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ABSTRACT 

Recently, we have shown that context-dependent deep neural 

network hidden Markov models (CD-DNN-HMMs) can achieve 

very promising recognition results on large vocabulary speech 

recognition tasks, as evidenced by over one third fewer word errors 

than the discriminatively trained conventional HMM-based 

systems on the 300hr Switchboard benchmark task. In this paper, 

we propose and describe two types of factorized adaptive DNNs, 

improving the earlier versions of CD-DNN-HMMs. In the first 

model, the hidden speaker and environment factors and tied 

triphone states are jointly approximated; while in the second 

model, the factors are firstly estimated and then fed into the main 

DNN to predict tied triphone states. We evaluated these models on 

the small 30hr Switchboard task. The preliminary results indicate 

that more training data are needed to show the full potential of 

these models. However, these models provide new ways of 

modeling speaker and environment factors and offer insight onto 

how environment invariant DNN models may be constructed and 
subsequently trained. 

Index Terms — automatic speech recognition, deep neural 

networks, factorized DNN, CD-DNN-HMM 

 

1. INTRODUCTION 
 

Recently significant progress has been made in applying 

artificial neural network (ANN) hidden Markov model (HMM) 

hybrid systems [1][2][3][4][5][6][7][8] for speech recognition. 

Two main factors contributed to the resurrection of the interests: 

the discovery of the strong modeling ability of deep neural 

networks (DNNs) and the availability of high-speed general 

purpose graphical processing units (GPGPUs) for efficiently 

training DNNs.  

A notable advance is the context-dependent DNN-HMMs (CD-

DNN-HMMs) [4][5][6], in which DNNs replace Gaussian mixture 

models (GMMs) and directly approximate the emission 

probabilities of the tied triphone states. CD-DNN-HMMs have 

recently been shown to be highly promising. They have achieved 

16% [4][5] and 33% [6][7][8] relative recognition error reduction 

over strong, discriminatively trained CD-GMM-HMMs, 

respectively, on a voice search (VS) task [9] and the Switchboard 

(SWB) phone-call transcription task [10]. 

Speech signals have long been considered as complicated non-

linear combination of factors such as speech itself, speaker, 

channel, and the acoustic environment. In this work, we extend the 

DNN to its factorized versions so that we may separate these 

factors and thus be better able to model inherently sophisticated 

interactions among these factors. 

More specifically, we introduce and describe two factorized 

DNNs: joint and disjoint models. For the former, we jointly model 

the hidden factors and the tied triphone states. Each factor in this 

model is either on or off and can be combined with each other; i.e., 

several factors can be on at the same time. In other words, a K-

factor hidden layer (i.e., with K units) can represent a total of     

possible combinatorial factors. In the disjoint model, on the other 

hand, the factors and tied triphone states are modeled separately 

using different DNNs. In one specific model that we have 

implemented, the hidden factor layer can only model   factors and 

one can only select one of these factors at a time. In other words, 

each factor in the disjoint model can be considered as a composite 

of several factors in the joint model.  

We will introduce the basic DNN in Section 2 and describe the 

two factorized DNNs in detail in Section 3. Preliminary 

experimental results on Switchboard task are illustrated in Section 

4. The paper is concluded with discussions in Section 5. 

 

2. DEEP NEURAL NETWORKS 
 

As a brief review, a DNN is a multi-layer perceptron (MLP) with 

many hidden layers. The lower layers of the DNN are sigmoid 

layers in which the  -th node of each layer converts the input 

vector   into output     (∑       ). This can be interpreted as a 

non-linear transformation of the input feature  . Alternatively each 

node can be considered as taking binary values 0 and 1 following 

Bernoulli distribution. The mean field value of each node’s output 

is sent to the next layer as the input. The last layer of a DNN 

transforms a number of Bernoulli distributed units into a 

multinomial distribution using the softmax operation 

 (       )  
   (∑      

 
      )

 ( )
  (1) 

where     denotes the input been classified into the  th class, 

and     is the weight between input unit    at the last layer and 

class label  .  

Due to the deep structure and the complicated nonlinear surface 

introduced by the large number of hidden layers, it is important to 

employ effective training strategies. A popular trick is to initialize 

the parameters of each layer greedily and generatively by treating 

each pair of layers in DNNs as a restricted Boltzmann machine 

(RBM) before joint optimization of all the layers [11][12]. This 

learning strategy enables discriminative training to start from well 

initialized weights and is used in this study. 

To learn the DNNs, we first train a Gaussian-Bernoulli RBM 

generatively in which the visible layer is the continuous input 

vector constructed from      frames of speech features, in 

which   is the number of look-forward and look-backward frames. 
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We then use Bernoulli-Bernoulli RBMs for the remaining layers. 

