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ABSTRACT

Memory-based approaches for collaborative filtering identify the
similarity between two users by comparing their ratings on a set
of items. In the past, the memory-based approaches have been
shown to suffer from two fundamental problems: data sparsity and
difficulty in scalability. Alternatively, the model-based
approaches have been proposed to alleviate these problems, but
these approaches tends to limit the range of users. In this paper,
we present a novel approach that combines the advantages of
these two kinds of approaches by introducing a smoothing-based
method. In our approach, clusters generated from the training
data provide the basis for data smoothing and neighborhood
selection. As a result, we provide higher accuracy as well as
increased efficiency in recommendations. Empirical studies on
two datasets (EachMovie and MovieLens) show that our new
proposed approach consistently outperforms other state-of-the-art
collaborative filtering algorithms.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information Search
and Retrieval — Information Filtering

General Terms:

Experimentation

Algorithms, Performance,

Keywords: Collaborative Filtering, Sparsity Data, Smoothing,
Clustering.

1. INTRODUCTION

Collaborative filtering predicts the interest of items for an active
user based on the aggregated rating information of the like-
minded users in a historical database. The key idea is that the
active user will prefer those items that like-minded people prefer,
or even that dissimilar people don’t prefer. Two types of
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algorithms for collaborative filtering have been studied: memory-
based and model-based. Memory-based algorithms perform the
computation on the entire database to identify the top K most
similar users to the active user from the training database in terms
of the rating patterns and then combines those ratings together.
Notable examples include the Pearson-Correlation based approach
[16], the vector similarity based approach [4], and the extended
generalized vector-space model [20]. These approaches focused
on utilizing the existing rating of a training user as the features.
However, the memory-based method suffers from two
fundamental problems: data sparsity and inability to scale up.
Data sparsity refers to the difficulty that most users rate only a
small number of items and hence a very sparse user-item matrix is
available. As a result, the accuracy of the method is often quite
poor. As for computational scalability, algorithms based on
memory-based approaches often cannot cope well with the large
numbers of users and items.

In contrast to the memory-based approaches, model-based
approaches group different users in the training database into a
small number of classes based on their rating patterns. In order to
predict the rating from an active user on a particular item, these
approaches first categorize the active user into one or more of the
predefined user classes and use the rating of the predicted classes
on the targeted item as the prediction. Algorithms within this
category include Bayesian network approach [4], clustering
approach [13][21] and the aspect models [12].The model-based
approaches are often time-consuming to build and update, and
cannot cover as diverse a user range as the memory-based
approaches do.

In this paper, we propose a novel framework for collaborative
filtering which combines the strengths of memory-based
approaches and model-based approaches in order to enable
recommendation by groups of closely related individuals. Our
method uses the clusters as the computed groups and smoothes
the unrated data for individual users. The use of clusters for
smoothing permits the integration of the advantages from both the
memory-based and model-based approaches. By using the rating
information from a group of closely related users, unrated items
of the individual user in a group can be predicted; this allows the
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missing values to be filled in. Moreover, assuming that the nearest
neighbor should be also in Top N most similar clusters to the
active user, we need only select the nearest neighbors in the set of
the Top N clusters. This enables the system to be scalable.

In the rest of the paper, we provide a brief description of several
major approaches for collaborative filtering and the related work.
In section 3, we propose general framework for collaborative
filtering. The results of empirical studies are presented in Section
4, followed by conclusion in Section 5.

2. BACKGROUND

In this section, we review several major approaches for
collaborative filtering.

2.1 Collaborative Filtering
2.1.1 Memory-based Approaches

The memory-based approaches [4] are among the most popular
prediction techniques in collaborative filtering. The basic idea is
to compute the active user’s predicted vote of an item as a
weighted average of votes by other similar users or K nearest
neighbors (KNN). Two commonly used memory-based
algorithms are the Pearson Correlation Coefficient (PCC)
algorithm [16] and the Vector Space Similarity (VSS) algorithm
[4]. These two approaches differ in the computation of similarity.
As described in [4], the PCC algorithm generally achieves higher
performance than vector-space similarity method.

