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ABSTRACT
The extraction of temporal characteristics from sensor data
streams can reveal important properties about the sensed
events. Knowledge of temporal characteristics in applica-
tions where sensed events tend to periodically repeat, can
provide a great deal of information towards identifying pat-
terns, building models and using the timing information
to actuate and provide services. In this paper we outline
a methodology for extracting the temporal properties, in
terms of start time and duration, of sensor data streams
that can be used in applications such as human, habitat,
environmental and traffic monitoring where sensed events
repeat over a time window. Its application is demonstrated
on a 30-day dataset collected from one of our assisted living
sensor network deployments.

Categories and Subject Descriptors
I.5.3 [Computing Methodologies]: Pattern Recognition-
Clustering[similarity measures]

General Terms
Algorithms, Experimentation, Human Factors

Keywords
sensor networks, data stream, temporal structure, assisted
living

1. INTRODUCTION
Today’s sensor network technologies can reliably collect

location, time and duration (l, t, d) data streams, but there
is currently lack of understanding of how to exploit this in-
formation to provide reliable services with respect to the
phenomenon being sensed. This is a challenging task be-
cause each sensor data stream has different timing behavior
that spans over multiple spatio-temporal scales.

Spatial context usually denotes the location of a sensed
event; its meaning is closely coupled to a physical place and
it is relatively easy to understand. Temporal context, how-
ever, frequently depends on two parameters, start-time and
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duration (t, d), and it is not always straightforward to un-
derstand. This is mainly because the occurrence of an event
at a specific location, may also have a special meaning with
respect to a time-window, that can only be extracted when
multiple instances of the time window are considered. Fur-
thermore, since the start time and duration parameters take
continuous values, extracting the temporal context of events
requires proper time and duration discretization.

This paper describes a methodology for automatically ex-
tracting the temporal structure of an arbitrary sensor data
stream and demonstrates its importance in building the spa-
tiotemporal model of the sensor data stream. Our method-
ology allows us to detect temporal patterns in the data with
respect to a given time-window by properly extracting time,
duration and frequency information across different time
windows. The proposed method assumes no information
about the sensor data stream or its source and can be ap-
plied to a wide range of applications, particularly the ones
that describe activity modeling. In our research, we use this
methodology to extract daily activity patterns of elders in
an assisted living setup [11],[9]. The same solution how-
ever could be applied to many other application domains to
extract temporal information about visited GPS locations,
traffic congestion, workload of data center servers, cell-phone
user activity and more. For example, in the personal safety
system using GPS phones we developed in [21],[19], this
method could be used yo extract the habits of a person from
GPS data and apply it towards safety goals.

The main contribution of this work is a four step process
for extracting the temporal characteristics of a data stream.
First, sensed events are labeled by spatial context into dis-
tinct event types. For each event type, we temporally or-
ganize different event instances into time windows of fixed
duration and express the initial data stream as a sequence
of different time-windows. The resulting stream is then re-
labeled by applying a clustering algorithm that reclassifies
(relabels) the events within each type according to temporal
context parameters (t, d).

The proposed method is evaluated in the context of an as-
sisted living wireless sensor network deployment that moni-
tored an elder person living alone in his house over a period
of 30 days. After applying the algorithm presented in this
paper on the movement/activity patterns recorded, we were
able to automatically extract the temporal structure of the
different activities that the monitored person was engaged
into and use this structure to build a detailed spatiotemporal
model of the person’s daily activity.



2. MOTIVATION
The main challenge in extracting temporal characteristics

lies on the fact that time and duration of a sensed event, are
continuous variables that can take any value. To consider
them in a model, these quantities need to be appropriately
discretized. In doing so however, one needs to consider the
fact that temporal characteristics may differ in two ways.
Temporal variations within one particular event’s time, and
temporal variations across different event types. Even worse,
these characteristics for a given sensing event might com-
pletely change over time in a given sensor network deploy-
ment or even across different network deployments. Because
of this, extracting a set of discrete time and duration param-
eters that best describe a sensing event across different event
instances is not trivial.

To better illustrate this, let us consider a realistic exam-
ple drawn from our assisted living testbed. Assume a sensor
network is deployed inside a house to continuously monitor
an elder person living alone. The goal of the network is to
provide information with respect to when and for how long
the monitored person engages into specific activities such as
sleeping, cooking, watching TV and visiting the bathroom.
In this case, we wish to identify the temporal characteristics
of the recorded sleep activity instances, that is start time and
duration. One could argue that the answer to this question
is trivial since most elder people sleep early during the night
(10pm-12am) and wake up early in the morning (7-8am).
However, this might not always be the case. Figure 1 shows
the time and duration characteristics of all the Sleep activ-
ity instances of a monitored elder person as recorded in our
home sensor network deployment over a period of 30-days.
The frequency at which the Sleep instances appear in a given
time and duration window, indicates when and for how long
the person goes to sleep. Figure 1 verifies the initial intuition
showing that the person usually sleeps before midnight for
a duration of 9 to 10 hours. However, most of the times, the
person interrupts his sleep to visit the bathroom either in
the middle of the night (time window 0 in Figure 1) or early
in the morning (time window 6 in Figure 1). These tempo-
ral characteristics of sleep activity provide very important
information about the monitored person’s habits and are of-
ten difficult to identify based on a-priori or “common-sense”
knowledge. In addition, this information is specific to the
monitored person and to the time window at which he was
observed. In general, the temporal characteristics of sleep
activity change over time and vary across different people.

From these simple observations we can identify the fun-
damental properties and challenges of our problem:

1. The time and duration characteristics of routine events
are not independent. For example, in Figure 1, Sleep
activity instances at different time-windows have dif-
ferent duration characteristics. Furthermore, only a
small number of time and duration window combina-
tions appear frequently. As a result, time and duration
information have to be jointly considered.

2. The answer to the question ”when and for how long an
event takes place”might not be unique and the number
of answers might not be known. For instance, in Figure
1 there are at least 3 different answers to the question
”when and for how long the person goes to sleep”.