When pre-training the next layer,  (      )   (        ) 

from the previous layer is used as the visible input vector based on 

the mean-field theory. This process continues until the last layer at 

which time error back-propagation (BP) is used to fine-tune all the 

parameters jointly by maximizing the frame-level cross-entropy 

between the true and the predicted probability distributions over 

class labels.  

 

3. FACTORIZED DEEP NEURAL NETWORKS 
 

Factorized DNNs are DNNs in which at least one layer is 

factorized. In speech recognition, a factor can be a cluster of 

speakers or a special acoustic environment (e.g., noise/channel 

condition and SNR). In this section, we will propose and discuss 

two such models: a joint model and a disjoint model. For the sake 

of discussion, we assume the input to the factorized layer is   (an 

    vector) and the output of the same layer is   (an     

vector). We use   to indicate  -th element of  . Although our 

discussion is based on the softmax layer, the model can be easily 

extended to sigmoid layers through error back-propagation. 

 

3.1 Joint Factorized Model 

 

In the joint factorized model, borrowing from [13], we 

approximate the joint probability as 
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where   is a     binary vector indicating hidden condition (e.g., 

speaker or environment), and    is a     matrix. We thus have 
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where      is an     vector along dimension  . The partition 

function is 

  ∑∏(     (∑       
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As shown in Figure 1, in this factorized joint model, both the 

speaker or environmental condition and the output (e.g., tied 

triphone state) are unknown (hidden) and are jointly estimated. To 

predict the tied triphone states, we sum over all possible speaker or 

environmental conditions. Fortunately, the factorization trick 

carried out in (3) renders such gigantic summation feasible; i.e., the 

combinatorially large sum is reduced to a product.  

 

 
 

Figure 1: Illustration of a typical architecture of the joint 

factorized DNN model 

 

We now turn to the learning problem. Note that   is an 

      tensor and can be huge. To reduce the total number of 

weight parameters, we can restrict the number of hidden conditions 

  or the input dimensionality  . Alternatively, we can further 

assume that   is determined using   factors as 
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Or in a matrix format 
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where   is outer product. We then obtain 
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where 
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The model parameters are learned by maximizing the 

conditional log likelihood     (   ), whose gradient with regard 

to   ̅   is 



     (   )

   ̅  
 

 (      ∑         )

   ̅  
                 

 (  ̅   ( ̅  ))  (∑  ̅      

  

)   

 (  ̅   ( ̅  ))  (  ̅  
  )    

(9) 

where  ( )  
 

     (  )
 is sigmoid function, and we have used the 

fact that 
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If parameterization of (5) is used, we further have 
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where   ̅   
     (   )

   ̅  
 and      is an     slice of the tensor   

along  . Similarly, 
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and 
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The error can then be propagated to lower layers by calculating 
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where we have used the fact that 
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Note that the implementation of the learning algorithm based 

on the above gradient computation is tricky and needs to be smart. 

This is because many of the gradients above share part of the 

intermediate results.  We only need to calculate these intermediate 

results once. Otherwise, the computation would be prohibitively 

large. 

 

3.2 Disjoint Factorized Model 

 

Unlike the joint factorized model, in the disjoint model as defined 

by the condition of 

 (     )   (     ) (   )  (16) 

the two conditionals of  (     )  and  (   )  are estimated 

separately first and then multiplied. For example, as adopted in this 

study,  (   )  can be estimated using a separate DNN and its 

computation may use additional information (e.g., alignment 

information if second pass decoding is used). A special 

implementation (or architecture) of the disjoint factorized model is 

illustrated in Figure 2. 

 

 

Figure 2: Illustration of a typical architecture of the disjoint 

factorized DNN model 

 

On the other hand,  (     )  can be estimated using the 

softmax model 

 (     )  
   (     )

∑    (      )  

  (17) 

Note that although the same softmax formula is used as for (2), the 

meaning is very different. In (2) we approximated the probability 

of the pair (   ) given the input  , and thus the partition function 

has an additional (huge) sum over combinatorial  h. In contrast, in 

(17) we approximate only the probability of   when we know both 

input   and  factor  . The marginal conditional probability is thus 
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When the output layer of the separate DNN with   output 

nodes is used to estimate     (     ),   can only take one of 

  values and thus we have further simplification of 
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Equation (19) is equivalent to say we build a separate softmax 

layer for each type of speaker or environment.  

In this disjoint model, the training is straightforward. Since we 

build a DNN to estimate factors (e.g., speaker or environment) and 

a cluster of DNNs for tied triphone states, one for each factor 

trained firstly using all the data and then adapted using only data 

associated with that factor. No change of leaning algorithms from 

those reviewed in Section 2 is needed. 

 

4. EXPERIMENTS 
 

In this section we report some of the preliminary results of 

applying factorized DNNs on the Switchboard task.  

