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ABSTRACT 
 
In this paper, we further the characterization of a fundamental 
limit of human perception: the accuracy of human estimation 
of others’ eye gaze directions. In particular, we introduce a 
non-linear model that describes how both the head direction 
and the gaze direction of a looker relative to an observer 
jointly affect the observer’s perception of the looker’s gaze 
direction. Ours is the first to explain in a single model the 
biases introduced by the looker’s head direction, the relative 
accuracy of eye contact detection, and the relative accuracy 
of estimating gaze direction when the looker’s head and gaze 
directions are aligned. We put our results into context with 
other perception studies. 
 
Index Terms— Psychophysics, Wollaston effect, Immersion 
 

1. INTRODUCTION 
 
Characterizing the fundamental limits of human perception is 
important not only scientifically, but also technologically, 
since it informs the design of engineered systems. Examples 
of fundamental limits of human perception that have affected 
the design of engineered systems include: 
 Frequency sensitivity of hearing falls off at 15-20 KHz. 
 Visual acuity falls off at 60 cycles/degree in the fovea. 
 Sensitivity to delay in interactive voice conversations 

falls off below 150 ms. 
 Sensitivity to audiovisual asynchrony (lip sync), falls off 

below 100-125 ms for audio lagging video, and below 
25-45 ms for video lagging audio. 

 Visual fusion occurs at frame rates below 60 Hz. 
Watermarking (also known as fingerprinting or information 
embedding) is one area in which engineering takes full 
advantage of the limits of human perception [1]. For example, 
in [2] the authors use the property of visual fusion to embed 
information in the video signal that is invisible to humans at 
60 Hz but interpretable by machine. A hugely impactful area 
of engineering that relies on the limits of human perception is 
coding or compression [3]. Essentially most of the speech and 
audio codecs, whether used for mobile telephony or 
entertainment, use masking models based on detailed models 
of the fundamental limits of human hearing. And of course, 

Figure 1. Capturing scenario. The looker seated at 1.20m 
in front of the PPI screen with the eye position aligned 
with the center of the screen and the cameras. 

the evaluation of the quality of multimedia experience also 
relies directly on the limits of human perception. For example 
in [4] the authors used electro-encephalograms to detect 
whether participants noticed or not certain quality 
degradations while watching video clips. These examples 
show how scientific studies of the fundamental limits of 
perception can impact current and future technologies. 

In the current paper we study the accuracy with which 
humans can estimate the direction of others’ eye gaze, 
whether their gaze is directed toward the observer (i.e., eye 
contact) or elsewhere. The study of how humans perceive eye 
gaze is important both in the area of immersive 
communication between people and the area of human-
computer interaction (HCI). Eye gaze is important for 
immersive communication because it is a major component 
of non-verbal interaction, used for inference of attention, 
intent, and desire [5]. In fact, eye gaze effects have been 
found relevant for transmitting non-verbal information even 
when telecommunicating using humanoid avatars in 
immersive environments [6]. Studies have shown that eye 
gaze may also be essential for self-recognition, as eye gaze 
synchrony induces strong body ownership illusions on 
avatars when looking at mirrors [7]. 

Eye gaze is important for HCI, both for designing 
humanoid computer interfaces and for creating machines that 
can capture and interpret a human’s gaze direction, which can 
be considered a special form of gesture [8]. To date this 



research has focused on gaze only as an input signal to a 
machine and has kept aside the fundamentals of human gaze 
perception. However, it would be of potential interest for the 
HCI community to understand the accuracies necessary to 
match human performance. Furthermore, taking into account 
how a real human user would perceive eye gaze is important 
for designing virtual assistants, agents, and other humanoid 
characters in games and virtual worlds. 

Measuring the accuracy with which humans estimate 
eye gaze direction has received significant attention within 
the perception community as well as among vision scientists, 
over a period of decades [9]–[14]. Psychophysics has been 
the methodology of choice for studying eye gaze estimation, 
since it attempts to eliminate effects of subjective bias, 
opinion, and mental state and instead attempts to measure 
only fundamental limits of human perception [15]. Human 
estimation of eye gaze direction is complex, involving the 
decoding of several phenomena such as the perception of the 
head orientation, eyes within the head, convergence of the 
eyes, potential objects of attention, etc. Given these com-
plexities, studies to date, including our own, focus at most on 
the joint effect of head direction and gaze direction on the 
perceived gaze direction. The influence of head direction on 
gaze perception is known as the Wollaston effect [12], [13], 
[16].  

