
A Scalable High-Bandwidth Architecture for Lossless Compression on FPGAs

Jeremy Fowers∗, Joo-Young Kim∗ and Doug Burger∗
∗Microsoft Research
Redmond, WA, USA

Scott Hauck∗†
†Department of Electrical Engineering

University of Washington, Seattle, WA, USA

Abstract—Data compression techniques have been the subject
of intense study over the past several decades due to exponential
increases in the quantity of data stored and transmitted by
computer systems. Compression algorithms are traditionally
forced to make tradeoffs between throughput and compression
quality (the ratio of original file size to compressed file
size). FPGAs represent a compelling substrate for streaming
applications such as data compression thanks to their capacity
for deep pipelines and custom caching solutions. Unfortunately,
data hazards in compression algorithms such as LZ77 inhibit
the creation of deep pipelines without sacrificing some amount
of compression quality. In this work we detail a scalable fully
pipelined FPGA accelerator that performs LZ77 compression
and static Huffman encoding at rates up to 5.6 GB/s. Further-
more, we explore tradeoffs between compression quality and
FPGA area that allow the same throughput at a fraction of
the logic utilization in exchange for moderate reductions in
compression quality. Compared to recent FPGA compression
studies, our emphasis on scalability gives our accelerator a 3.0x
advantage in resource utilization at equivalent throughput and
compression ratio.
Keywords-FPGA; data compression; LZ77; Huffman encoding;
hardware accelerator; Xpress; high throughput;

I. INTRODUCTION

Data compression plays an important role in computer
systems by reducing resource usage in both storage and
networking in exchange for some computational cost. The
recent computing paradigm shift from personal to cloud has
emphasized the role of compression for building efficient
storage systems.

Lossless compression often exploits statistical redundancy
in data patterns and applies a representation to eliminate
it. The Lempel-Ziv (LZ) [1] compression method finds
duplicate strings from earlier in the data and replaces the
strings with pointers. On the other hand, Huffman encoding
[2] collects frequency information for symbols and assigns
fewer bits to commonly used symbols to reduce the av-
erage codeword length. DEFLATE [3], which combines
LZ compression and Huffman encoding to achieve higher
compression ratios, is one of the most popular algorithms
for lossless storage and is utilized in many variations such
as GZIP [4], ZLIB [5], XPRESS [6] and 7ZIP [7].

Streaming data applications, which includes high through-
put compression, are typically well-matched to hardware
accelerators such as FPGAs and ASICs. Unfortunately,
hardware compression studies from the previous decade [8]–

[10] have suffered from low throughput performance. How-
ever, recent efforts from industrial vendors [11]–[14] have
demonstrated 10 GB/s and 4 GB/s lossless compression on
ASICs and FPGAs, respectively, proving that these devices
are indeed a compelling substrate for compression. These
accelerators are useful for both higher throughput and for
alleviating the computational cost of compression from the
CPU.

While these new accelerators provide an order-of-
magnitude throughput increase over modern CPUs, they are
resource intensive and will not scale to significantly higher
bandwidths on existing hardware. In this paper, we present
a scalable high-bandwidth compression accelerator for re-
configurable devices. We introduce a hardware-amenable
compression algorithm and demonstrate an area-efficient
mapping to a scalable pipelined architecture. The results
show that we achieve the same 16 bytes/cycle of throughput
as the IBM implementation at 3.1x less area. Additionally,
our design is the first FPGA architecture that scales up to 32
bytes/cycle in a single engine on a modern Stratix V FPGA.

The remainder of the paper is organized as follows: In
Section II, we detail our compression algorithm and the
challenges associated with hardware compression. Next,
Section III provides an overview of the pipelined com-
pression architecture. Each module from the architecture is
detailed in Section IV, then Section V provides experimental
results and analysis. Lastly, Section VI offers conclusions
and suggestions for future work.

II. COMPRESSION ALGORITHM

The widely-used DEFLATE compression algorithm in-
cludes data-hazards and other features that make it chal-
lenging to implement in scalable hardware. Our compres-
sion algorithm modifies DEFLATE with the dual goals of
enabling data- and pipeline-parallelism while minimizing
sacrifices to compression quality. In this section, we will
first summarize DEFLATE algorithm, then describe the
modifications we made for parallel execution and hardware
pipelining with a few newly introduced parameters. It is
worth noting that these modifications are made only with
regard for hardware mapping, and are not intended to benefit
software performance.