Figure 1: Time and duration characteristics of the
Sleep activity. Time is divided into 4 time win-
dows of 6 hours duration each. Duration is divided
into 30-minutes windows. The z-axis represents the
number of times the Sleep activity appeared in a
specific time and duration window.

3. The temporal characteristics of a specific event change
over time. For example, in the case of home monitor-
ing applications one can note that temporal attributes
of the recorded daily activity cycles(i.e. sleeping cycles
like the one shown in Figure 1) are specific to the mon-
itored person and the time period they were collected.
Daily activity cycles vary across different people and
change over time even for the same person.

4. The way time and duration information is organized
in time windows is important. Using time and dura-
tion windows of different sizes in Figure 1 could signifi-
cantly impact the quality of the extracted information.
Since our goal is to discover these time and duration
characteristics, we should not assume any a-priori time
and duration discretization similar to the one shown in
Figure 1. Instead, the temporal characteristics of the
sensed events should be used to automatically discover
the best time and window sizes.

Thus, a data driven approach that is able to automatically
discover the temporal properties of the sensed events assum-
ing no a-priori information about the event or its source is
needed. The goal of this process is to provide an answer to
the question: ”when and for how long does this event type
take place?”. In the example used in this section, sleep ac-
tivity instances were the actual sensed events. In other ap-
plication domains, visited GPS locations, traffic congestion,
workload of data center servers, and basically any measured
quantity over time can take the form of sensed events.



t t t t

t t t t

t t t t

t

t

EP(0,t)

EP(t,2t)

EP(2t,3t)

EP(0,t)

EP(t,2t)

EP(2t,3t)

EP(3t,4t)

EP(3t,4t)

Ev
en

t 
Ty

p
e 

C
la

ss
if

ic
at

io
n

Te
m

p
o

ra
l O

rg
an

iz
at

io
n

 i
n

 
Ep

is
o

d
e

s 
o

f 
d

u
ra

ti
o

n
 t

Ev
e

n
t 

C
lu

st
e

ri
n

g 
o

ve
r 

Ep
is

o
d

e
s

t

t

Cluster 1

Cluster 2

Cluster 1

Cluster 2

Te
m

p
o

ra
l C

o
n

d
it

io
n

in
g

Discrete spatial events with 
continuous time information Discrete spatiotemporal events

Figure 2: Overview of the proposed methodology for extracting the temporal structure of the sensor data
stream. Our approach converts a stream of discrete sensing events with continuous information to a stream
of discrete spatiotemporal events without assuming any information about the type or the source of the input
sensor data stream.

3. PROPOSED APPROACH OUTLINE
From the previous example, the proposed solution outline

is beginning to emerge. Events in the sensor data stream
come as different types based on either the type of sensing
features recorded or the location of the sensor. This ab-
stracts away the spatial context in the sensor data stream.
Temporal context suggests that events of the same type
come in different instances, that are correlated across time
windows. To discover these temporal correlations across
time windows, we properly mine time, duration and fre-
quency information in the following way (Figure 2):

1. Encode spatial context by separating events into types
that carry information about sensor features and/or
locations.

2. For each event type, temporally organize sensed events
based on a given time window (i.e day, week, month
or whatever else is appropriate for the application).
The size of the time window (day,week,month etc.)
determines the nature of the temporal characteristics
(daily,weekly,monthly etc.) that will be extracted. This
step transforms a single sequence of sensed events over
time into multiple sensed event sequences over a given
time window.

3. The goal now becomes to properly mine time, duration
and frequency information across the multiple sensed
event sequences. In our approach, the key for ex-
tracting the spatiotemporal properties across the dif-
ferent event sequences is frequency. We aim to dis-
cover all the event instances with similar start time
and duration characteristics that repeatedly appear
across the different event sequences generated at the
previous step. The more frequently the event appears
with a specific start time and duration, the more im-
portant these two parameters are for this event type.
To classify events with respect to time and duration,
we first formulate the problem as a clustering problem
of event instances, where each event instance is rep-
resented as a one-dimensional line segment uniquely
identified by its start time and duration (Section 4).
The high-level goal of the clustering algorithm is to cre-
ate groups/clusters of large numbers of event instances
with very similar start time and duration characteris-
tics (Section 5).

4. Each cluster generated by our clustering algorithm rep-
resents a pair of frequently repeating start times and
durations. Given the discovered start time and dura-
tion parameters for each event type, we condition each
event instance to produce a sequence of spatiotempo-
ral events. In that way, we move from a sequence of
spatial events with continuous time and duration infor-
mation to a sequence of discrete spatiotemporal events.

Given the sequence of discrete spatiotemporal events any
data mining algorithm can be used [8, 1, 2, 17, 5, 16, 14, 13,
5, 16, 3, 6, 14, 15] to extract the statistical associations of
the different spatiotemporal event types in the sensor data
stream. The role of this process is to discover how different
discrete event types (as opposed to identical events with dif-
ferent continuous time properties) correlate across different
time windows. These statistical associations can be used to
directly extract the spatiotemporal model of the sensor data
stream. This model represents the spatiotemporal structure
of the sensed phenomenon and can be used to predict fu-
ture events or detect unusual event sequences at run-time.
Our previous work has already addressed these parts of data
model extraction methodology, from time information en-
coding in sensor data streams [11] to model extraction [8].
In this paper, we focus on the extraction of the temporal
structure of the sensor data stream (Figure 2). Our pro-
posed approach is described in the sections that follow.

4. NETWORK MODEL
The events generated by the sensor network might be

primitive sensing features identified at the node level (“tem-
perature exceeded a threshold”, “Joe is in the kitchen” etc.)
or more complex events identified at the network level (“There
is a fire in this area of the network”, “Joe is enjoying his cof-
fee in front of the TV after dinner”, etc.). The output of the
network can thus be considered as a collection of different
events of interest: {E1, E2, E3, . . . , EN}. For our discussion,
we will initially consider only a single event type, say E1.
With only this event type, the output of the sensor network
is a collection of event instances over time:

{E1(t1, d1), E1(t2, d2), E1(t3, d3), . . . , E1(tn, dn)} (1)

Note that every event instance is associated with two basic
temporal characteristics: time and duration. Time refers to
the absolute time when the event started taking place and
duration refers to the time duration that this event lasted



Figure 3: The different sleep activity instances of the monitored elder person over a 30-day period. The y-axis
shows the date when the activity instance was recorded and the x-axis shows the ground truth time.