2.1.2 Model-based Approaches

Two popular model-based algorithms are the clustering for
collaborative filtering [13][21] and the aspect models [12].
Clustering techniques work by identifying groups of users who
appear to have similar preferences. Once the clusters are created,
predictions for an individual can be made by averaging the
opinions of the other users in that cluster. Some clustering
techniques represent each user with partial participation in several
clusters. The prediction is then an average across the clusters,
weighted by the degree of participation.

The aspect model [12] is a probabilistic latent-space model, which
considers individual preferences as a convex combination of
preference factors. The latent class variable is associated with
each observation pair of a user and an item. The aspect model
assumes that users and items are independent from each other
given the latent class variable.

2.1.3 Hybrid Model

Pennock et al. [15] proposed a hybrid memory- and model-based
approach. Given a user’s preferences for some items, they
compute the probability that a user belongs to the same
“personality diagnosis” by assigning the missing rating as a
uniform distribution over all possible ratings [15]. Previous
empirical studies have shown that the method is able to
outperform several other approaches for collaborative filtering
[15], including the PCC method, the VSS method and the
Bayesian network approach. However, the method neither takes
the whole aggregated information of the training database into
account nor considers the diversity among users when rating the
non-rated items. From our point of view, the clustering-based
smoothing could provide more representative information for the
rating.

2.2 OTHER RELATED WORK

Several other related methods have also been proposed to deal
with the sparsity problem. The dimension-reduction method aims
to reduce the dimensionality of the user-item matrix directly. A
simple strategy is to form clusters of users or items and then use
these clusters as basic units in making recommendation. Principle
Component Analysis (PCA) [8] and information retrieval
techniques such as Latent Semantic Indexing (LSI) [7][18] are
also proposed. Zeng [23] proposed to compute the users’
similarity by a matrix conversion method for similarity measure.
The dimensionality-reduction approach addresses the sparsity
problem by removing unrepresentative or insignificant users or
itetms so as to condense the user-item matrix. However,
potentially useful information might be lost during this reduction
process. By considering the association between users and items,
transitive associations of the associative-retrieval technique [11]
are proposed to iteratively reinforce the similarity of the users and
the similarity of items.

Content-boosted CF [1][5] approaches require additional
information regarding items as well as a metric to compute
meaningful similarities among them. In [17], A. Popescul et al.
also proposed a unified probabilistic model for integrating content
information to solve the sparse-data problem. Most previous
studies have demonstrated significant improvement in
recommendation quality. However, in practice, such item
information may be difficult or expensive to acquire.

Sarwar et al. [19] proposed an item-based approach to addressing
both the scalability and sparsity problems. Given an item, similar
items rated by the active user in the past are identified and then
used for recommendation. Item similarities are computed as the
correlations between the corresponding column (item) vectors.

3. CLUSTER-BASED COLLABORATIVE
FILTERING FRAMEWORK

Algorithm: Cluster-Smoothed CF
® Preprocess: create user clusters C
(we use a K-means algorithm; see below)

® Given an active user u, and i rated items, an item ¢ and
an integer K, the number of nearest neighbors:

1. Choose s users into G from groups that are most similar
to u,.

2. Calculate similarity sim(u,, u) for each u in G in which
u’s rating is the combination of the R,(¢) and Rc,(¢)

3. Select the top-K most similar users as the nearest
neighbors

4. Predict the rating of a particular item ¢ for u, by the
behaviors of the K nearest neighbors.

Figure 1. Clustering-based smoothing collaborative filtering

We first define the notations that are used throughout this paper.
Let 7={t, t5, ..., t,,} be a set of items, U={ uy, u,, ..., u, } be a set
of users in the database, and u, be an active user — the user for
whom we need to provide recommendations for items that the
user has not seen before. Let {(uq), i), ¥1))s -5 (g, igs Yap)} e
all the ratings found in the training database. Each triple ((u), ),
¥@)) indicates that the item #;, is rated as r; by the user u. For
each user u, R,(f) denotes the rating of item ¢ by user u, and



R, denotes his average rating. The rating scale goes from 1 to
rmax~

Our clustering-based smoothing algorithm is shown in Figure 1.
The framework is fairly general to include both the memory-
based and the model-based approaches. In the algorithm, the
choice of a cluster (u,) corresponds to selecting a similar user
group. Scoring step and prediction step integrate the smoothing
operation with recommendation.

