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ABSTRACT

In this paper, we further the characterization of a fundamental
limit of human perception: the accuracy of human estimation
of others’ eye gaze directions. In particular, we introduce a
non-linear model that describes how both the head direction
and the gaze direction of a looker relative to an observer
jointly affect the observer’s perception of the looker’s gaze
direction. Ours is the first to explain in a single model the
biases introduced by the looker’s head direction, the relative
accuracy of eye contact detection, and the relative accuracy
of estimating gaze direction when the looker’s head and gaze
directions are aligned. We put our results into context with
other perception studies.

Index Terms— Psychophysics, Wollaston effect, Immersion
1. INTRODUCTION

Characterizing the fundamental limits of human perception is

important not only scientifically, but also technologically,

since it informs the design of engineered systems. Examples
of fundamental limits of human perception that have affected
the design of engineered systems include:

e Frequency sensitivity of hearing falls off at 15-20 KHz.

e  Visual acuity falls off at 60 cycles/degree in the fovea.

e Sensitivity to delay in interactive voice conversations
falls off below 150 ms.

e  Sensitivity to audiovisual asynchrony (lip sync), falls off
below 100-125 ms for audio lagging video, and below
25-45 ms for video lagging audio.

e Visual fusion occurs at frame rates below 60 Hz.
Watermarking (also known as fingerprinting or information
embedding) is one area in which engineering takes full
advantage of the limits of human perception [1]. For example,
in [2] the authors use the property of visual fusion to embed
information in the video signal that is invisible to humans at
60 Hz but interpretable by machine. A hugely impactful area
of engineering that relies on the limits of human perception is
coding or compression [3]. Essentially most of the speech and
audio codecs, whether used for mobile telephony or
entertainment, use masking models based on detailed models
of the fundamental limits of human hearing. And of course,
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Figure 1. Capturing scenario. The looker seated at 1.20m
in front of the PPI screen with the eye position aligned

with the center of the screen and the cameras.

the evaluation of the quality of multimedia experience also
relies directly on the limits of human perception. For example
in [4] the authors used electro-encephalograms to detect
whether participants noticed or not certain quality
degradations while watching video clips. These examples
show how scientific studies of the fundamental limits of
perception can impact current and future technologies.

In the current paper we study the accuracy with which
humans can estimate the direction of others’ eye gaze,
whether their gaze is directed toward the observer (i.e., eye
contact) or elsewhere. The study of how humans perceive eye
gaze is important both in the area of immersive
communication between people and the area of human-
computer interaction (HCI). Eye gaze is important for
immersive communication because it is a major component
of non-verbal interaction, used for inference of attention,
intent, and desire [5]. In fact, eye gaze effects have been
found relevant for transmitting non-verbal information even
when telecommunicating using humanoid avatars in
immersive environments [6]. Studies have shown that eye
gaze may also be essential for self-recognition, as eye gaze
synchrony induces strong body ownership illusions on
avatars when looking at mirrors [7].

Eye gaze is important for HCI, both for designing
humanoid computer interfaces and for creating machines that
can capture and interpret a human’s gaze direction, which can
be considered a special form of gesture [8]. To date this



research has focused on gaze only as an input signal to a
machine and has kept aside the fundamentals of human gaze
perception. However, it would be of potential interest for the
HCI community to understand the accuracies necessary to
match human performance. Furthermore, taking into account
how a real human user would perceive eye gaze is important
for designing virtual assistants, agents, and other humanoid
characters in games and virtual worlds.

Measuring the accuracy with which humans estimate
eye gaze direction has received significant attention within
the perception community as well as among vision scientists,
over a period of decades [9]-[14]. Psychophysics has been
the methodology of choice for studying eye gaze estimation,
since it attempts to eliminate effects of subjective bias,
opinion, and mental state and instead attempts to measure
only fundamental limits of human perception [15]. Human
estimation of eye gaze direction is complex, involving the
decoding of several phenomena such as the perception of the
head orientation, eyes within the head, convergence of the
eyes, potential objects of attention, etc. Given these com-
plexities, studies to date, including our own, focus at most on
the joint effect of head direction and gaze direction on the
perceived gaze direction. The influence of head direction on
gaze perception is known as the Wollaston effect [12], [13],
[16].