Gibson and Pick (1963) studied detection of eye contact. 
They found that the standard deviation of the horizontal gaze 
angle at which eye contact is detected is about 0.9º, whether 
the looker’s head is frontal (directed toward the viewer) or 
turned 30º to the left or right. However, they found that when 
the looker’s head is turned 30º, there is a “constant error” (or 
bias) in the horizontal gaze angle at which eye contact is 
detected of about 2.9º in the direction of the head turn [9]. 

Cline (1967) studied estimation of the gaze direction, 
whether the gaze is directed towards the viewer (the eye 
contact case) or elsewhere. He reported that when the 
looker’s head is frontal and the looker’s gaze is directed 
towards the viewer, the viewers’ gaze direction estimates 
have low bias (0.14º) and low standard deviation (1.55º). 
Similarly if the looker’s head and gaze direction are aligned, 
even if not directed towards the viewer, the viewers’ 
estimates have low bias (0.21-1.4º), though moderate 
standard deviation (4.02-6.75º). However, in most other 
conditions, the viewers’ estimates have a significant bias 
(2.64-5.26º) as well as moderate standard deviation (5.09-
6.60º) [10]. 

Anstis et al. (1969) used regression to develop a linear 
model of the perceived gaze direction ݕ as a function of the 
actual gaze direction ݔ in degrees: ݕ ൌ ݔ1.50 െ 0.05 when 
the looker’s head is frontal, 1.65ݔ ൅ 3.85 when the head is 
turned 30º to the left, and ݕ ൌ ݔ1.69 െ 3.48 when the head 
is turned 30º to the right. Noting that the linear coefficient is 
greater than 1.0, they claim a consistent overestimation of the 
true gaze direction [11]. However, their models are unable to 
account for the case when the looker’s head and gaze 
direction are aligned, in which Cline observed low bias. 

Todorović (2006, 2009) studied the effect of face and 
eye eccentricity (defined as the fraction of offset of a visual 
feature towards the outline of the object), on gaze direction 
perception, using schematics, or cartoons [12], [13]. However 
cartoons offer no ground truth gaze direction, only ground 
truth eccentricity. Other researchers have used the accuracy 
of eye gaze perception estimation to evaluate the efficacy of 
communication systems [14]. 

In the current paper we extend the work of Anstis et al. 
by developing a non-linear model of gaze perception. Our 
model is the first to explain the major features of gaze 
perception as influenced by head direction (i.e., the 
Wollaston effect), observed by Cline: human estimates for 
gaze are accurate in the case of eye contact and in the case of 
head-aligned gaze, and is otherwise biased towards the head 
direction. Our model is mathematical, and can be used for 
prediction. In our psychophysical study, we leverage modern 
technologies unavailable in the 1960s: a computer-controlled 
high-resolution stereoscopic fisheye camera, an immersive 
virtual environment, and machine learning. 

 
2. MATERIALS AND METHODS 

 
2.1. Capture 
 
In order to present a repeatable stimulus to all subjects, we 
captured high-resolution stereoscopic images of a person, 
called the looker, gazing at different targets (gaze directions) 
while holding different head poses (head directions). These 
same images were later presented to all subjects in turn. 

During the image capture session, the looker was seated 
1.20m in front of a large Microsoft Perceptive Pixel (PPI) 
screen. The screen resolution and size were 1920 x 1080 
pixels and 133 x 80 cm. At the center of the screen facing the 
looker were a pair of Point Grey Flea3-U3 cameras attached 
to Fujinon FE185C fisheye lenses mounted in parallel at an 
interocular distance of 6.69 cm, located 7 cm away from the 
PPI (Figure 1). Each camera resolution was 4096 x 2160 
pixels. 