3.1 Clustering Algorithms

There are many algorithms that can be used to create clusters. In
this paper, a K-means algorithm is selected as the basic clustering
algorithm. The number £ is an input to the algorithm that specifies
the desired number of clusters. In the first pass, the algorithm
takes the first & users as the centroids of & unique clusters. Each of
the remaining users is then compared to the closest centroid. In
the following passes, the cluster centroids are re-computed based
on cluster centroids formed in the previous pass and the cluster-
membership is re-evaluated. The running time of this algorithm
for each pass is linear in the total number (N) of users to be
clustered; i.e. the computational time is O(kQN).

Assuming that users could be clustered into N groups, clustering
results of the wusers U={ujuy,...,u,} are represented as

(G Cilnn Gy ).

We take the Pearson correlation-coefficient function as a
similarity measure function. The similarity between user u and
user u#’ is defined as:

D (R, ~R)-(Ry(0)~Ry) (1)

teT(u)AT(u')
> ®0-RY

[ Y w0 J
teT(u)AT (i) teTu)AT (')

3.2 Data Smoothing

As we discussed above, data sparsity is a fundamental problem
for collaborative filtering. To fill the missing values in data set,
we make explicit use of clusters as smoothing mechanisms.
Cluster-based smoothing technique for nature language
processing [3] is successful to estimate probability of the unseen
term by using the topic (cluster) of the term belongs to, which
motivate us to examine the sparsity problem on collaborative
filtering.

simy, 0 =

Based on the clustering results, we apply the smoothing strategies
to the unseen rating data. We first define a special rating value as
follows:

R, (t) if user u rate the item ¢ )

R =19 .
«) R,(¢) else

where Iéu(t) denotes the smoothed value for user u’s rating
towards an item .

Given a user u, C,e{ C;,C,AZ,---,CZf } refers to the cluster the

user belong to. By considering the diversity of the individual, we

propose to use the following equation to calculate Ru(t) .

R, (1) =R, +AR¢ (1) )

where AR~ (#) is average deviations rating for all users in cluster

C, to the item ¢, which is defined as:

ARe, (=" D (Ro() =R/ C,(0)] )

u'eC,(t)

where C, () € C,is the user set that the users in cluster C, who
have rated item ¢. | C,(¢)| is the number of users in cluster C,
who have rated the item ¢.

3.3 Neighbor Pre-Selection

An important step of collaborative filtering algorithm is to search
neighbors of an active user. Traditional method is to search the
whole database. Apparently this method suffers from poor
scalability when more and more new users and new items are
added into the database. By using the concept of a cluster, we can
do better. The feature of the group of users in a cluster is
represented by the centroid of the cluster. This centroid is
represented as an average rating over all users in the cluster. To
compute a similar set of users in a cluster, the similarity between
group C of users and the active users is also calculated based on
the following function:

> ARc(0) (R, 0-R,) (5)

tel(u, )AT(C)

| Y arcor / > ®,0-R,)
tel(u, )NT(C) tel(u, )NT(C)

After calculating the similarity between each group and the active
user, we take the users in the most similar groups as the
candidates. From the process, the cluster can help speed up the
computation of similarity calculation as well as remove some
irrelevant information.

3.4 Neighbor Selection

After pre-selection, we also need to re-calculate the similarity
between user in the candidate set and the active user on the
smoothed rating.

Si”ha,c =

After smoothing by the cluster information, user’s rating value
contains two parts: original rating and group rating. In this paper,
the different weight is considered between user’s original rating
and group rating when calculating the similarity between the user
in the candidate set and the active user. That is, we set w,, as
confidential weight for the user u to the items ¢.