Gibson and Pick (1963) studied detection of eye contact.
They found that the standard deviation of the horizontal gaze
angle at which eye contact is detected is about 0.9°, whether
the looker’s head is frontal (directed toward the viewer) or
turned 30° to the left or right. However, they found that when
the looker’s head is turned 30°, there is a “constant error” (or
bias) in the horizontal gaze angle at which eye contact is
detected of about 2.9° in the direction of the head turn [9].

Cline (1967) studied estimation of the gaze direction,
whether the gaze is directed towards the viewer (the eye
contact case) or elsewhere. He reported that when the
looker’s head is frontal and the looker’s gaze is directed
towards the viewer, the viewers’ gaze direction estimates
have low bias (0.14°) and low standard deviation (1.55°).
Similarly if the looker’s head and gaze direction are aligned,
even if not directed towards the viewer, the viewers’
estimates have low bias (0.21-1.4°), though moderate
standard deviation (4.02-6.75°). However, in most other
conditions, the viewers’ estimates have a significant bias
(2.64-5.26°) as well as moderate standard deviation (5.09-
6.60°) [10].

Anstis et al. (1969) used regression to develop a linear
model of the perceived gaze direction y as a function of the
actual gaze direction x in degrees: y = 1.50x — 0.05 when
the looker’s head is frontal, 1.65x + 3.85 when the head is
turned 30° to the left, and y = 1.69x — 3.48 when the head
is turned 30° to the right. Noting that the linear coefficient is
greater than 1.0, they claim a consistent overestimation of the
true gaze direction [11]. However, their models are unable to
account for the case when the looker’s head and gaze
direction are aligned, in which Cline observed low bias.

Todorovié¢ (2006, 2009) studied the effect of face and
eye eccentricity (defined as the fraction of offset of a visual
feature towards the outline of the object), on gaze direction
perception, using schematics, or cartoons [12], [13]. However
cartoons offer no ground truth gaze direction, only ground
truth eccentricity. Other researchers have used the accuracy
of eye gaze perception estimation to evaluate the efficacy of
communication systems [14].

In the current paper we extend the work of Anstis et al.
by developing a non-linear model of gaze perception. Our
model is the first to explain the major features of gaze
perception as influenced by head direction (i.e., the
Wollaston effect), observed by Cline: human estimates for
gaze are accurate in the case of eye contact and in the case of
head-aligned gaze, and is otherwise biased towards the head
direction. Our model is mathematical, and can be used for
prediction. In our psychophysical study, we leverage modern
technologies unavailable in the 1960s: a computer-controlled
high-resolution stereoscopic fisheye camera, an immersive
virtual environment, and machine learning.

2. MATERIALS AND METHODS
2.1. Capture

In order to present a repeatable stimulus to all subjects, we
captured high-resolution stereoscopic images of a person,
called the looker, gazing at different targets (gaze directions)
while holding different head poses (head directions). These
same images were later presented to all subjects in turn.

During the image capture session, the looker was seated
1.20m in front of a large Microsoft Perceptive Pixel (PPI)
screen. The screen resolution and size were 1920 x 1080
pixels and 133 x 80 cm. At the center of the screen facing the
looker were a pair of Point Grey Flea3-U3 cameras attached
to Fujinon FE185C fisheye lenses mounted in parallel at an
interocular distance of 6.69 cm, located 7 cm away from the
PPI (Figure 1). Each camera resolution was 4096 x 2160
pixels.

A target was shown to the looker in the form of a dot on
the screen and the looker was asked to fixate her eye gaze on
the dot. The target moved to different positions on an 8x15
grid, in steps of 120 pixels covering the whole PPI in a total
of 120 points. Images of the looker gazing in all 120 gaze
directions were captured for each of three head directions: 0°,
15°, and 30° (Figure 2). Images were captured by computer
and stored for later rendering.

Hi Yo

Figure 2. The three conditions of head rotation that were
captured for the experiment.




2.2. Rendering

For the experiment, the images previously captured were
rendered inside a Cave Automatic Virtual Environment
CAVE™ [17] system. In our setup the Cave had three 70 x
155 cm back-projected screens: front, left, and right. The
projection system was driven by an Intel Xeon 3.1 GHz with
two Nvidia Quadro K5000 graphics cards with a display
resolution of 1920 x 1080 pixels for each screen.