Algorithm 1 DEFLATE Algorithm.
1: while (curr position<data size) do
2: Hash chain build

calculate hash value hv
Prev[pos]← Head[hv]
Head[hv]← pos

String matching
candidates from a hash chain vs. current

Match selection
if (either commit literal or match)

Huffman encoding
Move to next position

3: end while

A. DEFLATE Algorithm

As shown in Algorithm 1, DEFLATE uses a chained
hash table implemented with head and prev tables to find
duplicated strings from earlier in the data. For the current
byte, it calculates a hash value by applying a hash function
on the current 4-byte sequence. Then, the head table caches
the most recent position for each hash value, while the
prev table stores linked lists of matching positions. Each
linked list starts with the second-most recent position in the
hash value. As a result, the algorithm can traverse previous
positions that have the same hash value through the prev
table. The string matching examines the input data sequence
with respect to strings from these candidate positions to
find the longest match. To improve overall compression,
the algorithm doesn’t commit the matches immediately, but
instead searches for another matching at the next position. If
a longer match is found, the algorithm truncates the previous
match to a literal and repeats this process of lazy evaluation
until it encounters a worse match. Otherwise, it emits the
previous match and skips forward by the match length; this
repeats until it covers the entire input data set.

B. Parallelization Window

To parallelize the above algorithm, we perform the algo-
rithm on multiple consecutive positions at the same time
in a multi-threaded fashion. We call this spatial set of
positions our parallelization window and the size of it (the
number of positions) the parallelization window size (PWS).
Each position in the window executes the hash chain build
and string matching processes independently. Among these
positions, dependencies exists in the hash table update stage
that performs write operations the on head and prev tables.
Although we could solve this dependency using the chaining
property of head and prev update, we solved it by re-
designing the hash table structure, which will be discussed in
the following sub-section. Furthermore, the string matching
step can also execute in parallel, at the cost of invoking
many concurrent read operations to the data memory.

Algorithm 2 Hash update algorithm.
for i = HTD − 1 to 0 do
Candidate[i]← HashTable[i][hv]
if i ≥ 1 then
HashTable[i][hv]← HashTable[i− 1][hv]

else
HashTable[i][hv]← pos

end if
end for

Another dependency issue in our parallelization window
approach occurs between neighboring windows. The match
selection results from one window impact the match selec-
tion process in the following window, resulting in a data
hazard for window pipelining. To resolve this problem, we
start match selection by finding a match that extends into
the next window, then communicate that match to the next
window, and finally perform selection for the remaining
window positions. Within independent windows we perform
a lazy match selection evaluation found only in advanced
DEFLATE versions.

C. Re-design of Hash Table

We made a series of significant modifications to the DE-
FLATE hash table to improve its amenability for hardware.
First, we changed the head-prev linked list design to a
multiple hash table design. In this design, the first hash
table includes the latest positions for hash indexes, while the
second hash table has the second latest, the third includes
the third latest, and so on. While the original method is
more resource efficient, this method has the advantage of
retrieving previous positions simultaneously with no need to
traverse the prev table. We refer to the number of hash tables
with a parameter called hash table depth (HTD), which is
equivalent to the number of hash chain walks allowed in the
original DEFLATE algorithm. The new hash update process
is reflected in Algorithm 2.

Candidates positions with the same hash value can now
access all of our hash tables at the same index. Further-
more, the hash tables are updated in a shifted fashion that
throws out the oldest position, and has the current position
as the latest. However, this simple hash read and update
process has a severe hardware realization problem when
it is applied to multiple positions simultaneously. As each
position requires a single read and a single write for each
table, the parallelization case requires PWS read and PWS
write operations in a single cycle for each hash table. Given
that multi-port memory designs are typically very expensive
on FPGA devices [15], an alternative is needed to maintain
scalability.

To resolve this problem, we propose a multi-banking
solution that does not require any replicas for multi-port



Figure 1. Hash table organization. Original (left) and hardware-optimized
(right).