1— 2 if user u rate the item ¢ (6)
Wur =
A else

where A is the parameter for tuning the weight between original
rating and group rating. The value of A is varied from 0 to 1.

Then, we select the Top K most similar users based on the
following similarity function:
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tel(u,)
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tel(u,) tel(u,)

sm%,u =

By assigning different value to 4 we can adjust the weights of
different rating in the overall similarity. For example, when A is
set to 0, the algorithm is the basic PCC algorithm that only uses
the rated information for similarity computation and prediction.
While if A4 is set to 1, the algorithm is the basic cluster-based
collaborative filtering algorithm which just uses the average rating
of clustering for similarity computation and prediction.

3.5 Prediction

In making a prediction, a subset of K most similar users is chosen
based on their similarity to the active user, and a weighted
aggregate of their ratings is used to generate predictions for the
active user as follows. The predictions are computed as the
weighted average of deviations from the neighbor’s mean:

®)

K -
Wyt 'Simua,u (R, ()-R,)

i=1
Rua ®= Rua + K
E oy Wt STy

is the similarity between the active user u, and the

where sim,, ,,

training user u, and K is the number of users in the neighborhood.

As shown in Table 1, our framework is very flexible by combine
neighbor pre-selection and smoothing.

Table 1. Algorithms Specifications

algorithm? Experiments are conducted to examine the accuracy of
cluster-based neighbor pre-selection and the efficiency of the
algorithm.

3) How do the clusters found influence the prediction accuracy?
As described above, the number of clusters and the clustering
methods tend to affect the performance of prediction.
Experiments are conducted to examine the impact of clustering
methods on the final performance of collaborative filtering.

4) How do the approaches under the newly proposed framework
compare with existing collaborative filtering approaches? We
compared them to standard collaborative filtering approaches
including Pearson Correlation Coefficient (PCC), Vector
similarity (VS), Aspect Model (AM), and Personality Diagnosis
(PD).

4.1 Dataset

Two datasets from movie rating are used in our experiments:
MovieLens (http://www.cs.umn.edu/Research/GroupLens/) and
EachMovie M. For MovieLens dataset, we extracted a subset of
500 users with more than 40 ratings. For EachMovie dataset, we
extracted a subset of 10,000 users with more than 40 ratings. The
global statistics of these two datasets as used in our experiments
are summarized in Table 2. To compare algorithms thoroughly,
we experimented with several different configurations. For
MovieLens we altered the training size to be the first 100, 200,
and 300 users, which are denoted as ML 100, ML 200, and
ML 300, respectively. For EachMovie we used the first 500,
2000 and 6000 users for training, which are denoted as EM_500,
EM_2000 and EM_6000, respectively. For different training size,
the test set we used is fixed to same size. For MovieLens, we use
the last 200 users for testing, and for EachMovie we used the last
4000 users.

No Pre-selection

Pre-selection

No smoothing PCC SPCC
Smoothing CBPCC SCBPCC
Clustering CBCF | e

Table 2. Characteristics of MovieRating and EachMovie

Here PCC is Pearson Correlation Coefficient algorithm, CBCF is
cluster-based collaborative filtering. CBPCC is cluster-based
Pearson Correlation Coefficient algorithm which just utilizes the
cluster for smoothing. SPCC is scalable Pearson Correlation
Coefficient algorithm, which use the cluster for neighbor pre-
selection. SCBPCC is the algorithm that uses the cluster for
neighbor pre-selection and for smoothing.

4. EXPERIMENTS

We conduct a set of experiments to examine the effectiveness of
our new scheme for collaborative filtering in terms of scalability
and recommendation quality. In particular, we address the
following issues:

1) How does the confidence parameter affect the performance of
prediction? As we discussed in Section 3, tuning the parameter
could leverage the degree of smoothing. In this paper, we conduct
experiments to show the accuracy of prediction on different
parameter values.