(e.g. how long the temperature exceeded the threshold or
how long the fire lasted).

We define an episode EP (Tstart, Tend) as the collection of
all event instances that took place between Tstart and Tend:

EP (Tstart, Tend) = {E1(ti, di)|Tstart ≤ ti ≤ Tend∀i} (2)

Episodes are nothing more than a temporal grouping of
events. In that way, the output of the sensor network can
be defined as a sequence of episodes (time windows) with
identical durations:

< EP (T1, T2), EP (T2, T3), . . . , EP (TN−1, TN ) > (3)

where T2 − T1 = T3 − T2 = . . . = TN − TN−1. The time
duration of each episode can be selected according to the
needs of the application. For instance, it could be a single
day, a week, a month or even a year depending on the appli-
cation requirements. The only restriction we enforce is that
the time durations of all episodes in equation (3) are equal.

To better illustrate event representation and temporal group-
ing of events in episodes, let us consider again the example
of monitoring the sleeping activity of an elder person liv-
ing alone in his house. Figure 3 shows all the sleep activity
instances recorded over the 30-day monitoring period assum-
ing that the duration of each episode is a single day. The
x-axis represents the actual time in the context of a single
episode, in this case a day. The y axis represents the different
episodes. Note that at each episode (day) one or more sleep
instances are recorded and denoted as one-dimensional line
segments uniquely identified by the start time and duration
of the corresponding sleep instances. As a result, our 30-day
sensor data stream is represented as a collection of 30 dif-
ferent episodes of a single day duration each. Each episode
contains a number of sleep instances which are represented
as one-dimensional line segments over time.

Note that in Figure 3, several of the line segments in a
single episode are very briefly interrupted. This usually cor-
responds to other events, such as bathroom visits that are
not shown in Figure 3, taking place in the middle of the night
or early in the morning. Depending on the context of the

monitored person, these interruptions might or might not be
important. For elder people, knowing the frequency and du-
ration of bathroom visits that interrupt sleeping activity is
important for medical purposes. Therefore, the interrupted
sleeping activity instances are considered to be different. In
other cases, these sleeping activity instances might be con-
sidered a single, continuous sleeping activity. This issue can
be automatically handled in our interpretation framework
described in [9],[10]. The methodology described in this
paper is independent of these decisions and can be trans-
parently applied to any temporally organized collection of
line-segments like the one shown in Figure 3.

5. TEMPORAL STRUCTURE DISCOVERY
OF SENSOR STREAMS

Our goal is to find the frequent temporal characteristics
of an event across the different episodes. Depending on the
time duration of each episode this corresponds to finding
the daily, weekly, monthly or yearly frequent temporal char-
acteristics. The temporal characteristics are (a) the actual
time when the event starts and (b) the duration of this event.
For instance, finding the daily temporal characteristics of
the sleep activity instances shown in Figure 3, corresponds
to finding all the frequent times during the course of a day
that this event will take place with a specific duration. We
call the temporal characteristics of an event frequent when
this event takes place around the same time and with almost
the same duration over a large number of episodes. Note that
absolute time and duration are not necessarily independent.
If the starting times of two event instances are identical but
their durations are very different and vice versa, then the
two instances might not be related.

Problem Statement: Given a sequence of episodes where
each episode contains a collection of instances E(t, d) of a
specific event E, our goal is to identify the pairs of start-
ing time indexes and durations (ti, di), i = 1, 2, . . . during
which the event of interest E occurs repeatedly across differ-
ent episodes.



In practice, the problem of finding the frequent temporal
characteristics of the recorded event instances is a clustering
problem. For instance, identifying when and for how long
the monitored elder person sleeps during the course of the
day corresponds to identifying the clusters of line segments
with similar start time and duration characteristics across
different episodes in Figure 3. Ideally, all sleep instances
would have identical start time and durations producing a
single cluster as output. In the worst case, sleep instances
would be uniformly distributed over time producing a large
number of clusters equal to the number of event instances. In
most of the cases, however, the collection of event instances
would look like the one in Figure 3, where several event
instances overlap with each other over time in many different
ways. Note that in this case it is not trivial to identify what
the clusters of the input collection of line segments should
be.

Even though several clustering algorithms have already
been proposed in the literature in the context of several ap-
plication domains, the clustering problem considered in this
paper differs in two ways. First, instead of clustering points
in space we want to cluster line segments in time. These line
segments are defined by two different but closely related tem-
poral attributes: the start time and the duration of a given
event instance.Second, in contrast to other previously pro-
posed approaches in computational geometry and computer
vision, the line segments are strictly one-dimensional.
Posing our problem as a clustering problem of one-dimensional
line segments raises a series of issues:

1. How do we quantify the similarity of two event in-
stances that are represented as one-dimensional line
segments? Note, that the similarity is a function of
both temporal characteristics (time and duration) of
the two event instances.

2. How do we quantify the quality of a cluster of event
instances? In other words, how do we know if an arbi-
trary cluster of event instances is frequent or not?

3. Given a quality metric for an arbitrary cluster of event
instances and a recorded collection of event instances,
how can we construct the frequent clusters?

The key to answering these questions lies on examining
two important properties of the input line segments:

1. The amount of overlap between line segments. As Fig-
ure 3 shows, the higher the overlap between two line
segments the more similar the temporal characteristics
of these two line segments are.

2. The fraction of the overall number of line segments
that are similar. The more similar the line segments
are,the more frequently repeating the time and dura-
tion characteristics of these line segments are. For in-
stance, in Figure 3 most of the sleep instances start
taking place between 10pm and midnight, clearly in-
dicating when the person usually goes to sleep.

