
FACTORIZED DEEP NEURAL NETWORKS FOR ADAPTIVE SPEECH RECOGNITION

Dong Yu
1
, Xin Chen

2
, Li Deng

1

1
Speech Research Group, Microsoft Research, Redmond, WA, USA

2
Department of Computer Science, University of Missouri, Columbia, Missouri, USA

dongyu@microsoft.com, xinchen@mail.missouri.edu, deng@microsoft.com,

ABSTRACT

Recently, we have shown that context-dependent deep neural

network hidden Markov models (CD-DNN-HMMs) can achieve

very promising recognition results on large vocabulary speech

recognition tasks, as evidenced by over one third fewer word errors

than the discriminatively trained conventional HMM-based

systems on the 300hr Switchboard benchmark task. In this paper,

we propose and describe two types of factorized adaptive DNNs,

improving the earlier versions of CD-DNN-HMMs. In the first

model, the hidden speaker and environment factors and tied

triphone states are jointly approximated; while in the second

model, the factors are firstly estimated and then fed into the main

DNN to predict tied triphone states. We evaluated these models on

the small 30hr Switchboard task. The preliminary results indicate

that more training data are needed to show the full potential of

these models. However, these models provide new ways of

modeling speaker and environment factors and offer insight onto

how environment invariant DNN models may be constructed and
subsequently trained.

Index Terms — automatic speech recognition, deep neural

networks, factorized DNN, CD-DNN-HMM

1. INTRODUCTION

Recently significant progress has been made in applying

artificial neural network (ANN) hidden Markov model (HMM)

hybrid systems [1][2][3][4][5][6][7][8] for speech recognition.

Two main factors contributed to the resurrection of the interests:

the discovery of the strong modeling ability of deep neural

networks (DNNs) and the availability of high-speed general

purpose graphical processing units (GPGPUs) for efficiently

training DNNs.

A notable advance is the context-dependent DNN-HMMs (CD-

DNN-HMMs) [4][5][6], in which DNNs replace Gaussian mixture

models (GMMs) and directly approximate the emission

probabilities of the tied triphone states. CD-DNN-HMMs have

recently been shown to be highly promising. They have achieved

16% [4][5] and 33% [6][7][8] relative recognition error reduction

over strong, discriminatively trained CD-GMM-HMMs,

respectively, on a voice search (VS) task [9] and the Switchboard

(SWB) phone-call transcription task [10].

Speech signals have long been considered as complicated non-

linear combination of factors such as speech itself, speaker,

channel, and the acoustic environment. In this work, we extend the

DNN to its factorized versions so that we may separate these

factors and thus be better able to model inherently sophisticated

interactions among these factors.

More specifically, we introduce and describe two factorized

DNNs: joint and disjoint models. For the former, we jointly model

the hidden factors and the tied triphone states. Each factor in this

model is either on or off and can be combined with each other; i.e.,

several factors can be on at the same time. In other words, a K-

factor hidden layer (i.e., with K units) can represent a total of

possible combinatorial factors. In the disjoint model, on the other

hand, the factors and tied triphone states are modeled separately

using different DNNs. In one specific model that we have

implemented, the hidden factor layer can only model factors and

one can only select one of these factors at a time. In other words,

each factor in the disjoint model can be considered as a composite

of several factors in the joint model.

We will introduce the basic DNN in Section 2 and describe the

two factorized DNNs in detail in Section 3. Preliminary

experimental results on Switchboard task are illustrated in Section

4. The paper is concluded with discussions in Section 5.

2. DEEP NEURAL NETWORKS

As a brief review, a DNN is a multi-layer perceptron (MLP) with

many hidden layers. The lower layers of the DNN are sigmoid

layers in which the -th node of each layer converts the input

vector into output (∑). This can be interpreted as a

non-linear transformation of the input feature . Alternatively each

node can be considered as taking binary values 0 and 1 following

Bernoulli distribution. The mean field value of each node’s output

is sent to the next layer as the input. The last layer of a DNN

transforms a number of Bernoulli distributed units into a

multinomial distribution using the softmax operation

 ()
 (∑

)

 ()
 (1)

where denotes the input been classified into the th class,

and is the weight between input unit at the last layer and

class label .

Due to the deep structure and the complicated nonlinear surface

introduced by the large number of hidden layers, it is important to

employ effective training strategies. A popular trick is to initialize

the parameters of each layer greedily and generatively by treating

each pair of layers in DNNs as a restricted Boltzmann machine

(RBM) before joint optimization of all the layers [11][12]. This

learning strategy enables discriminative training to start from well

initialized weights and is used in this study.