2) How does the neighbor-selection method affect the
performance of predication and speed up the calculation of the

MovieLens EachMovie
(ML) (EM)
Number of Uses 500 10000
Number of Items 1000 1682
Density of data 8.77% 6.01%
Number of Ratings 5 6

4.2 Metrics and Methodology
We use the Mean Absolute Error (MAE) [10], a statistical
accuracy metrics, to measure the prediction quality metric:

~ 9
D R =R( )] )

|7

MAE =

[ EachMovie dataset is provided by the Compagq Systems
Research Center. For more information see
http://www.research.digital.com/SRC/EachMovie/.



where R, (Z;) is the rating given to item ¢ by user u, R, (¢;) is

the predicted value of user u on item #;, T is the test set, and |7] is
the size of the test set.

For each active user, we varied the number of rated items
provided by the active user from 5, 10, to 20, which named
Given$5, Givenl() and Given20, respectively.

4.3 Performance

As we mentioned above, our algorithm could alleviate two
fundamental problems: data sparsity and scalability. In this sub-
section, we will conduct an experiment to show the performance
of our proposed framework.

4.3.1 Overall Performance

In order to show the performance of our approach to collaborative
filtering, we compare our algorithm cluster-based Pearson
Correlation Coefficient (SCBPCC) with the state-of-art
algorithms for collaborative filtering: Pearson Correlation
Coefficient (PCC), Personality Diagnosis (PD), Aspect Model
(AM) and Cluster-based collaborative filtering (CBCF).

Several parameters for our experiments need be set in the
following experiments i.e. 4=0.35, the cluster number K=50 for
the EachMovie dataset and the cluster number K=20 for the
MovieRating dataset. The percentage of pre-selected neighbors is
about 30% of whole users. The number of nearest number is set to
20.

Table 3 and Table 4 summarize the results for these five methods.
Clearly, SCBPCC outperforms other three methods in all
configurations. By utilizing the clusters as a smoothing method
for the missing data, our new smoothing scheme is found to be
effective in improving the prediction accuracy for collaborative
filtering.

Table 3. MAE on MovieLens for different algorithms.
(A small value means a better performance)

Training Set | Methods Givenl0 |Given20
PCC 0.874 0.836 0.818
PD 0.849 0.817 0.808
ML_100 AM 0.963 0.922 0.887
CBCF 0.924 0.896 0.890
SCBPCC | 0.848 0.819 0.789
PCC 0.859 0.829 0.813
PD 0.836 0.815 0.792
ML 200 AM 0.849 0.837 0.815
CBCF 0.908 0.879 0.852
SCBPCC | 0.831 0.813 0.784
PCC 0.849 0.841 0.820
PD 0.827 0.815 0.789
ML 300 AM 0.820 0.822 0.796
CBCF 0.847 0.846 0.821
SCBPCC | 0.822 0.810 0.778

Given5

Table 4. MAE on EachMovie for different algorithms.
(A small value means a better performance.)

Training Set | Methods | Given5 | GivenlO |Given20
PCC 1.157 1.075 1.048

PD 1.148 1.145 1.140

EM_500 AM 1.157 1.082 1.057

CBCF 1.207 1.132 1.089
SCBPCC | 1.105 1.041 1.004
PCC 1.124 1.052 1.020
PD 1.120 1.087 1.043
EM 2000 AM 1.125 1.078 1.054
CBCF 1.187 1.113 1.063
SCBPCC | 1.085 1.014 0.973
PCC 1.118 1.039 0.988
PD 1.101 1.063 1.051
EM_6000 AM 1.117 1.069 1.046
CBCF 1.197 1.111 1.060
SCBPCC | 1.073 1.001 0.956

4.3.2 Performance on Sparsity Data

The density of a rating matrix can have a significant impact on the
performance of collaborative filtering. To show the performance
of our proposed approach, we conducted an experiment to
simulate the phenomenon of the sparseness of rating matrix and
compare the performance about four algorithms: PCC, PD, CBCF
and AM. In Figure 2, we empirically analyze how MAE evolves
with the density of rating matrix. In this experiment, we randomly
select 20%, 40%, 60%, 80% and 100% of whole rating data on
the dataset EM_6000 to represent different degrees of density of
the rating matrix. The number of nearest neighbors is set to 20
while the number of rated items for active user is set to 20.