In the rest of the paper, we describe in detail how our cluster-
ing algorithm exploits these properties of the input line seg-
ments to efficiently cluster them. To identify the recurring
event instances, we first define a similarity metric and then
develop a clustering algorithm that can cluster frequently
similar events across different episodes according to the pro-
posed metric.

Figure 4: The 3 possible relative positions of two ar-
bitrary event instances. Note that swapping events
Ei and Ej results to the exact same pairwise density
according to equation 5.

5.1 Pairwise Density of Event Instances
To properly identify recurring event instances, our clus-

tering algorithm first needs a metric for quantifying how
similar the temporal characteristics of two arbitrary event
instances are. To clarify the properties that such a metric
should take into account, consider Figure 4 where all the
possible cases of relative positions of two arbitrary event in-
stances (Ei, Ej with start times ti,tj and durations di and
dj respectively) are shown. In the first case, the two event
instances partially overlap. In the second case, one of the
event instances is fully overlapped by the other one and in
the third case the two event instances are at a distance D in
time and they do not overlap at all. Our goal is to define a
metric for quantifying the similarity of two arbitrary event
instances independently of their relative positions over time
(cases 1, 2 or 3).

Given that each event instance is represented as a line
segment defined by its starting time and duration, we can
quantify how similar two event instances Ei and Ej are as
follows:

Dij =
T − dij

T
(4)

where T is the time span of both event instances and dij is
the distance between the event instances defined as:

dij = |ti − tj |+ |(ti + di)− (tj + dj)| (5)

where (ti, di) and (tj , dj) are the starting time and duration
parameters associated to event instances Ei and Ej respec-
tively. The first term in equation (5) captures the difference
in terms of the time when these event instances start taking
place. The second term captures the difference in terms of
the duration between the two event instances with respect
to the event instances start times.

Even though equation (5) provides a notion of how close
two event instances are, it does not capture accurately the
density of the two event instances. This is done in equa-
tion (4) where the time span of the two event instances is
taken into consideration. Figure 4 shows how the time span
T is defined in all possible relative positions of two event
instances. Equation (4) provides a notion of how close the
two event instances are to each other with respect to their
time span.



To better illustrate this, let us compute the proposed met-
ric for all the different cases shown in Figure 4:

Dcase1
ij =

d

d1 + d2 − d
(6)

Dcase2
ij =

d1

d2
(7)

Dcase3
ij =

−D

D + d1 + d2
(8)

For the first two cases (equations (6) and (7)), the pro-
posed metric is defined as the overlap of the two event in-
stances divided by their time span. Note, that this is nothing
more than the temporal density of the two event instances.
In both cases, the larger the overlap (given a fixed time
span) or the smaller the time span (given a fixed overlap)
the higher the Dij . Ideally, Dij becomes equal to 1 when the
two line segments are identical (start and end at the same
time). In this case the time span of both line segments is
equal to the overlap of the two line segments. When there is
absolutely no overlap between the two event instances (d = 0
in the first case), Dij becomes 0.

In the third case (equation (8)), where there is no over-
lap between the two event instances, the proposed metric is
defined as the distance D between the two event instances
(shown in Figure 4) divided by their time span T . Note that
now the metric is negative. This is due the fact that dij , as
defined in equation (5), is now larger than the time span T in
the third case shown in Figure 4. The physical explanation
behind this is that the proposed metric in equation 4 treats
the distance D between the two event instances as a nega-
tive overlap between the two event instances. In other words,
whenever the two event instances do not overlap, their dis-
tance D becomes a virtual negative overlap. Note, that ac-
cording to equation (8), the larger the distance D is, the
smaller the metric that approaches to but never reaches −1.
Conversely, when D is very small and close to 0 the metric
becomes equal to 0.

Hence, the metric proposed in equation (4) manages to
describe the density of any pair of event instances by as-
signing values in the range (−1, 1]. The higher the metric
value the more dense the pair of event instances is. We call
this the pairwise density metric.

To avoid dealing with negative values for the rest of our
discussion we will map the metric’s range of values from
(−1, 1] to (0, 2] by simply using: 1 + Dij instead of Dij :

Dij = 1 +
T − dij

T
, 0 < Dij ≤ 2 (9)

5.2 Density of Arbitrary Clusters
Given equation (9) as a measure of the similarity/density

between two arbitrary event instances, we can now proceed
and quantify the quality of a cluster with an arbitrary num-
ber of event instances. The main properties that such a
metric should take into consideration are the following:

1. The quality of a cluster is high when all of its event
instances share similar temporal characteristics as this
is defined by equation (9). The more similar the event
instances are in terms of their time and duration the
higher the quality of the cluster.

2. The proposed metric should be used to compare the
quality of any two clusters that might even contain
different number of event instances. In other words,
the proposed metric should take into consideration the
number of event instances a cluster contains. The more
event instances are included, the higher the quality of
the cluster.

Note, however, that these two properties are not indepen-
dent. Simply adding event instances into a cluster should
not just increase its quality. The reason is that the quality
of the cluster should also be affected by the similarity across
all the event instances in the cluster. Therefore, blindly
adding event instances to a cluster might decrease its qual-
ity. In the same sense, keeping the number of event instances
in a cluster small to keep the pairwise density of events high
should not increase the overall quality of the cluster. The
reason is that our goal is not to just find recurring temporal
characteristics but to identify frequent temporal characteris-
tics.

The following density-based cluster metric captures both
of these properties and their tradeoffs:

QCk =


∑

i<j Dij

(
nCk

2 )
× nCk

n
=

2
∑i6=j
∀i,j

Dij

n×(nCk
−1)

if nCk ≥ 2

1
n

if nCk = 1
(10)

where QCk is the quality of cluster Ck, nCk are the number
of event instances in cluster Ck and n is the total number
of instances that have been recorded independently of the
cluster where they belong. The first term in equation (10)
represents the average pairwise density of the cluster. For
every pair of event instances, the pairwise density is com-
puted according to equation (9). All the pairwise densities
are summed and then divided by the total number of pairs of
event instances in the cluster giving us the average pairwise
density of the cluster which can take any value in the range
[0, 1]. The second term in equation (10) is used to scale the
average pairwise density of the cluster with respect to the
fraction of the total number of event instances that belong
to the cluster and takes values in the range of [ 1

n
, 1]. The

purpose of the second term is to favor the clusters that con-
tain large numbers of event instances. The reason is that
as the number of event instances in a cluster increases, it
becomes more difficult to concurrently increase the average
pairwise density of the cluster. By multiplying these two
terms, we manage to automatically control the tradeoff be-
tween the number of event instances in the cluster and the
average pairwise density of the cluster.