To learn the DNNs, we first train a Gaussian-Bernoulli RBM

generatively in which the visible layer is the continuous input

vector constructed from frames of speech features, in

which is the number of look-forward and look-backward frames.

mailto:dongyu@microsoft.com
mailto:xinchen@mail.missouri.edu
mailto:deng@microsoft.com

We then use Bernoulli-Bernoulli RBMs for the remaining layers.

When pre-training the next layer, () ()

from the previous layer is used as the visible input vector based on

the mean-field theory. This process continues until the last layer at

which time error back-propagation (BP) is used to fine-tune all the

parameters jointly by maximizing the frame-level cross-entropy

between the true and the predicted probability distributions over

class labels.

3. FACTORIZED DEEP NEURAL NETWORKS

Factorized DNNs are DNNs in which at least one layer is

factorized. In speech recognition, a factor can be a cluster of

speakers or a special acoustic environment (e.g., noise/channel

condition and SNR). In this section, we will propose and discuss

two such models: a joint model and a disjoint model. For the sake

of discussion, we assume the input to the factorized layer is (an

 vector) and the output of the same layer is (an

vector). We use to indicate -th element of . Although our

discussion is based on the softmax layer, the model can be easily

extended to sigmoid layers through error back-propagation.

3.1 Joint Factorized Model

In the joint factorized model, borrowing from [13], we

approximate the joint probability as

 ()
 ()

∑ ()

 (2)

where is a binary vector indicating hidden condition (e.g.,

speaker or environment), and is a matrix. We thus have

 () ∑ ()

 { }

 ∑ ()

 { }

 ∑ (∑

)

 { }

 ∏((∑

)

 (∑

))

 ∏((∑

))

 ∏((
))

(3)

where is an vector along dimension . The partition

function is

 ∑∏((∑

))

 (4)

As shown in Figure 1, in this factorized joint model, both the

speaker or environmental condition and the output (e.g., tied

triphone state) are unknown (hidden) and are jointly estimated. To

predict the tied triphone states, we sum over all possible speaker or

environmental conditions. Fortunately, the factorization trick

carried out in (3) renders such gigantic summation feasible; i.e., the

combinatorially large sum is reduced to a product.

Figure 1: Illustration of a typical architecture of the joint

factorized DNN model

We now turn to the learning problem. Note that is an

 tensor and can be huge. To reduce the total number of

weight parameters, we can restrict the number of hidden conditions

 or the input dimensionality . Alternatively, we can further

assume that is determined using factors as

 ∑

 (5)

Or in a matrix format

 ∑

 (6)

where is outer product. We then obtain

 () ∏((∑

))

 ∑ ((∑∑

))

 ∑

(7)

where

 ∑ ((∑

))

 ∑ ((∑(∑

)

))

(8)

The model parameters are learned by maximizing the

conditional log likelihood (), whose gradient with regard

to ̅ is

 ()

 ̅

 (∑)

 ̅

 (̅ (̅)) (∑ ̅

)

 (̅ (̅)) (̅
)

(9)

where ()

 ()
 is sigmoid function, and we have used the

fact that

 ̅
 ̅

 ((∑ ̅))

 ̅

 ̅

 (∑ ̅)

 (∑ ̅)

 ̅

 (∑ ̅)

 ̅ (∑ ̅

)

(10)

If parameterization of (5) is used, we further have

 ()

 ∑

 ()

 ̅

 ̅

 ̅

 ∑
 ()

 ̅

 ∑

 ̅

 ∑
 ()

 ̅
 ̅

 ̅

(11)

where ̅
 ()

 ̅
 and is an slice of the tensor

along . Similarly,

 ()

 ̅
 ∑

 ()

 ̅

 ̅

(12)

and

 ()

 ∑
 ()

 ̅

 ̅

 ̅

(13)

The error can then be propagated to lower layers by calculating

 ()

 (∑)

 ∑

∑ ̅

 ̅

 ̅

∑

 ∑(̅ (̅))∑ (̅
)

 ̅

(14)

where we have used the fact that

 ∑ ((
))

 ∑
 (

)

 (
)

 ∑

 (
)

 ∑ (
)

(15)

Note that the implementation of the learning algorithm based

on the above gradient computation is tricky and needs to be smart.

This is because many of the gradients above share part of the

intermediate results. We only need to calculate these intermediate

results once. Otherwise, the computation would be prohibitively

large.