A target was shown to the looker in the form of a dot on 
the screen and the looker was asked to fixate her eye gaze on 
the dot. The target moved to different positions on an 8x15 
grid, in steps of 120 pixels covering the whole PPI in a total 
of 120 points. Images of the looker gazing in all 120 gaze 
directions were captured for each of three head directions: 0º, 
15º, and 30º (Figure 2). Images were captured by computer 
and stored for later rendering. 

 

 

Figure 2. The three conditions of head rotation that were 
captured for the experiment. 



2.2. Rendering 
 
For the experiment, the images previously captured were 
rendered inside a Cave Automatic Virtual Environment 
CAVE™ [17] system. In our setup the Cave had three 70 × 
155 cm back-projected screens: front, left, and right. The 
projection system was driven by an Intel Xeon 3.1 GHz with 
two Nvidia Quadro K5000 graphics cards with a display 
resolution of 1920 × 1080 pixels for each screen.  

The participant, or subject, had to estimate where the 
looker was looking at while fitted with Crystal Eyes shutter 
glasses that were synchronized with the projectors, delivering 
active stereo at 68 Hz each eye (Figure 3). Head-tracking was 
performed with an Optitrack V120: Trio 6DoF tracking 
device; the markers were mounted as rigid bodies into the 
shutter glasses. The head tracker was used to render the 
stereoscopic images to the subject from the point of view of 
the subject’s head position. An Xbox 360 joystick was used 
to capture feedback from the subject. 

 

 

2.3. Experimental Design 
 
Twelve healthy volunteers with normal or corrected vision 
(age=31±7.9, 2 females) participated in this study. The 
exclusion criteria were color or stereo blindness and effects 
of any medication that could influence the perceptual system. 
All participants gave consent according to the declaration of 
Helsinki and were given a small gratuity for participating. 

As a group the 12 subjects were exposed to all six 
permutations of the three different head rotation conditions to 
remove order effects. During each condition the 120 images 
of the looker were randomly presented as the stimuli. The 
study was designed to be within-subjects so differences 
among conditions could always be evaluated in the context of 
the skills of the particular subject. Conditions were 
counterbalanced. 

 

2.4. Measures 
 
As in previous eye gaze studies [9]–[14], in our study, 
subjects were exposed to a stimulus and had to report where 
they thought the looker eye gaze was directed.  

The reporting was done using the Xbox 360 joystick that 
moved a red cursor over a synthetic plane that was drawn for 
this specific purpose (Figure 3). This plane was transparent 
with only five lines forming an oblique grid that enhanced the 
correct depth perception of the plane during the stereo; the 
plane was located 1 m away from the looker, resting between 
the subject and the looker. Subjects received the following 
instructions: “There is a synthetic plane between you and the 
looker; as you can see the cursor moves on that plane. The 
looker was originally staring somewhere behind you, so you 
won’t find a convergence towards this plane, but the eye-rays 
cross this plane. Your task is to find the point where the eye-
rays cross the plane.” The synthetic plane had a size of 35 in 
(90 cm) with the aspect ratio of the original PPI screen 16:9. 
The cursor was 1 cm in diameter. After each trial the subjects 
saw the ground truth for 1 s. 

In order to homogenize the data for the final analysis, 
the subjects’ estimation errors in pixels were converted to de-
grees based on the geometry of the setup shown in Figure 4. 
With the looker at distance ݀ to the center ሺݔ௖,  ௖ሻ of theݕ
synthetic plane, the ground truth gaze target at ሺݔ௧,  ௧ሻ, andݕ
the subject’s estimate of the gaze at ሺݔ,  ሻ, we computed theݕ
signed angular error in degrees in both horizontal and vertical 
directions ሺδθ, δϕሻ and magnitude of the angular error δ as: 

ߠ ൌ arctan ቀ௫ି௫೎
ௗ
ቁ; ߶ ൌ arctan ൬ ௬ି௬೎

ඥሺௗమାሺ௫ି௫೎ሻమሻ
൰     (1) 

௧ߠ ൌ arctan ቀ
௫೟ି௫೎
ௗ
ቁ; ߶௧ ൌ arctan ൬

௬೟ି௬೎
ඥሺௗమାሺ௫೟ି௫೎ሻమሻ

൰ (2) 

ߠߜ ൌ ߠ	 െ	ߠ௧; ߜ߶ ൌ 	߶ െ	߶௧      (3) 

ߜ ൌ ඥሺߠߜሻଶ ൅ ሺߜ߶ሻଶ     (4) 

 

 

Figure 3. Rendering: the participant wears the shutter
glasses with rigid body markers for the head tracking, 
using an Xbox 360 for interacting with the CAVE. 