Given any number of clusters with any number of event
instances each, we can quantify their quality using equation
(10). The higher the quality of the cluster, the higher the
probability that this cluster is a frequent cluster and therefore
the higher the probability that it contains events that share
similar frequent temporal characteristics.

5.3 Automatic Extraction of Frequent Clus-
ters

Being able to quantify the quality of an arbitrary cluster
allows us to build an efficient algorithm for automatically
finding the frequent clusters of event instances given any in-
put sequence of event episodes similar to equation (3). The
main problem in doing this is the fact that we do not know



in advance the total number of clusters. In other words,
besides building the frequent clusters, our objective is to
also identify the number of clusters. Since we have quanti-
fied the quality of an arbitrary cluster, we can concurrently
build and identify the number of clusters using the following
expression:

1

NC + n
×

NC∑
i=1

QCi (11)

where NC is the total number of clusters, n is the total num-
ber of event instances to be clustered and QCi is the quality
of cluster Ci. Given a collection of clusters, equation (11)
provides an estimate of its quality. In general, the higher
the value of expression (11) the better the quality of the
collection of clusters. As a result, given two different collec-
tion of clusters (with possibly different number of clusters),
equation (11) can be used to choose the best one.

Note that even though equation (11) can be seen as the
average cluster density across all the clusters it does not rep-
resent the actual average cluster density. The term 1

NC+n
is

used instead of 1
NC

. The reason is that the value of 1
NC

varies

significantly for different values of NC and when NC is small.
For instance, consider the case where we have two possible
clustering schemes for the collection of events: one with 3
clusters and another one with only 2 clusters. The term

1
NC

corresponds to 1
3

and 1
2

for the two clustering schemes,

which gives us a ratio of 1.5. This means that without even
considering the actual densities of the individual clusters,
using 2 clusters is 1.5 times better than using 3 clusters. As
a result, using the term 1

NC
could alter the results of our

approach, since it would always favor creating a small num-
ber of clusters and therefore ignore the importance of the
individual cluster’s density being high. To deal with this
problem and knowing that 1 ≤ NC ≤ n, we opted to use

1
NC+n

instead of 1
NC

. In that way, the first term in equation

(11) is no longer changing significantly for different values of
NC and when NC is small. In the rest of the paper we will
refer to equation (11) as the average cluster density across
all the clusters.

Having introduced the notion of average cluster density
across all the clusters we can proceed and design the effi-
cient algorithm shown in Figure 5 for identifying the frequent
clusters of the sensed events based on their temporal char-
acteristics. Initially every event instance becomes a cluster.
Therefore, assuming we have n event instances, initially we
have n clusters each with a quality equal to 1

n
. At the next

step, we compute the quality of all the clusters that could
be produced by merging any pair of current clusters and we
quantify the effect of every such merging on the average clus-
ter density (equation (11)). The pair of current clusters that
if combined gives us the maximum average cluster density is
merged and the overall number of clusters is reduced by one.
This process continues iteratively until there is no pair of
clusters that can be merged in order to increase the average
cluster density (equation (11)). In this case, the algorithm
terminates and the current collection of clusters along with
their qualities becomes the output of the algorithm. This
iterative process of creating clusters is similar to the hier-
archical agglomerative clustering approach [22]. The major
differences with agglomerative clustering are two. First, we
quantify the ”distance” between two clusters as the average
pairwise density of all the elements of both clusters. The

// n: total number of event instances
// NC : current number of clusters
// QCi : quality of cluster Ci

// Cij : the cluster produced after merging Ci and Cj

// Qglobal: current average cluster density
// Qmatrix: NC ×NC matrix where the entry Qmatrix(i, j)
is equal to the change of Qglobal when merging clusters Ci

and Cj

// Initialization
NC = n, QCi = 1

n
, i = 1, . . . , NC

while(1)
{

for i=1:1:(NC-1)
{

for j=(i+1):1:NC

{
Cij = Ci ∪ Cj

Qmatrix(i, j) = Qglobal− 1
(NC−1)+n

×(QC1 +. . .+

QCi−1 + QCij + QCj+1 + . . . + QCNC
)

}
}
if Qmatrix(i, j) < 0, ∀i, j {quit}
else
{

if Qmatrix(i, j) = maxi,j Qmatrix(i, j) {Ci ∪ Cj}
NC = NC − 1;
update(Qglobal)
if NC == 1 { quit }

}
}
// Output: A collection of NC clusters with qualities
QC1 , . . . , QCNC

Figure 5: The proposed algorithm for discovering
the frequent temporal characteristics of a collection
of event instances.

higher this density the closer the two clusters are. Second,
the goal of the iterations is to maximize equation 11. It
is equation 11 that determines which clusters to be merged
and when the algorithm actually terminates.

Every produced cluster can be seen as a specific class of
event instances with unique temporal characteristics. The
average start time and duration attributes along with their
standard deviations can uniquely represent the temporal
properties of each cluster. Note, however, that these tem-
poral characteristics do not necessarily represent frequent
temporal characteristics. This is defined by the individual
quality of each cluster. The higher the quality of a cluster
the more frequent the temporal properties of this cluster are.
In other words, if the input data does not have a frequent
temporal structure then this could be easily identified in the
output of our algorithm by the quality metric that is associ-
ated to each cluster. This property is extremely important
since the data the algorithm operates on is real, noisy data
that might contain only a few, or even worse, non-periodic
temporal properties. In both cases, the proposed algorithm
does not only produce an output; it also provides a confidence
of how good this output is given the specific input data.