The participant, or subject, had to estimate where the
looker was looking at while fitted with Crystal Eyes shutter
glasses that were synchronized with the projectors, delivering
active stereo at 68 Hz each eye (Figure 3). Head-tracking was
performed with an Optitrack V120: Trio 6DoF tracking
device; the markers were mounted as rigid bodies into the
shutter glasses. The head tracker was used to render the
stereoscopic images to the subject from the point of view of
the subject’s head position. An Xbox 360 joystick was used
to capture feedback from the subject.

Shutter
3D glasses

Figure 3. Rendering: the participant wears the shutter
glasses with rigid body markers for the head tracking,
using an Xbox 360 for interacting with the CAVE.

2.3. Experimental Design

Twelve healthy volunteers with normal or corrected vision
(age=31£7.9, 2 females) participated in this study. The
exclusion criteria were color or stereo blindness and effects
of any medication that could influence the perceptual system.
All participants gave consent according to the declaration of
Helsinki and were given a small gratuity for participating.

As a group the 12 subjects were exposed to all six
permutations of the three different head rotation conditions to
remove order effects. During each condition the 120 images
of the looker were randomly presented as the stimuli. The
study was designed to be within-subjects so differences
among conditions could always be evaluated in the context of
the skills of the particular subject. Conditions were
counterbalanced.

2.4. Measures

As in previous eye gaze studies [9]-[14], in our study,
subjects were exposed to a stimulus and had to report where
they thought the looker eye gaze was directed.

The reporting was done using the Xbox 360 joystick that
moved a red cursor over a synthetic plane that was drawn for
this specific purpose (Figure 3). This plane was transparent
with only five lines forming an oblique grid that enhanced the
correct depth perception of the plane during the stereo; the
plane was located 1 m away from the looker, resting between
the subject and the looker. Subjects received the following
instructions: “There is a synthetic plane between you and the
looker; as you can see the cursor moves on that plane. The
looker was originally staring somewhere behind you, so you
won’t find a convergence towards this plane, but the eye-rays
cross this plane. Your task is to find the point where the eye-
rays cross the plane.” The synthetic plane had a size of 35 in
(90 cm) with the aspect ratio of the original PPI screen 16:9.
The cursor was 1 cm in diameter. After each trial the subjects
saw the ground truth for 1 s.

In order to homogenize the data for the final analysis,
the subjects’ estimation errors in pixels were converted to de-
grees based on the geometry of the setup shown in Figure 4.
With the looker at distance d to the center (x.,y.) of the
synthetic plane, the ground truth gaze target at (x;,y;), and
the subject’s estimate of the gaze at (x,y), we computed the
signed angular error in degrees in both horizontal and vertical
directions (66, 6¢) and magnitude of the angular error 6 as:
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Figure 4. This sketch illustrates how knowing the distance
where the looker is from the plane we can easily calculate
the deviation in degrees from the ground truth.



3. RESULTS
3.1. Bias

For each of the 120 gaze directions and each of the three head
directions, the 12 subjects provide 12 different estimates of
gaze direction, resulting in a point cloud containing 12 points.
The point cloud has a mean and a covariance. The 2D vector
from the ground truth gaze target to the mean of the point
cloud is the average error, or bias, of the subjects’ estimates.
The biases for the 120 gaze directions and the three head
directions are shown in Figure 5.
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Figure 5. Grand average of the 120 points selected by the
12 participants for each condition. The x locates the
ground truth, and the vector indicates the average error.

Visual inspection shows that the bias is low in the Odeg
(frontal head) condition particularly towards the center (the
eye contact direction), and that the bias radiates out from
there. In the 15deg and 30deg head direction conditions, the
bias is low not only in the center, but there also seem to be
basins of attraction, where there is low bias, on either side of
the center. However, it is not immediately clear whether the
magnitudes of the bias or the patterns of bias are different in
the three conditions.

We began with a global analysis of the bias per
condition through a repeated measures ANOVA with factor
Condition (0deg, 15deg, 30deg). A significant main within-
subjects effect was found for Condition (F(2,22)=5.290,
p=0.013). Further post hoc pairwise comparisons showed that
the error was significantly higher in 15deg (Bias=7.83°+0.3°)
than in the Odeg (Bias=7.35°+0.3°) (t=4.517, df=2, p=0.046)
and also 30deg (Bias=8.20°+0.5°) was higher than Odeg
(t=4.517, df=2, p=0.212). The differences in bias between the
15deg and the 30deg conditions were not significant
(t=4.517, df=2, p=0.013). The data was tested for normality
using Shapiro-Wilk test and p-values were higher than 0.05.