Figure 4. This sketch illustrates how knowing the distance 
where the looker is from the plane we can easily calculate 
the deviation in degrees from the ground truth. 



3. RESULTS 

3.1. Bias 
 
For each of the 120 gaze directions and each of the three head 
directions, the 12 subjects provide 12 different estimates of 
gaze direction, resulting in a point cloud containing 12 points.  
The point cloud has a mean and a covariance. The 2D vector 
from the ground truth gaze target to the mean of the point 
cloud is the average error, or bias, of the subjects’ estimates. 
The biases for the 120 gaze directions and the three head 
directions are shown in Figure 5. 
 

 
Figure 5. Grand average of the 120 points selected by the 
12 participants for each condition. The x locates the 
ground truth, and the vector indicates the average error. 

Visual inspection shows that the bias is low in the 0deg 
(frontal head) condition particularly towards the center (the 
eye contact direction), and that the bias radiates out from 
there. In the 15deg and 30deg head direction conditions, the 
bias is low not only in the center, but there also seem to be 
basins of attraction, where there is low bias, on either side of 
the center. However, it is not immediately clear whether the 
magnitudes of the bias or the patterns of bias are different in 
the three conditions. 

We began with a global analysis of the bias per 
condition through a repeated measures ANOVA with factor 
Condition (0deg, 15deg, 30deg). A significant main within-
subjects effect was found for Condition (F(2,22)=5.290, 
p=0.013). Further post hoc pairwise comparisons showed that 
the error was significantly higher in 15deg (Bias=7.83°±0.3°) 
than in the 0deg (Bias=7.35°±0.3°) (t=4.517, df=2, p=0.046) 
and also 30deg (Bias=8.20°±0.5°) was higher than 0deg 
(t=4.517, df=2, p=0.212). The differences in bias between the 
15deg and the 30deg conditions were not significant 
(t=4.517, df=2, p=0.013). The data was tested for normality 
using Shapiro-Wilk test and p-values were higher than 0.05. 

Even though we already had designed a fully 
counterbalanced study, we wanted to study whether any order 
effects were present, especially since it is a skill based 
experiment in which we provided the ground truth after each 
trial. The data in this case was not found normally distributed 

therefore a non-parametric test was chosen. The related-
samples Friedman’s two-way analysis of variance by ranks 
showed that the distributions were the same across the three 
orders (test statistic= 0.667, df=2, p=0.717). 

 
3.2. Variance 
 
Each of the 120x3 point clouds has a covariance matrix 

Σ ൌ ܸ ൤
ଵଶߪ 0
0 ଶଶߪ

൨ ܸିଵ,         (5) 

where ܸ ൌ ሾ࢜ଵ, ࢜ଶሿ is the matrix of eigenvectors of Σ, and ߪଵଶ 
and ߪଶ

ଶ are their corresponding eigenvalues. In Figure 6 we 
plot the axes ߪଵ࢜ଵ and ߪଶ࢜ଶ of the major and minor 
components, and their unit standard deviation ellipse 
(ሺߠ, ߶ሻΣିଵሺߠ, ߶ሻ் ൌ 1), for a subset of the 120 possible 
target positions, in each of the three conditions. 
 

 
Figure 6. Using a Principal Components Analysis we can 
study the distribution of the selected point cloud for all 
the participants. The two vectors in each ellipse represent 
the principal components. 