1.25

PR N

MAE

1.1

1.05
095 H
0.9 :
20% 40% 60% 80% 100%

—6— KNN —#—PD —&— AM —@— CBCF —5— SCBPCC

Figure 2. MAE on different density of EachMovie data
(A small value means a better performance)

The results show that indeed the density has a great effect on the
performance of different algorithms. When the rating matrix
becomes denser, all algorithms tend to achieve higher
performance. As seen from Figure 2, the MAE curve of our
algorithm is below that of the other algorithms, which means that
the sparseness has the least impact on our proposed algorithm.



4.3.3 Scalability with Neighbor Selection

Generally, memory-based approaches online-compute the
similarity of the active user with all the training users in the
database to select K nearest neighbor (KNN). The efficiency will
be affected by the number of users. In our framework, we perform
the KNN computation on a subset which is pre-selected by
computing the similarity between the active users and a cluster of
users. The subset is selected from the most similar clusters to the
active user. Thus, we could speed up the computation. We
conduct an experiment on the data set EM_6000 and the subset of
the pre-selected neighbor is increased from 10% to 100%. The
number of nearest neighbors is set to 20 while the number of rated
items for active user is set to 20. We conduct the experiments by
using scalable Pearson Correlation Coefficient algorithm (SPCC),
scalable cluster-based Pearson Correlation Coefficient (SCBPCC)
and Pearson Correlation Coefficient algorithm (PCC).
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Figure 3. Coverage on different percentage of pre-selected
neighbors on EM_6000

The first experiment shows the coverage of Top 20 neighbors
generated by our smoothed SCBPCC method within a subset of
the pre-selected neighbors. The X-axis is the percentage of per-
selected users from the most similar clusters. The Y-axis shows
the coverage ratio of 20 nearest neighbors in the subset. As shown
in Figure 3, the coverage will increase when the number of pre-
selected neighbors is increased. When the size of the pre-selected
subset is about 40% of the whole dataset, about 90%~95% of the
top K nearest neighbors will be found in the pre-selected subset.
Furthermore, the curve of our algorithm is above the SPCC
algorithm, showing the effect of smoothing by clustering.

The second experiment shows the performance as a function of
the pre-selected neighbor. As shown in Figure 4, SPCC and
SCBPCC algorithms achieve relatively stable performance when
the percentage of pre-selected neighbors is about 30%. SPCC will
achieve higher performance when the percentage neighbors is
about 20% ~30%, which can verify that the neighbor pre-selection
can remove dissimilar users and to improve the performance.

As we discussed in Section 3, the online execution time for
finding similar users is time-consuming. The general PCC
algorithm needs to scan the entire database. By using the cluster
for neighbors pre-selection, the execution time can be reduced.
The computation of our proposed framework consists two parts:
(1) calculating the active user’s similarity with the clusters and
the active user; (2) calculating the active user’s similarity with
pre-selected neighbors. The whole execution time is the sum of
the two parts. We conduct the experiments to compare PCC and

SPCC algorithm on the EM_6000 data. Here we cluster the users
into 50 clusters.
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Figure 4. MAE on different percentage of pre-selected
neighbors on EM_6000
(A small value means a better performance)

The execution time for scalable Pearson Correlation Coefficient
algorithm SPCC and Pearson Correlation Coefficient algorithm
(PCC) are shown in Figure 5. With increase of the pre-selected
neighbors, the execution time will increase quickly. According to
the MAE value in Figure 4, if we use the cluster as a neighbor
pre-selection and select 30% of the whole users as the candidates,
most of the execution time could be saved.
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Figure 5. Running Time on different percentage of pre-
selected neighbors on EM_6000

4.4 Parameters Tuning

In this section, we conduct the experiments to relate the
smoothing parameters and the performance of the algorithms. In
the following experiments, we perform the experiment by using
the cluster-based Pearson Correlation Coefficient algorithm
(CBPCO).