3.2 Disjoint Factorized Model

Unlike the joint factorized model, in the disjoint model as defined

by the condition of

 () () () (16)

the two conditionals of () and () are estimated

separately first and then multiplied. For example, as adopted in this

study, () can be estimated using a separate DNN and its

computation may use additional information (e.g., alignment

information if second pass decoding is used). A special

implementation (or architecture) of the disjoint factorized model is

illustrated in Figure 2.

Figure 2: Illustration of a typical architecture of the disjoint

factorized DNN model

On the other hand, () can be estimated using the

softmax model

 ()
 ()

∑ ()

 (17)

Note that although the same softmax formula is used as for (2), the

meaning is very different. In (2) we approximated the probability

of the pair () given the input , and thus the partition function

has an additional (huge) sum over combinatorial h. In contrast, in

(17) we approximate only the probability of when we know both

input and factor . The marginal conditional probability is thus

 () ∑ ()

 ()

 ∑
 ()

∑ ()

 ()

(18)

When the output layer of the separate DNN with output

nodes is used to estimate (), can only take one of

 values and thus we have further simplification of

 () ∑
 ()

∑ ()
 []

 ()

 ∑
 (

)

∑ (
)

(19)

Equation (19) is equivalent to say we build a separate softmax

layer for each type of speaker or environment.

In this disjoint model, the training is straightforward. Since we

build a DNN to estimate factors (e.g., speaker or environment) and

a cluster of DNNs for tied triphone states, one for each factor

trained firstly using all the data and then adapted using only data

associated with that factor. No change of leaning algorithms from

those reviewed in Section 2 is needed.

4. EXPERIMENTS

In this section we report some of the preliminary results of

applying factorized DNNs on the Switchboard task.

The training and development sets contain 30 hours and 6.5

hours of data randomly sampled from the 309-hour Switchboard-I

training set. The 1831-segment SWB part of the NIST 2000 Hub5

eval set (6.5 hours) was used as the test set. To prevent speaker

overlap between the training and test sets, speakers occurring in the

test set were removed from the training and development sets. We

evaluated the models only on the 30-hr (instead of 309-hr) training

set at this stage due to the high computational cost incurred with

factorized models.

The system uses 13-dimensional PLP features with windowed

mean-variance normalization and up to third-order derivatives,

reduced to 39 dimensions by HLDA. The speaker-independent

crossword triphones use the common 3-state topology and share

1504 CART-tied states determined on the conventional GMM

system. The trigram language model was trained on the 2000h

Fisher-corpus transcripts and interpolated with a written text

trigram. Test-set perplexity with the 58k dictionary is 84.

Recognition is done in a single-pass without any speaker

adaptation.

The GMM-HMM baseline system has 40 Gaussian mixtures

trained with maximum likelihood (ML) and refined

discriminatively with the boosted maximum-mutual-information

(BMMI) criterion. Using more than 40 Gaussians did not improve

the ML result.

The CD-DNN-HMM system replaces the Gaussian mixtures

with likelihoods derived from the DNN posteriors [1][5][6]. The

input to the DNN contains 11 (5-1-5) frames of the HLDA-

transformed features. The DNN contains 429-2048-2048-2048-

2048-2048-1504 neurons at different layers. The joint and disjoint

factorized CD-DNN-HMM systems replace the DNN posteriors

with eq. (3) and (19) respectively. All these models use five hidden

layers each of which has 2048 hidden units. In the joint model the

dimension of the factor is set to 7 with possible factor

combinations to make training tractable. In the disjoint model, the

factor is the speaker side ID and there are 354 of it in the training

set. The factor posteriors themselves are estimated from a separate

DNN with 429-128-128-128-354 units at different layers. We

chose to use 128 hidden units to make it comparable to the joint

factor model when the hidden units are used as the factors (similar

to the bottle-neck feature). All DNNs were trained using the

minibatch stochastic gradient ascent algorithm with 256 frames in

each minibatch. For both joint and disjoint model we only applied

the factorized layer at the top layer. In all the experiments, we have

used the ML trained GMM system to generate the senone labels for

DNN training. To alleviate the overfitting problem due to

significantly more parameters in the factorized models, smaller

learning rate (one tenth of what we used in [5][6]), L2

regularization and cross validation were used to control the training

process. Additional training details can be found in [5][6].

The preliminary results are summarized in Table 1. It is

expected that the CD-DNN-HMM significantly outperforms the

conventional CD-GMM-HMM with a 27% relative WER

reduction. Unfortunately both factorized models perform only

slightly better than the non-factorized DNN-HMMs and they

perform worse than the method of 2-pass feature discriminative

linear regression (fDLR) [7] with which a linear transformation of

the input feature is estimated to maximize the posterior probability

of the senone alignment generated by the first-pass recognition

result. The insignificant gain observed in this experiment might be

partially due to the fact that factorized DNNs use considerably

more parameters and our experiments (work in progress) are so far

limited to only 30 hours of training data.