Algorithm 3 Head/tail algorithm.
for all window w[N] in input do

Select a tail match that extends into w[N+1]
if N 6= 0 then

Receive head match from w[N-1]
Trim tail match start to avoid head match overlap
Invalidate positions in w[N] up to head match end

end if
Send tail match to w[N+1] as a head match
Trim matches in w[N] to avoid tail match overlap
Select matches and literals for remaining positions

end for

operation, while increasing read/write throughput up to by
the factor of the number of banks, depending on how bank
conflicts occur. We refer to the number of banks in the hash
table as the hash table bank number (HBN). Each bank
performs hashing for positions whose hash modulo HBN
falls into the index of the bank. Figure 1 compares the re-
designed hash table organization with the original DEFLATE
version.

Our re-designed hash table will encounter bank conflicts
when hash values have the same modulo result. To achieve
both a seamless hardware pipeline and a single read and
a single write requirement per bank, we drop all of the
conflicted inputs in the hash table after the second request
from the smallest position. It is noteworthy that this dropping
strategy actually solves the dependency problem mentioned
in previous sub-section as well. However, we miss some
possible candidate positions due to the dropping, and thus
there is a loss in compression. We can mitigate the bank
conflict by choosing a large enough HBN value since the
hash function generates well-spread hash values. Based on
our experiments, we picked an HBN value of 32 as it give a
nice trade-off between conflict reduction effect and hardware
cost for multi-banking.

D. Match Selection

Matches identified by string matching can overlap with

each other. Match selection identifies which matches should
be included in the output stream. The primary challenge
with parallel match selection is that selecting each match
requires knowledge of both past matches (do they preclude
this match?) and future matches (would selecting this match
preclude a better one later?). Therefore, a data hazard exists
between windows if a match in one window can cover
positions in the following window.

We enable parallel match selection by employing two
techniques. The first, match trimming, reduces the size of
matches to eliminate the dependencies between windows.
However, we found that match trimming results in a 10-
20% reduction in available compression quality. To improve
quality at the cost of some resources we can apply our
second technique, which we refer to as head/tail selection.
Head/tail pre-processes each window by selecting one match
that extends into the next window, then trims to the match
candidates in both windows accordingly. We found that
head/tail reduces the compression loss to only 2-6%.

The process for applying the head/tail technique is shown
in Algorithm 3. Our selection approach uses the follow-
ing heuristics for selecting matches. For tail matches, the
selector chooses the longest match in the window that
extends into the next window. For all other matches, we
rely on the fact that the largest matches occur at low-indexed
positions due to match trimming. The selector begins at the
lowest-indexed position and compares its match length to its
neighbor one index higher. If a position contains a longer
match than its neighbor we select a match, otherwise we
select a literal. Finally, trimming a match involves shifting
its start position past the end of the head match and shifting
its end position before the start of the tail match.

III. FULLY-PIPELINED ARCHITECTURE

Figure 2 shows the fully pipelined architecture of the
proposed compressor with 22 + 2 ∗ PWS + log2(PWS)
total stages. The compressor receives PWS bytes of data
from its input source every cycle and directs them into
our stall-free fixed latency pipeline. Thanks to this no-
stall architecture, its input and output data rate are very
simple to calculate; the input data rate is computed as
(PWS x clock rate) bytes per second, while the output rate
will be divided by that data set’s compression ratio. The
proposed architecture is composed of four major functional
components: hash table update (hash calculation included),
string match, match selection, and Huffman bit-packing. To
sustain high data throughput while shrinking multiple bytes
to compressed bits, we face the following design challenges
for each component:

• Hash table update: The hash calculation module con-
verts PWS bytes into hash values ranging from 0 to
64K-1, while also storing the bytes to data memory.



Figure 2. Fully-pipelined architecture.

Then, it must read candidates for PWS hash values
from the multi-banked hash table, while resolving bank
conflicts among the inputs. Simultaneously, it updates
the hash table with new positions.

• String match: At each candidate position in the input
the string matcher performs PWS independent match-
ings between the current string and previous strings.
This parallel matching computation will require PWS
reads of PWS bytes to the 64KB data memory.

• Match selection: We receive PWS candidate matches
per cycle, which is too many to process combinatorially,
and must perform lazy evaluation to select between
them. Data hazards exist because each match may pre-
clude other matches within a certain range of positions.

