expose logic 
bugs, we need to enumerate the mechanisms for creating 
documents, holding objects and navigating windows. In a 
modern browser, there are several object models, such as 

the HTML DOM, the XML DOM, the Flash DOM, etc. 
They all need to be examined. When a test case runs on the 
browser, we need to log and analyze critical events of 
refcounting, validity change and visual disappearance. 
These events contain the crucial information to expose the 
class of bugs, according to our experience.  

9. Related Work 
Browser security is becoming an important research 

area. A number of recent papers discuss specific classes of 
browser vulnerabilities, such as DNS-rebinding [8], 
dynamic pharming [9] and cross-domain attacks [3]. A 
recent paper describes a class of vulnerabilities called 
Javascript capability leaks [2], which is a type of cross-
domain bugs in browsers. Some techniques for defeating 
cross-domain attacks are proposed, e.g., script accenting 
[3]  and Javascript reference leak detection [2]. Because a 
subset of residue object bugs result in cross-domain 
accesses, these defense techniques are good mitigations for 
such bugs. However, they are not designed to mitigate 
other types of residue object bugs. 

Residue objects are the objects that are functionally 
useless but stay in the memory. In a broad sense, research 
about excessive data lifetime is related to our work. Chow 
et al found that many privacy-sensitive data, such as 
Windows logon password, remain in user or kernel 
memory for indefinite periods after their memory blocks 
are returned back to the system [5]. This is a privacy 
concern because if the system is compromised at the 
binary-executable level, the attacker can dump the memory 
to get the data. Chow et al proposed a secure deallocation 
mechanism to zero the data blocks within a short period of 
time after they are freed [4]. 

10. Conclusions and Future Work 

Residue object is a problem that all browsers need to 
face, because it is due to a fundamental dilemma between 
the basic mechanisms in browsers: the scripting capability 
of HTML, the garbage collection and the navigation. When 
not properly guarded, residue objects can cause violations 
of basic security properties, such as visual spoofing, 
involuntary navigation, cross-domain access and memory 
corruption. We show that IE, Firefox and Safari had this 
type of vulnerabilities publicly reported in the past.   

We conducted a focused study about IE’s mechanisms 
for guarding residue objects. Our analysis approach is to 
examine the browser’s logic by enumerating different 
residue objects and deriving object states at the memory 
level. Using this approach, we discovered five new 
vulnerabilities, one of which was patched by Microsoft in a 
hot-fix. More importantly, this study gives answers to our 
initial motivating questions: (1) we use concrete examples 
to show why the seemingly simple guarding mechanisms 
are difficult to implement securely, and where some of the 
pitfalls are; (2) we empirically show that the actual 



 

prevalence of this type of vulnerabilities can be significant, 
if the browsers are under a focused examination.  

We argue that the problem deserves more efforts from 
the industry due to the non-trivial logic involved. Since the 
browser industry today is undertaking serious efforts to 
fundamentally improve the overall security of browser 
products, it is necessary to recognize the residue object 
problem so that it can be fundamentally addressed in such 
efforts. By formulating the problem and showing concrete 
instances, this work gives the initial endeavor toward the 
exploration in this problem space.  

For the future work, we plan to study non-HTML 
document types, such as XML, Adobe Flash and Microsoft 
SliverLight. These runtimes have their own document 
object models, their own same-origin policies, and the 
interoperability with HTML/Javascript. We believe that 
there are also subtle logic errors of this type. 