Even though we already had designed a fully
counterbalanced study, we wanted to study whether any order
effects were present, especially since it is a skill based
experiment in which we provided the ground truth after each
trial. The data in this case was not found normally distributed

therefore a non-parametric test was chosen. The related-
samples Friedman’s two-way analysis of variance by ranks
showed that the distributions were the same across the three
orders (test statistic= 0.667, df=2, p=0.717).

3.2. Variance

Each of the 120x3 point clouds has a covariance matrix
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where V = [v,, v,] is the matrix of eigenvectors of Z, and 62
and o7 are their corresponding eigenvalues. In Figure 6 we
plot the axes oyv; and o,v, of the major and minor
components, and their unit standard deviation ellipse
((8,»)Z71(6, )T = 1), for a subset of the 120 possible
target positions, in each of the three conditions.
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Figure 6. Using a Principal Components Analysis we can
study the distribution of the selected point cloud for all
the participants. The two vectors in each ellipse represent
the principal components.

Visual inspection suggests that the covariance in the Odeg
(frontal head) condition is lowest, particularly for 0 degrees
of gaze azimuth (the eye contact direction). To determine
whether the covariances in all conditions are statistically
different, we did an analysis of the standard deviation

o =\(f + /2 ©)

as a function of condition through a repeated measures
ANOVA with factor Condition (0deg, 15deg, 30deg). A
significant main within-subjects effect was found for
Condition (F(2,238)=30.880, p<0.001) (Figure 6). Further
post-hoc comparison Paired Samples t-test showed
significant differences across all the conditions (t=26.330,
df=118, p<0.001). The variance was higher in 30deg
(0=6.13°£0.1°), and in 15deg (0=5.54°+0.1°) than in Odeg
(0=5.11°%+0.1°). The data was tested for normality using
Shapiro-Wilk test and p-values were higher than 0.05.



3.3. Mathematical Model

To model the 2D patterns of the bias as a function of head and
gaze direction, we leveraged Eurega’s Symbolic Regression
[18], a groundbreaking machine learning technique, which
performs simultaneous regression and model selection.
Eureka uses genetic algorithms to search for the model that
has an optimal combination of high correlation with the data
and low description complexity (e.g., model order), among a
large family of models of increasing order including all
combinations of the independent variables, a set of dyadic
operators (+, -, *, /, *) and monadic operators (sin, cos, sqrt),
as shown in Table 1. The aim of Eureka is to discover the
underlying law from data, in our case a perceptual law.

Table 1. Summary of the Symbolic Regression
Solution Population Size 564801
Solution Encoding Operation List (graph)
Operator Set +,-,%,/,81n,c08,”,sqrt
Total runtime 8 core hours (combining the 4
searches)
Correlation coefficient

Error Minimization

We used Eureka to find optimal non-linear models of
horizontal and vertical estimation biases 60 and 8¢, each as
a joint function of horizontal and vertical gaze directions 6
and ¢, for each head angle (0,15, and 30 degrees). The model
for the vertical bias §¢ is relatively simple: only affected by
the original ¢ without dependences on the horizontal 8 or the
head angle. In contrast, the model for the horizontal bias 66
is relatively more complex since it depends on the head angle.
Eureka finds no dependence of 66 on ¢, i.e., the horizontal
bias is the same regardless of vertical elevation ¢. The
models discovered by Eureka are found in Table 2, and are
plotted in Figure 7.
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Figure 7. Non-linear model of human gaze estimation.
Vertical bias 8¢ as a function of true gaze direction ¢.
Horizontal bias 60 as a function of true gaze direction 0,
for head directions of 0°, 15° and 30° and their
interpolation every 5° of head rotation. Estimation is
unbiased when 860 = 0,6¢ = 0; which for each head
direction occurs near the eye contact direction (0 =
0,¢ = 0) and again near the head direction. The dots
represent the real data to which the equations were fitted.
In the horizontal bias graph, the linear model of Anstis et

al. is shown in dashed lines for comparison: red for the 0°
of head direction (60 = 1.500 — 0.05), and blue for the
30° (860 = 1.6960 — 3.48).