• Huffman bit-packing: We must create a PWS-aligned
byte stream out of many Huffman encoded selection
results. A large amount of buffering and bit shifting is
required to align the data.

IV. MICRO-ARCHITECTURES

A. Multi-banking hash table

As we stated in Section II-C, we resolved the multiple
read/write problem in the hash table with a multi-banking
scheme that drops banking conflicts. Figure 3 shows the 5-
stage pipelined hash table read and update module with two
fully connected crossbar switches. The hash table module
receives PWS input hash values per cycle from the hash
calculation module. Based on their LSB values, it routes
each input position to the corresponding bank. This problem
is similar to the routing problem in a network switch, with
the input positions corresponding to input ports and the
bank numbers corresponding to output ports. Multiple input
positions can send requests to a single bank and an arbiter
chooses up to two requests per cycle. Thanks to a clock

Figure 3. Multi-banking hash table update.

rate double that of the rest of the pipeline, each bank in
the hash table can handle up to two hash updates involving
two read and two write operations per cycle. Since each
input hash value can update any channel of any bank in the
hash table, we need a fully connected crossbar switch whose
input and output port size is PWS and 2*HBN, respectively.
After getting a grant from the bank, each input position
accesses the granted bank to read the candidate position
value and update it to the current position. For the single-
depth hash table, we can perform read and write operations
at the same cycle by configuring the memory output mode
to read old data. In the case of multi-depth hash table, we
need to wait for the read data to arrive, while resolving
possible dependencies with forwarding without stalling. The
read candidate positions arrive in two cycles from the banks
and we re-align these to match the correct input positions.
Therefore, another full crossbar switch is required to connect
2*HBN bank ports to PWS output ports. As a result, the



Figure 4. Parallel string matching.

module provides PWS candidate positions per cycle to the
matching stage.

B. Parallel Matching

In this stage, we perform PWS parallel matchings between
the current string and PWS previous strings to which those
candidate positions refer, as shown in Figure 4. The current
string is stored in pipeline registers, while the previous
strings are fetched from the data memory. For the current
string, we buffer up to the next window bytes (2*PWS
bytes total) so that each position in the current window
can have a full PWS byte sequence. The data memory that
stores input bytes is designed to prepare vector data for
matching. With multiple banks and a data aligner in its
data read path, it provides PWS consecutive bytes from any
input address. We replicate the data memory by PWS to
support parallel matching, providing a total data bandwidth
of (PWS*PWS*clock freq) bytes per second.

With two PWS bytes of strings available, the matching
process is straightforward. It compares each byte of the two
strings until they become different. As a result, we have up
to PWS matching results, each of which is represented as a
(length, offset) pair.

C. Match Selection

Our match selection pipeline (partially depicted in Fig-
ure 5) uses PWS + log2(PWS) + 3 stages to process
PWS input elements. Each element contains the literal
for that position in the original input, along with match
information: length, offset, and valid flag. Pipeline stages
1 through log2(PWS) + 2 are tasked with selecting (with
a pipelined max reduction), triming, and propagating the
head/tail matches, while the remaining PWS+1 stages trim
and select the remaining matches.

Figure 5. Match selection logic.

The selector modules depicted in Figure 5 perform the
following tasks. First, they ensure that the match in the
current position has not been precluded by a previous match,
including the head match. Next, they determine whether the
tail match should replace the match for the current position.
If a selection is still needed, the selector compares the post-
trimming match lengths for the current and next-indexed
position, as described in Section II-D. Lastly, preclusions
are carried between stages by decrementing length of the
selected match. A stage’s selector knows it must make a
new selection when the preclusion value reaches zero.

Note that head/tail can be disabled to reduce resource
usage by removing blue modules and wires in Figure 5
simply trimming matches to the end of the window.

D. Huffman Encoding + Bit-Packing

Encoding the match selection results with static Huffman
codes is a relatively simple process; however it is challeng-
ing to pack the subsequent outputs into a fixed-width output



Figure 6. Window bit-packer.

bit stream. The encoder itself has two main actions: First,
if the data is precluded by a previous match it is ignored.
Second, if a match or literal is selected, the data is passed
through a codebook ROM and the resulting data and size are
passed to the packing module. PWS/2 dual-ported ROMs
are used to process one output per window per cycle (PWS
cycles for one window).