Further down the road, we plan to extend the study on 
other browsers. We did a preliminary study about the 
residue-object-guarding code of Firefox, and identified the 
objects representing window and document, as well as the 
flag indicating validity. The detailed mechanisms in 
Firefox are different from IE, e.g., in Firefox, writing 
HTML texts and scripts to a residue document object 
(nsHTMLDocument) seems legitimate, but scripts should 
not be allowed to run in residue documents. These 
mechanisms involve window reference holdings and 
validity flag settings, etc. They also need to be thoroughly 
examined because they seem as non-trivial as the ones in 
IE. 
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Appendix: Bug Reports in SecurityFocus.com 

A1: Bugs in IE 

BugID: 5196     Date: 2002-07-10 

Bug Title: Microsoft Internet Explorer OBJECT Tag Same 
Origin Policy Violation Vulnerability 

URL: http://www.securityfocus.com/bid/5196 

Description snippet: … Malicious script code may obtain a 
legitimate reference to an embedded object containing a web 
page from the same domain. This script may then change the 
location of the embedded object to a sensitive page, and maintain 
the reference to the object. This provides full access to the DOM 
of the embedded page.... 

Exploit code snippet: 

<object id=“data” data=“empty.html” type=“text/html”>         
</object>                                                                     
var  obj = document.getElementById(“data”)           //step1 
var ref = obj.object;                                                   //step2 
ref.location.href = “http://targetSite.com”;                //step3 
setTimeout(“read(ref.cookie)”,5000);                       //step4 

BugID: 5841      Date: 2002-10-01 

Bug Title: Microsoft Internet Explorer Document Reference 
Zone Bypass Vulnerability 

URL: http://www.securityfocus.com/bid/5841 

Description snippet: … to execute script code in the context of 
other domains … access to a document object is attempted 
through a saved reference ... 

Exploit code snippet: 

open(location+”2”).blur();                          //step1 
f = opener.location.assign;                         //step2 
opener.location=“res:”;                              //step3 
... 
f(“javascript:c1.Click();c2.Click();”);        //step4 

BugID: 6028        Date: 2002-10-22 

Bug Title: Multiple Microsoft Internet Explorer Cached Objects 
Zone Bypass Vulnerability 

URL: http://www.securityfocus.com/bid/6028 

Description snippet: … creating a reference to several methods 
of the target child window… then have the child window open 
a website in a different domain ... 

Exploit code snippet: 

var oWin=open(“blank.html”,”victim”);                         //step1 
[Cache line here]            //”cache” means “make a ref” – step2 
location.href=“http://google.com”;                                 //step3 
setTimeout( 
        function () {[Exploit line(s) here]},3000                //step4 
);  

 

 

 

 

 

A2. Bugs in Firefox 

BugID: 13230 

Bug Title: Mozilla Suite And Firefox Global Scope Pollution 
Cross-Site Scripting Vulnerability 

Date: 2005-04-16 

URL: http://www.securityfocus.com/bid/13230 

Description snippet: A remote cross-site scripting vulnerability 
affects Mozilla Suite and Mozilla Firefox because the software 
fails to properly clear stored parameters.  

As you browse from site to site each new page should start with 
a clean slate. “shutdown” reports a technique that pollutes the 
global scope of a window in a way that persists from page to 
page.…  

Exploit code snippet: Not disclosed to SecurityFocus 

BugID: 17671 

Bug Title: Mozilla Firefox iframe.contentWindow.focus 
Deleted Object Reference Vulnerability 

Date: 2006-04-24 

URL: http://www.securityfocus.com/bid/17671 

As the title suggested, this is due to a deleted object. 

Exploit code snippet:  

var ifr; 
ifr = document.createElement(“iframe”);      //step1 & step2 
htmlarea.appendChild(ifr); 
var doc = ifr.contentWindow.document;  
doc.write(“<iframe src=' '>“);          //step3: unload the object 

    ifr.contentWindow.focus()               //step4: invoke the object  

BugID: 24286 

Bug Title: Mozilla Firefox About:Blank IFrame Cross Domain 
Information Disclosure Vulnerability 

Date: 2007-06-04 

URL: http://www.securityfocus.com/bid/24286 

Description snippet: Mozilla Firefox is prone to a cross-domain 
information-disclosure vulnerability because scripts may 
persist across navigations..... 

Exploit code snippet: Not disclosed to SecurityFocus 

 

 