Table 2. Equations Found

80 equation Head R%? Correlatio
Angle goodness n
of the fit Coefficient
50 = —0.0003861 63 0 0.72 0.85
50 = sin(1.99 8) — 0.00034 63 15 0.65 0.80
66 = 3.49 sin(6.05 + 0.16 9) 30 0.59 0.77
— 0.140
8¢ equation
5 = — 0.237¢ all 051 0.71

4. DISCUSSION

The presented experiment explores how the looker’s head
direction affects the viewer’s ability to estimate the gaze
direction. A simple analysis of the estimation bias shows that
viewers’ estimates are more accurate when the looker’s head
direction is frontal to (i.e., facing) the viewer.

A more detailed analysis of the estimation bias using
machine learning reveals non-linear models that describe the
relevant properties of the Wollaston effect, showing not only
that head direction influences eye gaze estimation, but also
how it affects the estimation qualitatively and quantitatively.

Specifically, as illustrated in Figure 7, the models show
that for the vertical bias there is a tendency to under-estimate
towards the looker’s head direction. The bias follows a more
complex equation in the horizontal model. When the looker's
head is at 0 degrees, and the true gaze direction is modest (+
or - 5 degrees), the bias is low. As the true gaze direction gets
more extreme, the bias gets larger in the opposite direction of
the gaze, meaning that we tend to under-estimate the looker's
gaze direction, favoring instead the direction of the head
(which is frontal). In the extremes the bias can reach up to
five degrees towards the head direction. This extreme error is
similar also in both the 15 degree and 30 degree cases.

Furthermore, when the looker’s head is directed to the
side (h=15 and 30 degrees), subjects are still good at
estimating when the looker is looking at them directly (i.e.,
detecting eye contact), but when the gaze is between 0 and h’
degrees (where h' is slightly less than h), the bias is positive,
meaning that there is an over-estimation of the gaze in the
direction of the head. If the gaze direction goes beyond h’,
then the bias becomes negative, meaning that we under-
estimate the gaze direction here, though again the bias is in
the direction of the head. Interestingly, when the gaze
direction is between 0 and —h’, there is an over-estimation of
the gaze towards the complement of the head direction. In this
case the viewer feels as if the looker is gazing far beyond the
target. At —h', there is no estimation bias. Past —h’, the
viewer starts to under-estimate the gaze direction again.

The linear model of Anstis et al. [11] is also shown in
Figure 7, for comparison. While it captures eye contact for



h = 0 degrees, and generally predicts over-estimation when
the gaze direction is between —h and h, the amount of over-
estimation becomes too large, and is not credible, when the
gaze direction is aligned with the head direction. At that
point, as measured by Cline, estimation bias should be quite
low. The reason for this weakness of the model of Anstis et
al. is linearity. A non-linear equation is required to model
these features of Wollaston effect. Moreover, our model
discovers not only two, but three gaze directions at which
viewers’ gaze direction estimation has zero bias:
1. When the looker is gazing at the participant (eye
contact), regardless of the looker’s head direction.
2. When the looker is gazing in a direction aligned with the
head direction (head and eye alignment).
3. When the looker is gazing in a direction complementary
to the head direction.
One characteristic of this model is that even though the bias
is minimal in those specific points, the full equation obeys a
continuous first derivative, probably a consequence of our
gaze estimation mechanism being smooth. The perceptual
system does not make sudden changes.

5. CONCLUSIONS

The current paper advances knowledge of the fundamental
limits of human eye gaze perception, by proposing a math-
ematical model to explain the Wollaston effect: how head
direction affects the perception of gaze direction. We find that
there is a natural bias towards the head direction when
estimating eye gaze direction. Moreover, we find three gaze
directions at which the viewer’s gaze estimation is unbiased:
the direction towards the viewer (eye contact), the direction
of the head, and the direction complementary to the head
direction, with respect to the viewer. The model was
validated using experimental data showing high correlation
coefficients (over .70). These scientific results have technical
implications for the design of both immersive communication
systems and HCI.

Future work, besides applying the model to the design
and evaluation of systems for immersive communication and
HCI, could include studying the effect of resolution. It is
expected that distant, blurred, or low-resolution views of the
looker’s eyes would bias gaze estimation even more strongly
in the direction of the head.
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