As it can be seen in Figure 5, every pair of clusters has
to be considered for merging at each step. This corresponds
to examining n2 possible cluster mergings. In addition, only
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Figure 6: (a)Distribution of input line segments based on their start time and duration characteristics. The z
axis corresponds to the number of line segments. (b) Distribution of the normalized quality of the produced
clusters. The z axis corresponds to normalized quality. In all plots, the x-axis represents start time window
and the y-axis duration window. Each start time window corresponds to 60 minutes and each duration
window corresponds to 30 minutes.

two clusters can be merged into a single new cluster at each
step. Therefore, in the worst case, we end up with a single
cluster after n − 1 steps, resulting to an overall time com-
plexity of Θ(n3). This complexity can be further reduced to
Θ(n2 log n) by using dynamic programming techniques.

6. EVALUATION
We evaluate the proposed clustering algorithm in two phases.

First, since it is prohibitively expensive to have ground truth
data in an assisted living setup, we verify the properties
of our algorithm using a synthetic dataset that allows con-
trolled inputs with predictable outputs. The goal of these
experiments is to validate the properties of our approach and
show its ability to accurately discover the temporal structure
of any input data stream. Second, we demonstrate the pro-
posed temporal event classification methodology on a data
trace collected by a multimodal wireless sensor network de-
ployed in the house of an elder person living alone for a
period of 30 days. Our approach is used to extract the daily

temporal structure of the different activities performed by
the elder person. To demonstrate the value of the informa-
tion extracted by our algorithm, we use the discovered tem-
poral information to build the fine-grained spatiotemporal
activity model of the monitored person.

6.1 Verifying the Properties of the Clustering
Algorithm

The goal of the proposed algorithm is to discover the fre-
quent temporal characteristics of the input event instances
assuming no prior information about the input events. To
demonstrate this functionality we artificially generated sev-
eral input datasets on which we run the proposed algorithm.
The purpose of these experiments was twofold. First, it al-
lowed us to evaluate the performance of our algorithm on
randomly generated data for which no prior information is
available. Second, it gave us enough control over the input
to create well-formed scenarios for which the output of the
algorithm can be predicted. Being able to predict what the



output of the algorithm should be, allows us to comment on
the performance of the proposed algorithm.

The input datasets were generated using a mixture of
gaussian, binomial and random probability distributions.
Each dataset was generated over 24 start time windows of
60 minutes duration each and 48 duration windows of 30
minutes duration each. Figure 6(a) shows the distribution of
line segments over time in two representative input datasets.
The flat areas correspond to combinations of start time and
durations for which little or no event instances take place
across episodes. These areas represent infrequent event in-
stances. The peaks correspond to the combination of time
and duration parameters for which a large number of line
segments take place across episodes. The higher the peaks
the more the line segments. These areas correspond to fre-
quent event instances. As a result, the goal of our algorithm
is to automatically discover the combination of start time
and duration parameters that correspond to the peaks in
Figures 6(a).

Figures 6(b) show the output generated by the proposed
algorithm. For each generated cluster, we compute the aver-
age start time and duration of all the event instances in this
cluster. Then, we plot the normalized quality of each cluster
at the time and duration windows that corresponds to clus-
ter’s average start time and duration. By simply comparing
Figures 6(a) and 6(b), it becomes clear that the normalize
quality peaks in Figures 6(b) perfectly match the frequency
peaks in Figures 6(a). This shows that the cluster quality
metrics described in Section 5 can successfully capture the
frequently repeating temporal characteristics of the input
event instances. A frequency peak in Figures 6(a) is always
corresponding to an analogous normalized cluster quality
peak in Figures 6(b).

More information about the properties of the cluster qual-
ity metrics used can be extracted by comparing the relative
height of the peaks in Figures 6(a) with the relative height
of the corresponding peaks in Figures 6(b). Note that in
certain cases there are obvious differences between Figures
6(a) and 6(b) in the sense that tall peaks in Figures 6(a)
might correspond to significantly shorter peaks in Figures
6(b). The reason is that the value of the cluster quality
metric defined in Section 5 does not only depend on the fre-
quency of event instances. It also depends on how similar
the frequently repeating event instances are in terms of their
start time and duration characteristics. When these charac-
teristics vary significantly across the event instances in the
cluster, then the value of the cluster quality is reduced even
if a large number of event instances is included in the cluster.

From these observations, it becomes apparent that the
output of the algorithm (Figures 6(b)) manages to accu-
rately capture two very important properties of the input:
the frequency of repeating line segments and their similarity
in terms of start time and duration across episodes. Both of
these properties are properly quantified in the form of the
normalized quality of the produced clusters. Note that the
normalized quality used is a relative metric across the differ-
ent clusters discovered. We use such a metric because there
is not an absolute/ideal output that our algorithm should
provide independently of its input. The role of the output
is to match the distribution of the input event instances
in terms of frequency and start time and duration similar-
ity. When a uniform distribution of event instances is given
across episodes, a uniform output distribution of normal-

Figure 7: Placement of the camera and motion
iMote2 sensor nodes on the deployment site.

ized cluster quality is also expected. When more complex
distributions are given (Figures 6(a)), then similar complex
distributions of the normalized cluster quality are expected
as output (Figures 6(b)).

6.2 Home Monitoring Testbed and Dataset
In this section we demonstrate the application of the pro-

posed algorithm on a real dataset acquired by one of our
home sensor network deployments shown in Figure 8. The
network was used to continuously monitor an elder person
living alone in his house over a period of 30 days. A combi-
nation of low-power camera and motion sensors coupled to
the iMote2 sensor nodes were used to timestamp the differ-
ent rooms and locations that the monitored person visited
over time during the 30-day period. Figure 7 shows a 7-day
window of the recorded data.

The sequence of timestamped locations, recorded by our
sensor network deployment, was first manually filtered to re-
move any false positives/negatives sensor readings and then
mapped to simple primitive activities that the monitored
person engages during the course of a day. In this section
we will present the results of running the proposed algo-
rithm on three of the most representative and intuitive ac-
tivities, namely the “Sleep”, “Hangout” and “Out” activities.
“Sleep” activity corresponds to the person actually sleeping
in his bedroom. “Hangout” activity corresponds to the per-
son spending time in the living room (mainly watching TV)
and “Out” activity corresponds to the person going out of
the house for any possible reason. The detections were made
using the sensory grammars framework described in [11].