The training and development sets contain 30 hours and 6.5 

hours of data randomly sampled from the 309-hour Switchboard-I 

training set. The 1831-segment SWB part of the NIST 2000 Hub5 

eval set (6.5 hours) was used as the test set. To prevent speaker 

overlap between the training and test sets, speakers occurring in the 

test set were removed from the training and development sets. We 

evaluated the models only on the 30-hr (instead of 309-hr) training 

set at this stage due to the high computational cost incurred with 

factorized models. 

The system uses 13-dimensional PLP features with windowed 

mean-variance normalization and up to third-order derivatives, 

reduced to 39 dimensions by HLDA. The speaker-independent 

crossword triphones use the common 3-state topology and share 

1504 CART-tied states determined on the conventional GMM 

system. The trigram language model was trained on the 2000h 

Fisher-corpus transcripts and interpolated with a written text 

trigram. Test-set perplexity with the 58k dictionary is 84. 

Recognition is done in a single-pass without any speaker 

adaptation. 

The GMM-HMM baseline system has 40 Gaussian mixtures 

trained with maximum likelihood (ML) and refined 

discriminatively with the boosted maximum-mutual-information 

(BMMI) criterion. Using more than 40 Gaussians did not improve 

the ML result. 

The CD-DNN-HMM system replaces the Gaussian mixtures 

with likelihoods derived from the DNN posteriors [1][5][6]. The 

input to the DNN contains 11 (5-1-5) frames of the HLDA-

transformed features. The DNN contains 429-2048-2048-2048-

2048-2048-1504 neurons at different layers. The joint and disjoint 

factorized CD-DNN-HMM systems replace the DNN posteriors 

with eq. (3) and (19) respectively. All these models use five hidden 

layers each of which has 2048 hidden units. In the joint model the 

dimension of the factor   is set to 7 with        possible factor 

combinations to make training tractable. In the disjoint model, the 

factor   is the speaker side ID and there are 354 of it in the training 

set. The factor posteriors themselves are estimated from a separate 

DNN with 429-128-128-128-354 units at different layers. We 

chose to use 128 hidden units to make it comparable to the joint 

factor model when the hidden units are used as the factors (similar 

to the bottle-neck feature). All DNNs were trained using the 

minibatch stochastic gradient ascent algorithm with 256 frames in 

each minibatch. For both joint and disjoint model we only applied 

the factorized layer at the top layer. In all the experiments, we have 

used the ML trained GMM system to generate the senone labels for 

DNN training. To alleviate the overfitting problem due to 

significantly more parameters in the factorized models, smaller 

learning rate (one tenth of what we used in [5][6]), L2 

regularization and cross validation were used to control the training 

process. Additional training details can be found in [5][6]. 

The preliminary results are summarized in Table 1. It is 

expected that the CD-DNN-HMM significantly outperforms the 

conventional CD-GMM-HMM with a 27% relative WER 

reduction. Unfortunately both factorized models perform only 

slightly better than the non-factorized DNN-HMMs and they 

perform worse than the method of 2-pass feature discriminative 

linear regression (fDLR) [7] with which a linear transformation of 

the input feature is estimated to maximize the posterior probability 

of the senone alignment generated by the first-pass recognition 

result. The insignificant gain observed in this experiment might be 

partially due to the fact that factorized DNNs use considerably 

more parameters and our experiments (work in progress) are so far 

limited to only 30 hours of training data.  

 

 
 

5. DISCUSSIONS 
 

In this paper, we have introduced and described two types of 

factorized DNNs -- joint and disjoint -- for large vocabulary speech 

recognition, aimed to accommodate or be adaptive to a wide range 

of speaker and environmental conditions. The proposed approaches 

represent new ways of modeling speaker and environment factors 

and offer insight onto how we may effectively construct and train 

environment invariant DNN models. We hope the models 

presented in this paper can trigger new ideas and techniques to 

further advance the state of the art.  

Our preliminary results indicate that given a relatively small 

amount of training data in our work progressed thus far, the 

factorized DNNs only slightly outperform the conventional DNN 

(not statistically significant). Ongoing experiments are further 

testing out these models. These include the use of more training 

data, adjustment of the number of factors, and adoption of better 

training strategy. Our future directions will also integrate the 

adaptive modeling strategy presented in this paper to new deep 

architectures beyond DNNs and develop applications beyond 

speech recognition [14]. 

 

Table 1. Comparisons: CD-GMM-HMM, conventional CD-

DNN-HMM, and factorized CD-DNN-HMMs. Trained on 30-hr 

training set. WER reported on SWB NIST 2000 Hub5 eval set. 

  

Setup Test WER (%) 

CD-GMM-HMM 34.8 

CD-DNN-HMM 25.7 

Joint Fac DNN 25.6 

Disjoint Fac DNN 25.6 

fDLR (2-pass) 25.3 
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