Packing the data is challenging because encoded outputs
for a single selection vary from 7 to 28 bits, and each win-
dow can produce between one and PWS outputs. Therefore,
the total output from one window can range between 12
and PWS*8 bits, representing a well-encoded match of size
PWS and PWS literals, respectively.

Our bit-packing pipeline operates in two phases. First,
PWS window packers are each responsible for collecting
all of the outputs from one of the PWS parallel windows.
Each cycle, one window packer will finish its window and
send its data to the second phase, a unified output packer.
The output packer accepts compressed windows and packs
them into a PWS-bit output stream.

Our window packer implementation is depicted in Fig-
ure 6. It uses a 64-bit barrel shifter to align incoming data
with data that has already been collected from the current
window. The aligned values are ORed with the contents of
the lower of two 32-bit registers in a double buffer, then
stored back in the register. The packer’s controller tracks the
number of bits stored this way, and when a buffer is full its
contents are sent to the 32-bit word shift register. Next, the
barrel shifter continues to fill the upper register and uses the
lower register for overflow. Our window packer uses PWS/4
shift registers, allowing it to pack up to 28 bits/cycle, and a
total of PWS*8 bits, using a single 64-bit barrel shifter.

The output packer is a simpler version of the window

Table I
IMPLEMENTATION COMPARISON (ON CALGARY CORPUS)

Design Perf. Comp. Area Efficiency
(GB/s) Ratio (ALMs) (MB/s /

kALMs)
ZLIB (fastest) 0.038 2.62 N/A N/A
IBM 4 2.17 110000* 38
Altera 4 2.17 123000* 33
PWS=8 1.4 1.74 14472 97
PWS=8 w/ HT 1.4 1.82 16519 85
PWS=16 2.8 1.93 35115 80
PWS=16 w/ HT 2.8 2.05 39078 72
PWS=24 4.2 1.97 63919 66
PWS=24 w/ HT 4.2 2.09 68625 61
PWS=32 5.6 1.97 100754 56
PWS=32 w/ HT 5.6 2.09 108350 52

*Extrapolated from [11] and [12]

packer that excludes the shift registers. It accepts inputs of
up to PWS*8 bits and uses a PWS*16-bit barrel shifter to
align them into a PWS*16-bit double buffer. When one side
of the double buffers is filled, the buffer’s data is sent as
final compressed output.

V. EXPERIMENTAL RESULTS

A. Compression ratio

To evaluate the proposed compression algorithm, we chose
4 different data benchmarks covering a variety of data types:
Calgary and Canterbury Corpus [16], Silesia Corpus [17]
and the large text benchmark [18]. We use the publicly
available ZLIB software implementation [5] of DEFLATE
to provide a baseline for compression ratio and measure
CPU throughput on a machine with a 2.3GHz Intel Xeon
E5-2630 CPU and 32GB RAM.

Figure 7 shows the resulting compression ratios, cal-
culated as input file size divided by output file size, with
PWS varying between 8 and 32 and with head/tail selection
included. We fixed the hash table bank number to 32 and
varied the depth between 1 and 4. Figure 7 demonstrates
that our compression ratio increases logarithmically with
PWS. This behavior is expected because larger paralleliza-
tion windows allow for longer matches. The compression
gain achieved by increasing PWS for 8 to 16 is especially
noteworthy across all data sets, since the PWS of 8 case
simply does not produce enough matches due to the min-
imum match length of 4. Another trend in the graphs is
that our compression ratio increases as the hash table depth
grows larger. Deeper hash buckets result in better matches
because we are able to keep more candidate positions
available for comparison. A good observation for hardware
implementation is that even increasing the depth to 2 results
in a meaningful boost in compression ratio without requiring
too large a hardware cost.