Figures 9,10,11 show the output of the proposed algorithm
when run on all the recorded event instances of the sleep,
hangout and out activities. The different clusters on each
plot are displayed with different colors. In the case of Fig-
ure 9, the different clusters produced provide the temporal
signature of the sleep activity instances. The cluster with
the most activity instances (black line segments) represents



Figure 8: Room transitions and detection of sleeping activity and bathroom usage (using rule based triggers)
of the monitored person for a period of one week.

Figure 9: The different sleep activity instances of the
monitored elder person. The y-axis shows the date
when the activity instance was recorded and the x-
axis shows the ground truth time. The different
colored lines represent the different clusters.

the most frequent sleeping pattern of the monitored person.
This corresponds to a continuous sleep from late night up to
early morning. At that time the sleep is usually interrupted
by an early morning bathroom visit and then the person
goes back to sleep for approximately 2 hours (blue and red
line segments). However, this does not fully describe the
sleeping pattern of the monitored person. It turns out that
in more than 33% of the sleep activity instances, the person
will wake up in the middle of the night to visit the bathroom.
This can be seen from the cluster containing all the green
line segments in Figure 9. This bathroom visit is always fol-

lowed by another sleep activity instance until 9-10am, right
before the person wakes up (gray line segments). These dif-
ferent clusters represent the unique temporal characteristics
of the monitored person’s daily sleep activity pattern.

In exactly the same way, our algorithm can be used to
extract the temporal structure of the hangout and out ac-
tivities. In the case of hangout activity (Figure 10) there
are three main time windows. The first but least frequent
window takes place right after the person wakes up (red line
segments). The remaining two frequent windows take place
from approximately 10am to 3pm (black line segments) and
from 6pm to approximately 11pm (blue line segments). Usu-
ally, between 3pm and 6pm the monitored person gets out
of the house and this can be clearly seen in Figure 11.

By simply inspecting the clusters produced by our algo-
rithm in Figures 9,10,11, the temporal structure of all three
activities arises. This temporal structure can be clearly seen
in Figure 12. For every non trivial cluster (i.e. clusters
that contain more than one element) we compute the av-
erage start time and duration along with their standard
deviations and we plot them with respect to the fraction
of line segments that belong to the cluster (Figure 12(a))
and with respect to the normalized quality of the cluster
(Figure 12(b)). Using the plots shown in (Figure 12(a)) we
can extract the list of start time and durations along with
their deviations that a specific activity takes place over the
course of a day. How frequent these temporal characteristics
are, depends on the fraction of the total number of activity
instances that contribute to the calculation of these char-
acteristics. The higher the number of activity instances in
a cluster, the more frequent the cluster’s temporal charac-
teristics are. For instance, in the case of sleep activity in
Figure 12(a), we can easily see that the most frequent sleep
activity instances are the ones that start around 11pm and
last until around 7am where the monitored person will visit
the bathroom. In the same Figure it can also be easily seen
that the most frequent out activity instances start around



Figure 10: The different hangout activity instances
of the monitored elder person. The y-axis shows the
date when the activity instance was recorded and
the x-axis shows the ground truth time. The differ-
ent colored lines represent the different clusters.

3pm and last for approximately 3 hours every day when the
person goes to work. A more detailed list of the discovered
start time and duration pairs along with their normalized
qualities for different activities can be seen in Table 1.

Figure 12(b) shows that the proposed cluster quality met-
ric shown in equation 10 can successfully capture both the
frequency of a cluster as well as its average pairwise density.
In Figure 12(b) the y-axis represents the normalized cluster
quality instead of the fraction of activity instances contained
in the cluster (Figure 12(a)). It turns out that in all of the
three different activities studied, the ordering of the clusters,
in terms of how frequent these clusters are, might change;
especially in the case of the less frequent clusters. This is
due to the fact that the cluster quality metric in equation
10 takes into account the number of cluster members as well
as their average pairwise density. In other words, when a
cluster contains a lot of activity instances but its average
pairwise density is low, then its frequency will not necessar-
ily be high. In that way, the proposed algorithm does not
just generate frequent clusters; it generates dense frequent
clusters.

6.2.1 Using the Discovered Temporal Characteris-
tics

The frequent temporal characteristics identified by our al-
gorithm, like the ones shown in Figure 12, can now be used
to properly encode time information in the input event in-
stances. For instance, according to Figure 9 we know that
the monitored person engages into sleep activities during
the night (around 3-4am), in the morning (after 7am) and
of course late evening (around 10-11pm). In the same sense,
from Figure 11 we know that the person gets out of the house
in the afternoon around 3-4pm and comes back around 6pm
and from Figure 10 we know that right before he gets out
of the house and right after he comes back to the house,

Figure 11: The different out activity instances of the
monitored elder person. The y-axis shows the date
when the activity instance was recorded and the x-
axis shows the ground truth time. The different
colored lines represent the different clusters.

the monitored person spends his time in the living room
watching TV. This time information can be used to con-
dition every single event instance based on its start time
and duration properties. In that way, we can move from
spatial events with continuous information such as “sleep-
ing” to spatiotemporal events such as “sleeping during the
night”, “sleeping in the morning”, “getting out of the house
in the afternoon” and “watching TV in the morning” where
the time definition of “night”,“morning” and “afternoon” is
determined for every event type (“sleep”, “hangout” etc.) by
the clusters discovered by the proposed algorithm.