Visual inspection suggests that the covariance in the 0deg 
(frontal head) condition is lowest, particularly for 0 degrees 
of gaze azimuth (the eye contact direction). To determine 
whether the covariances in all conditions are statistically 
different, we did an analysis of the standard deviation 

ߪ ൌ ඥሺߪଵ
ଶ ൅ ଶߪ

ଶሻ/2         (6) 

as a function of condition through a repeated measures 
ANOVA with factor Condition (0deg, 15deg, 30deg). A 
significant main within-subjects effect was found for 
Condition (F(2,238)=30.880, p<0.001) (Figure 6). Further 
post-hoc comparison Paired Samples t-test showed 
significant differences across all the conditions (t=26.330, 
df=118, p<0.001). The variance was higher in 30deg 
 than in 0deg (5.54°±0.1°=ߪ) and in 15deg ,(6.13°±0.1°=ߪ)
 The data was tested for normality using .(5.11°±0.1°=ߪ)
Shapiro-Wilk test and p-values were higher than 0.05. 
 
 



3.3. Mathematical Model 
 
To model the 2D patterns of the bias as a function of head and 
gaze direction, we leveraged Eureqa’s Symbolic Regression 
[18], a groundbreaking machine learning technique, which 
performs simultaneous regression and model selection. 
Eureka uses genetic algorithms to search for the model that 
has an optimal combination of high correlation with the data 
and low description complexity (e.g., model order), among a 
large family of models of increasing order including all 
combinations of the independent variables, a set of dyadic 
operators (+, -, *, /, ^) and monadic operators (sin, cos, sqrt), 
as shown in Table 1. The aim of Eureka is to discover the 
underlying law from data, in our case a perceptual law. 
 

Table 1. Summary of the Symbolic Regression 
Solution Population Size 564801 
Solution Encoding Operation List (graph) 
Operator Set +,-,*,/,sin,cos,^,sqrt 
Total runtime 8 core hours (combining the 4 

searches) 
Error Minimization Correlation coefficient 

 
We used Eureka to find optimal non-linear models of 
horizontal and vertical estimation biases ߠߜ and ߜ߶, each as 
a joint function of horizontal and vertical gaze directions ߠ 
and ߶, for each head angle (0,15, and 30 degrees). The model 
for the vertical bias ߜ߶ is relatively simple: only affected by 
the original ߶ without dependences on the horizontal ߠ or the 
head angle. In contrast, the model for the horizontal bias ߠߜ 
is relatively more complex since it depends on the head angle. 
Eureka finds no dependence of ߠߜ on ߶, i.e., the horizontal 
bias is the same regardless of vertical elevation ߶. The 
models discovered by Eureka are found in Table 2, and are 
plotted in Figure 7. 

 
Figure 7. Non-linear model of human gaze estimation. 
Vertical bias ࣘࢾ as a function of true gaze direction	ࣘ. 
Horizontal bias ࣂࢾ as a function of true gaze direction	ࣂ, 
for head directions of 0º, 15º and 30º and their 
interpolation every 5º of head rotation. Estimation is 
unbiased when ࣂࢾ ൌ ૙,	ࣘࢾ ൌ ૙; which for each head 
direction occurs near the eye contact direction (ࣂ ൌ
૙,ࣘ ൌ ૙) and again near the head direction. The dots 
represent the real data to which the equations were fitted. 
In the horizontal bias graph, the linear model of Anstis et 

al. is shown in dashed lines for comparison: red for the 0º 
of head direction	ሺࣂࢾ ൌ ૚. ૞૙ࣂ െ ૙. ૙૞ሻ, and blue for the 
30º ሺࣂࢾ ൌ ૚. ૟ૢࣂ െ ૜. ૝ૡሻ. 

 
Table 2. Equations Found 

 equation Head ࣂࢾ
Angle 

 ૛ࡾ
goodness 
of the fit

Correlatio
n 

Coefficient
ߠߜ ൌ െ 0.0003861 ଷߠ 0 0.72 0.85 
ߠߜ ൌ sinሺ1.99 ሻߠ െ 0.00034  ଷ 15 0.65 0.80ߠ
ߠߜ ൌ 3.49 sinሺ6.05 ൅ 0.16 ሻߠ

െ 0.14 ߠ
30 0.59 0.77 

    equation ࣘࢾ
߶ߜ ൌ െ 0.237߶ all 0.51 0.71 

 
4. DISCUSSION 

 
The presented experiment explores how the looker’s head 
direction affects the viewer’s ability to estimate the gaze 
direction. A simple analysis of the estimation bias shows that 
viewers’ estimates are more accurate when the looker’s head 
direction is frontal to (i.e., facing) the viewer. 