Figure 7. Compression ratio vs. parallelization window size

B. Area-performance Trade-off

We implemented our architecture with SystemVerilog on a
modern Stratix V FPGA at 175 MHz to evaluate the tradeoffs
between area, throughput, and compression ratio. The HTD
parameter is set to 1, as we found supporting higher values
to be outside the scope of this work. Figure 8 presents
the area requirements for each module across different PWS
sizes and Table I gives the total area for each engine with
and without head/tail selection. The results show that the
design does not scale linearly, as certain modules—such as
data memory and match selection—scale quadratically with
PWS. This presents an interesting design space to users, who
can achieve a target throughput by either applying one large
engine or an array of smaller engines.

Figure 9 depicts the design space for area versus com-
pression ratio at throughputs of 5.6, 2.8, and 1.4 GB/s. Each
line represents a different throughput level, and the points
along the line are the corresponding engine configurations
(PWS x # engines). The data shows that a significant 15%
improvement to compression ratio can be achieved if an
additional 64% area can be spared for a PWS=32 engine.

C. Comparison

Table I compares our implementation, with PWS set
between 8 and 32, to the fastest ZLIB mode, the IBM

Figure 8. FPGA area in ALMs required for each module at varying PWS
(head/tail selection included).

results from [11], and the Altera results from [12]. For a
fair comparison, we used only Calgary Corpus that their
results are also based on. We found that the high-throughput
hardware accelerators outperformed the throughput of one
CPU core running ZLIB by up to 2 orders of magnitude.
However, all of the hardware implementations in Table I
sacrifice some amount of compression ratio to improve DE-
FLATE’s hardware amenability. The discrepancy between
our designs and the other hardware accelerators can be
partially accounted for by the hash table design; the IBM
and Altera designs keep more candidate positions than
ours, which we will match with a depth of 2 in future
work. Finally, we found our design to be significantly more
resource-efficient than IBM’s or Altera’s, achieving 1.4-2.7x
and 1.6-3.0x, respectively, better throughput/area across the
various PWS settings. With further clock rate optimizations
this lead would increase, because a PWS of 16 running at
IBM’s 250 MHz would result in the same 4 GB/s throughput.

VI. RELATED WORKS

Decades of research has investigated different compres-
sion algorithms [1]–[7]. High-bandwidth pipelined FPGA
implementations have become interesting recently thanks to
area and I/O bandwidth improvements. IBM’s DEFLATE
implementation for FPGAs [11] achieved 4 GB/s throughput
at 16 bytes/cycle; However, certain architectural choices,

Figure 9. Area vs. compression ratio at three throughput levels. Data
points are labeled with the engine size x number of engines.



such as a 256-port hash table, limit its scalability. Altera [12]
has also recently implemented LZ77 for FPGAs with their
OpenCL compiler at the same throughput as IBM. However,
they use an unscalable combinatorial match selection circuit.
Our compression architecture improves on both of these
implementations with significantly greater area efficiency
and overall scalability.

An alternative approach from IBM is presented in [13],
which makes significant sacrifices to compression quality
to achieve hardware amenability. In particular, the 842B
algorithm used in this work only allows matches of size 8,
4, and 2 and does not apply Huffman encoding. Our work
significantly improves compression ratios by allowing larger
matches and integrating static Huffman codes.

Microsoft presented their Xpress compression accelerator
[19] targeting high compression ratios with complex match-
ing optimization and dynamic Huffman encoding. However,
its throughput performance is limited to less than a GB/s
due to the complex algorithmic flow.

Application-specific integrated circuits (ASICs) have also
been used to accelerate compression. The latest AHA372
product performs 2.5GB/s throughput, while the next gener-
ation AHA378 product [14] is capable of up to 10GB/s on a
sixteen-lane PCIe board. Our scalable FPGA implementation
is complementary because it offers a compelling alternative
for servers that already include an FPGA [20].

VII. CONCLUSION & FUTURE WORK

In this paper we presented a scalable architecture for high-
bandwidth lossless compression on reconfigurable devices.
To enable seamless pipelining in hardware, we resolved
algorithmic dependencies by introducing a new hash table
design and trimming matches. Although these changes sac-
rifice some amount of compression ratio, they enable our
architecture to scale to 5.6 GB/s of throughput. We also
detailed micro architectural components for the compression
pipeline, including modules for hash table update, string
matching, selection, and Huffman bit-packing in a scalable
and resource-efficient way. Finally, we explored a design
space of proposed architecture with parallelization window
size and embraced area-performance trade-off relations. At
the time of this writing, our architecture achieves the high-
est throughput and area-efficiency of any published high-
bandwidth FPGA compressor.