The value of automatically discretizing time information
into spatiotemporal events comes from the fact that the
spatiotemporal events can now be easily processed by most
available data mining algorithms [8, 1, 2, 17, 5, 16, 14, 13, 5,
16, 3, 6, 14, 15] to discover correlations across different event

Activity Average Average Norm.
Cluster Start Time Duration Quality

(minutes)
Early Sleep 11 : 00 : 00PM 301 0.17

Regular Sleep 11 : 54 : 37PM 458 0.39
Early Morning Sleep 06 : 34 : 38AM 172 0.19

Morning Sleep 07 : 55 : 09AM 104 0.12
Night Sleep 04 : 21 : 30AM 322 0.1
Regular Out 03 : 16 : 57PM 174 0.64

Late Out 04 : 36 : 26PM 191 0.21
Morning Hangout 10 : 26 : 03AM 284 0.23

Afternoon Hangout1 05 : 50 : 52PM 85 0.18
Afternoon Hangout2 06 : 50 : 53PM 36 0.11
Evening Hangout2 09 : 36 : 00PM 103 0.05

Table 1: A subset of the discovered list of start time
and durations for different activities.



Sleep Activity

Hangout Activity
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Figure 12: The average start time and duration characteristics along with their standard deviations for the
different clusters detected in the case of two different activities. (a) The y-axis shows the percentage of line
segments included in the cluster. (b) The y-axis shows the normalized cluster quality. In all plots the x-axis
shows the ground truth time.

types in the sensor data stream. Discovering the correlations
across different event types allows us to build the complete
spatiotemporal model of the sensor data stream. For in-
stance, Figure 13(a) shows the spatiotemporal model (gen-
erated using the methodology presented in [8]) of the 30-day
sensor stream recorded in our home sensor network deploy-
ment. Each state in this model represents a spatiotemporal
activity and thus encode both space and time information.
The links between different states represent the correlation
of different activities in the sensor data stream as described
in [8]. To better demonstrate the importance of the discov-
ered time information in the model construction, consider
Figure 13(b) where the exact same model generated in ex-
actly the same way but without taking into account the ac-
tivity temporal characteristics is shown. In this case, each
activity becomes a state in the model. By comparing the
two models in Figures 13(a),(b), it is clear that the amount
of information provided by the model where time informa-

tion is ignored (or unknown) is minimal. What differentiates
the quality of information captured by the two models is the
temporal structure information, provided by our algorithm,
that allows for more fine-grained spatiotemporal modeling
of the sensor data stream.

7. RELATED WORK
The different clustering algorithms that have been pro-

posed in the literature can be roughly classified in two differ-
ent categories [22], namely the partitioning and hierarchical
algorithms. In the case of partitioning algorithms the goal is
to organize a collection of events (points in space) into a set
of k clusters. Initially, a set of random k clusters is created.
Then, iteratively the algorithm refines those k clusters by
optimizing an objective function. At each step, every clus-
ter in the partitioning algorithms is represented as single
point in space. In the case of k − means algorithms [12]
each cluster is represented by its centroid and in the case of
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Figure 13: The daily activity model extracted from a recorded data trace of 30 days when (a) both spatial
and temporal information is used and (b) only spatial information is used.

k−medoid algorithms [20] each cluster is represented by the
event that belongs to that cluster and that is closer to the
cluster’s centroid. Similar to this type of algorithms is also
the expectation maximization (EM) algorithm [4, 7] that has
been extensively used in the machine learning and artificial
intelligence domains. Even though partitioning algorithms
have been widely used in several applications, they are not
a good fit for the problem studied in this paper. First, every
event is considered as a single point in space, thus ignoring
the event’s temporal properties. Second, the summarization
of a cluster as a single point does not allow capturing all
the detailed properties of the cluster. As it was described
in Section 5, we can get a more detailed representation of
a cluster by considering all of its elements and not just a
single one.

The work that is closest to the method proposed in this pa-
per is a hierarchical clustering technique, widely used in the
context of Natural Language Processing, called agglomera-
tive clustering [22]. Agglomerative clustering was designed
for clustering a collection of vectors instead of a collection
of points in space. Initially every vector is represented as a
cluster. Then iteratively, at each step the two clusters that
are the closest to each other are merged. This process con-
tinues either until a single cluster is formed or until there
are no two clusters with a distance lower than a predefined
threshold distance Dmin that allows their merging. In the
case of the group-average agglomerative clustering (GAAC)
algorithm, the average distance of all the pairs of vectors
that belong in any of the two clusters is used as the distance
between the two clusters. Our approach is similar to GAAC
in terms of the cluster building process but it differs in two
fundamental ways:

1. Instead of quantifying the distance between two clus-
ters as the average pairwise distance of all pairs of
cluster elements, we introduce the notion of average
pairwise density.

2. Instead of requiring a threshold distance Dmin as a
stopping criterion, we introduce the notion of a global
density metric we wish to optimize. At each step, the
clusters that are merged are the ones that maximize
the overall average cluster density.

The uniqueness of our approach lies on the way we rep-
resent sensor events and on the metrics introduced. These
metrics take advantage of the line-segment sensor event rep-
resentation to better exploit the density of the recorded
events across multiple instances and to better extract their
temporal properties.

8. CONCLUSIONS
We have presented a data driven algorithm for automat-

ically extracting the temporal characteristics, in terms of
start time and duration, across different event instances and
for any given event in a sensor data stream. Our approach
makes no assumption about the temporal properties to be
discovered and could be applied to practically any sensor
data stream. The only requirement is a lightweight pre-
processing stage for representing the raw data stream as a
sequence of spatiotemporal triplets of the form {l, t, d}.

In this paper, we demonstrated its application on a 30-
day dataset collected from one of our home sensor network
deployments monitoring an elder person living alone in his
house. Currently, our system works reliably when a single



person is monitored. When multiple people are monitored
at the same time, a way to separate and assign different data
streams to each individual is required. Our recent work has
been focusing on this direction [18].

In the immediate future, our plan is to use this in conjunc-
tion with the probabilistic grammar framework from [11],[9]
to create responsive systems in the home that could actuate
and provide services to elders living alone. With these two
blocks together, we plan to study the reliability of the sys-
tem and try to apply it towards providing real-time services.

Our goal is to also apply the developed infrastructure on
more diverse mobile datasets outside the concept of assisted
living. As an illustration, we are in the process of applying
the proposed methodology to GPS measurements from buses
to automatically discover and enforce bus schedules as well
as to detect where, when and for how long bus drivers stop
for breaks.
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