A more detailed analysis of the estimation bias using 
machine learning reveals non-linear models that describe the 
relevant properties of the Wollaston effect, showing not only 
that head direction influences eye gaze estimation, but also 
how it affects the estimation qualitatively and quantitatively. 

Specifically, as illustrated in Figure 7, the models show 
that for the vertical bias there is a tendency to under-estimate 
towards the looker’s head direction. The bias follows a more 
complex equation in the horizontal model. When the looker's 
head is at 0 degrees, and the true gaze direction is modest (+ 
or - 5 degrees), the bias is low. As the true gaze direction gets 
more extreme, the bias gets larger in the opposite direction of 
the gaze, meaning that we tend to under-estimate the looker's 
gaze direction, favoring instead the direction of the head 
(which is frontal). In the extremes the bias can reach up to 
five degrees towards the head direction. This extreme error is 
similar also in both the 15 degree and 30 degree cases. 

Furthermore, when the looker’s head is directed to the 
side (݄=15 and 30 degrees), subjects are still good at 
estimating when the looker is looking at them directly (i.e., 
detecting eye contact), but when the gaze is between 0 and ݄′ 
degrees (where ݄′ is slightly less than ݄), the bias is positive, 
meaning that there is an over-estimation of the gaze in the 
direction of the head. If the gaze direction goes beyond ݄′, 
then the bias becomes negative, meaning that we under-
estimate the gaze direction here, though again the bias is in 
the direction of the head. Interestingly, when the gaze 
direction is between 0 and െ݄′, there is an over-estimation of 
the gaze towards the complement of the head direction. In this 
case the viewer feels as if the looker is gazing far beyond the 
target. At െ݄′, there is no estimation bias. Past െ݄′, the 
viewer starts to under-estimate the gaze direction again. 

The linear model of Anstis et al. [11] is also shown in 
Figure 7, for comparison. While it captures eye contact for 



݄ ൌ 0 degrees, and generally predicts over-estimation when 
the gaze direction is between െ݄ and ݄, the amount of over-
estimation becomes too large, and is not credible, when the 
gaze direction is aligned with the head direction.  At that 
point, as measured by Cline, estimation bias should be quite 
low. The reason for this weakness of the model of Anstis et 
al. is linearity. A non-linear equation is required to model 
these features of Wollaston effect. Moreover, our model 
discovers not only two, but three gaze directions at which 
viewers’ gaze direction estimation has zero bias: 
1. When the looker is gazing at the participant (eye 

contact), regardless of the looker’s head direction. 
2. When the looker is gazing in a direction aligned with the 

head direction (head and eye alignment). 
3. When the looker is gazing in a direction complementary 

to the head direction. 
One characteristic of this model is that even though the bias 
is minimal in those specific points, the full equation obeys a 
continuous first derivative, probably a consequence of our 
gaze estimation mechanism being smooth. The perceptual 
system does not make sudden changes. 
 

5. CONCLUSIONS 
 
The current paper advances knowledge of the fundamental 
limits of human eye gaze perception, by proposing a math-
ematical model to explain the Wollaston effect: how head 
direction affects the perception of gaze direction. We find that 
there is a natural bias towards the head direction when 
estimating eye gaze direction. Moreover, we find three gaze 
directions at which the viewer’s gaze estimation is unbiased: 
the direction towards the viewer (eye contact), the direction 
of the head, and the direction complementary to the head 
direction, with respect to the viewer. The model was 
validated using experimental data showing high correlation 
coefficients (over .70). These scientific results have technical 
implications for the design of both immersive communication 
systems and HCI. 

Future work, besides applying the model to the design 
and evaluation of systems for immersive communication and 
HCI, could include studying the effect of resolution. It is 
expected that distant, blurred, or low-resolution views of the 
looker’s eyes would bias gaze estimation even more strongly 
in the direction of the head. 
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