Future work will investigate clock frequency optimizations
to improve the throughput of a given PWS value. We
also plan to integrate deep hash tables to improve the our
compression ratio.

ACKNOWLEDGMENT

We would like to thank the Microsoft Catapult team for
their support and help with this project.

REFERENCES

[1] J. Ziv and A. Lempel, “A universal algorithm for sequential
data compression,” IEEE Transactions on Information The-
ory, vol. 23, no. 3, pp. 337–343, 1977.

[2] D. A. Huffman, “A method for the construction of minimum-
redundancy codes,” Proceedings of the IRE, vol. 40, no. 9,
pp. 1098–1101, 1952.

[3] P. Deutsch. (1996) Rfc 1951 deflate compressed data
format specification version 1.3. [Online]. Available:
https://tools.ietf.org/html/rfc1951

[4] P. Deutsch. (1996) Gzip file format specification version 4.3.
[Online]. Available: http://tools.ietf.org/html/rfc1952

[5] P. Deutsch and J.-L. Gailly. (1996) Zlib compressed
data format specification version 3.3. [Online]. Available:
http://tools.ietf.org/html/rfc1950

[6] Microsoft. (2014) Ms-xca: Xpress compression algo-
rithm. [Online]. Available: http://msdn.microsoft.com/en-
us/library/hh554002.aspx

[7] I. Pavlov. (2013) Lzma sdk. [Online]. Available:
http://www.7-zip.org/sdk.html

[8] W.-J. Huang, N. Saxena, and E. J. McCluskey, “A reliable lz
data compressor on reconfigurable coprocessors,” in Sympo-
sium on Field-Programmable Custom Computing Machines.
IEEE, 2000, pp. 249–258.

[9] S.-A. Hwang and C.-W. Wu, “Unified vlsi systolic array
design for lz data compression,” Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, vol. 9, no. 4, pp. 489–
499, 2001.

[10] S. Rigler, W. Bishop, and A. Kennings, “Fpga-based lossless
data compression using huffman and lz77 algorithms,” in
Electrical and Computer Engineering, 2007. CCECE 2007.
Canadian Conference on. IEEE, 2007, pp. 1235–1238.

[11] A. Martin, D. Jamsek, and K. Agarwal, “Fpga-based
application acceleration: Case study with gzip compres-
sion/decompression streaming engine,” in Special Session 7C,
International Conference on Computer-Aided Design. IEEE,
2013.

[12] M. S. Abdelfattah, A. Hagiescu, and D. Singh, “Gzip on a
chip: High performance lossless data compression on fpgas
using opencl,” in International Workshop on OpenCL. ACM,
2014.

[13] B. Sukhwani, B. Abali, B. Brezzo, and A. Sameh, “High-
throughput, lossless data compression on fpgas,” in Sympo-
sium on Field-Programmable Custom Computing Machines.
IEEE, 2011, pp. 113–116.

[14] AHA378. (2015). [Online]. Available:
http://www.aha.com/data-compression/

[15] C. E. LaForest and J. G. Steffan, “Efficient multi-ported
memories for fpgas,” in International Symposium on Field
Programmable Gate Arrays. ACM, 2010, pp. 41–50.

[16] M. Powell. (2001) The canterbury corpus. [Online]. Available:
http://corpus.canterbury.ac.nz/descriptions/

[17] S. Deorowicz. (2014) Silesia com-
pression corpus. [Online]. Available:
http://sun.aei.polsl.pl/ sdeor/index.php?page=silesia

[18] M. Mahoney. (2014) Large text compression benchmark.
[Online]. Available: http://mattmahoney.net/dc/text.html

[19] J.-Y. Kim, S. Hauck, and D. Burger, “A scalable multi-
engine xpress9 compressor with asynchronous data transfer,”
in Symposium on Field-Programmable Custom Computing
Machines. IEEE, 2014, pp. 161–164.

[20] A. Putnam et al., “A reconfigurable fabric for accelerating
large-scale datacenter services,” in 41st Annual International
Symposium on Computer Architecture (ISCA), 2014.