4.4.1 Smoothing Parameter Selection

As shown in Equation 6, we give a confidence weight when we
use the cluster information to smooth the unrated data for the
training users. By assigning a different confidential value to wy; to
show how much the training user relies on the clusters, the
performance will be affected.

The value of A is varied from 0 to 1. When setting A to 0, the
algorithm only uses the rated information for similarity



computation and prediction. When A is set to 1, the algorithm just
use the average rating of clustering for similarity computation and
prediction. We tune the value A to show the performance on
prediction.
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Figure 6. MAE of different 4 on EM_6000

(A small value means a better performance)
We first vary the value of 1 by different protocols on EM_6000 to
show the performance of a given different protocol. We have also
conducted tests on two datasets ML 100 and EM_6000 by
Given20. As shown in Figure 6 and Figure 7, the algorithm can
achieve the best performance on different protocols and on
different datasets when A is set to 0.35. When A is higher than
0.35, which means that we rely heavily on the cluster information,
the performance will decrease. When A is less than 0.35, which
means that we rely less on the cluster information, the data
sparseness will cause the lower performance.

1.1

g 1.0
1 = /
0.95 w
0.9 et
0.85

Tt "
0.75
0.7 Lo S S O O R R SR
(=} (=} f=3 (=} (=} (=} (=} f=3 (=}
—e— ML _100 —=— EM_6000 Lambda

Figure 7. MAE of different 4 on EM_6000 and MR_100
(A small value means a better performance)

4.4.2 Clustering Number Selection
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Figure 8. MAE of different cluster number on EM_6000
(A small value means a better performance)

In order to select a suitable number of clusters, we use the
EM_6000 dataset for training. We apply the algorithms to group
users into clusters based on six different values of K (10, 30, 50,
100, 150, and 200). We then perform collaborative filtering on
each group of clusters. As shown in Figure 8§, MAE of the best
performance is about 50 for dataset EM_6000.

As shown in Figure 7, the number of clusters does have an effect
on the performance of our algorithms. The large number of
clusters makes the cluster information more specific while the
small ones cause the cluster information too general to represent
difference among the dissimilar users.

4.4.3 Different Smoothing Strategies Comparison

It is natural to consider that the average rating of all the users on
an item that could be used for smoothing the missing data. In
order to compare smoothing based on all users and smoothing
based on clusters, we conducted experiments on three dataset
EM 500, EM 2000 and EM 6000 by Given5, Givenl(O and
Given20, respectively.

Table 5. MAE on different smoothing methods
(A small value means a better performance)

EM._ 500 EM_2000 EM_6000

Global | Cluster | Global | Cluster | Global | Cluster

5 1.121 1.105 1.113 1.085 1.104 1.073

10 1.059 1.041 1.048 1.014 1.035 1.001

20 | 1.027 1.004 1.012 0.973 0.998 0.956

As shown in Table 5, the performance of using all users’ data
(Global) for smoothing cannot achieve the best result. This is
because the data from all users correspond to using only one
global cluster, which performs smoothing at too coarse a level.

5. CONCLUSION

In this paper, we have proposed a novel framework for
collaborative filtering. By integrating the advantages of memory-
and model-based collaborative filtering into a single framework,
our approach targets two fundamental problems: data sparsity and
scalability. We used clusters to provide smoothing operations to
solve the missing-value problems. Experimental results show that
our proposed framework can significantly improve the accuracy
of predication as well as solve the scalability problem.

For future work, we have begun to investigate how to
automatically learn the smoothing parameters according to the
features of the users. For example, the rating number, the
confidence of the rating, etc. We also want to develop a principled
probabilistic interpretation of the framework we have proposed.
Furthermore, we wish to find an automatic method such that the
estimated optimal number of clusters would produce more
accurate predictions.
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