5. DISCUSSIONS

In this paper, we have introduced and described two types of

factorized DNNs -- joint and disjoint -- for large vocabulary speech

recognition, aimed to accommodate or be adaptive to a wide range

of speaker and environmental conditions. The proposed approaches

represent new ways of modeling speaker and environment factors

and offer insight onto how we may effectively construct and train

environment invariant DNN models. We hope the models

presented in this paper can trigger new ideas and techniques to

further advance the state of the art.

Our preliminary results indicate that given a relatively small

amount of training data in our work progressed thus far, the

factorized DNNs only slightly outperform the conventional DNN

(not statistically significant). Ongoing experiments are further

testing out these models. These include the use of more training

data, adjustment of the number of factors, and adoption of better

training strategy. Our future directions will also integrate the

adaptive modeling strategy presented in this paper to new deep

architectures beyond DNNs and develop applications beyond

speech recognition [14].

Table 1. Comparisons: CD-GMM-HMM, conventional CD-

DNN-HMM, and factorized CD-DNN-HMMs. Trained on 30-hr

training set. WER reported on SWB NIST 2000 Hub5 eval set.

Setup Test WER (%)

CD-GMM-HMM 34.8

CD-DNN-HMM 25.7

Joint Fac DNN 25.6

Disjoint Fac DNN 25.6

fDLR (2-pass) 25.3

6. REFERENCES

[1] S. Renals, N. Morgan, H. Bourlard, M. Cohen, and H.

Franco,“Connectionist Probability Estimators in HMM

Speech Recogni-tion,” IEEE Trans. Speech and Audio Proc.,

January 1994.

[2] A. Mohamed, G. E. Dahl, and G. E. Hinton, “Acoustic

modeling using deep belief networks,” IEEE Trans. on Audio,

Speech, and Lang. Proc. Jan. 2012.

[3] A. Mohamed, D. Yu, and L. Deng, "Investigation of full-

sequence training of deep belief networks for speech

recognition", in Proc. Interspeech 2010, pp. 1692-1695.

[4] D. Yu, L. Deng, and G. Dahl, “Roles of pretraining and fine-

tuning in context-dependent DBN-HMMs for real-world

speech recognition,” Proc. NIPS Workshop on Deep Learning

and Unsupervised Feature Learning, 2010.

[5] G.E. Dahl, D. Yu, L. Deng, and A. Acero, "Context-

dependent pretrained deep neural networks for large

vocabulary speech recognition", IEEE Trans. Audio, Speech,

and Lang. Proc. Jan. 2012.

[6] F. Seide, G. Li and D. Yu, “Conversational speech

transcription using context-dependent deep neural networks,”

Proc. Interspeech 2011, pp. 437-440.

[7] F. Seide, G. Li, X. Chen, D. Yu, “Feature engineering in

context-dependent deep neural networks for conversational

speech transcription,” Proc. ASRU 2011, pp. 24-29.

[8] D. Yu, F. Seide, G. Li, L. Deng, "Exploiting Sparseness In

Deep Neural Networks For Large Vocabulary Speech

Recognition", Proc. ICASSP, March 2012.

[9] D. Yu, Y. C. Ju, Y. Y. Wang, G. Zweig, and A. Acero,

“Automated directory assistance system - from theory to

practice,” Proc. Interspeech, 2007, pp. 2709–2711.

[10] J. Godfrey and E. Holliman, “Switchboard-1 Release 2,”

Linguistic Data Consortium, Philadelphia, 1997.

[11] G. E. Hinton, “Training products of experts by minimizing

contrastive divergence,” Neural Computation, vol. 14, pp.

1771–1800, 2002.

[12] G. Hinton, S. Osindero, and Y. Teh, “A Fast Learning

Algorithm for Deep Belief Nets”, Neural Computation, vol.

18, pp. 1527–1554, 2006.

[13] R. Memisevic, C. Zach, G. Hinton, and M. Pollefeys. “Gated

softmax classication”, NIPS 2011.

[14] D. Yu and L. Deng, “Deep learning and its applications to

signal and information processing , IEEE Signal Processing

Magazine, Vol. 28, January 2011.

http://research.microsoft.com/apps/pubs/default.aspx?id=143620
http://research.microsoft.com/apps/pubs/default.aspx?id=143620

