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ABSTRACT

This paper presents a novel motion estimation (ME) framework
that offers fine-granular computational-complexity scalability. In
the proposed framework, the ME process is first partitioned into
multiple search passes. A priority function is used to represent the
distortion reduction efficiency of each pass. According to the pre-
dicted priority of each macroblock (MB), computational resources
are then allocated effectively in a progressive way to achieve fine-
granular computational-complexity scalability. Experiments show
that our proposed scheme achieves progressively improved perfor-
mance over a wide range of computational capabilities.

1. INTRODUCTION

With the rapid development of wired and wireless networks, more
and more users are seeking real-time video communication ser-
vices. However, real-time video coding faces a big challenge from
computational complexity, especially for mobile devices such as
Pocket PCs and handheld PCs, which are of weak computational
capability and short battery lifetime. Because of the complexity
constraint, many highly efficient but complex algorithms cannot
be used directly for real-time video coding. Although one can
simplify the algorithms to meet a specific scenario (e.g., a given
video resolution and bit rate for a certain device), it is not a cost-
effective way since there are so many different scenarios. Also,
conventional encoders cannot adapt well to the varying compu-
tational requirements of video contents. Therefore, it is highly
desirable to have a computational-complexity scalable video en-
coder that can offer a trade-off between coding efficiency and the
embedded available computational performance.

In video coding systems motion estimation (ME) plays a key
role in removing temporal correlation between video pictures. All
the video standards that have so far emerged, such as H.263 and
MPEG-1/2/4, are based on the ME in the encoding loop [1]. Mean-
while, ME is a very critical module of the encoder since it con-
sumes most of the computing time. There are significant advances
in fast ME techniques in recent years for alleviating the heavy
computation load, such as the new three-step search (NTSS) [2],
the diamond search (DS) [3], the circular zonal search (CZS) [4],
and the predictive algorithm (PA) [5]. However, despite the signif-
icant speedups, ME still consumes the largest amount of computa-
tional resources, especially in real-time video encoding.

Computational-complexity scalable ME has been studied to
further reduce the complexity of fast ME [6][7]. It also provides a
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proper trade-off between motion accuracy and time consumption
such that it can adapt to the available computational resources dy-
namically. In Lengwehasatit’s method [6], a partial-distance met-
ric is used within the motion search process to eliminate unlikely
candidates through a thresholding process that enables computa-
tion scalability. And in Mietens’ method [7], complexity scala-
bility is obtained by scaling the number of the processed motion-
vector (MV) fields and the number of vector evaluations.

Different from previous works, in this paper, we present a
novel ME framework that offers fine-granular computational-com-
plexity scalability '. In the proposed framework, the ME process
is first partitioned into multiple search passes. A priority function
is used to represent the distortion reduction efficiency of each pass.
According to the predicted priority of each MB, computational re-
sources are then allocated effectively in a progressive way. As a
result, the ME process can be stopped at any time with a progres-
sively improved performance, and thus scalability is achievable.
Furthermore, the proposed scheme can be easily integrated with
many existing fast ME algorithms, such as NTSS [2], DS [3], CZS
[4], and PA [5].

The rest of the paper is organized as follows. The new ME
framework is presented in Section 2. In Section 3, the prediction of
the priority for each search pass is discussed. Experimental results
are shown in Section 4 and conclusions are drawn in Section 5.

2. PROPOSED ME FRAMEWORK

In the ME process, a recursive temporal prediction loop is em-
ployed to find the best MV that optimizes the rate-distortion per-
formance. Usually, the prediction loop works as follows: for a
given starting point, first check a number of candidate MVs and
then select one MV from the candidates as the new starting point.
The loop will repeat until either all of the candidate MVs have
been checked or the stop condition is satisfied. Therefore, the ME
process of a certain MB (say, the i*" MB) can be naturally parti-
tioned into multiple search passes: Pass;(1), Pass;(2), ..., and
so on. The j*" pass of the i*" MB, i.e. Pass;(j), would simply
check N;(j) candidate MVs and determine the new starting point
for Pass;(j+1). Fig. 1 illustrates an example of pass partitioning
for the DS algorithm [3], where the ME process is partitioned into
five passes, each having 1, 8, 5, 3, and 4 candidate MVs respec-
tively.

After pass partitioning, the MV prediction of a certain MB is
deployed in a progressive way. If all passes are searched, the en-
coder will get the best MV that is equivalent to that of the conven-

'To simplify terminology, the word scalability refers to fine-granular
computational-complexity scalability hereinafter.
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Figure 1: An example of pass partitioning for the DS algorithm.
Numbered points are those candidate MVs that will be checked in
the corresponding pass.

tional ME schemes. Meanwhile, the encoder also has the freedom
to stop the MV prediction at any of these passes. Moreover, by
selecting passes among a frame of MBs, scalability is achievable.

The simplest way to attain scalability is to select passes ac-
cording to their indexes, that is, from the first pass of all MBs all
the way down to the last pass of all MBs. As a result, all MBs have
the same chance to refine their own MVs. However, its perfor-
mance is not good since the search efficiencies of different passes,
which are of the same pass index but from different MBs, might
be quite different. Fig. 2 clearly demonstrates that different MBs
might have quite different search efficiencies.

Instead of uniformly allocating computational resources to ea-
ch MB, in our proposed framework, a more sophisticated approach
is considered based on the priority of each pass. We measure the
search priority of Pass;(j) by the reduced distortion per comput-
ing time:

_ ADi(j) _ ASAD;(j)

Ni(4) Ni(4)
where AD;(j) and N;(j) denote the distortion reduction and the
number of checked MVs of Pass;(j) respectively. Particularly,
we use the sum of absolute differences (SAD) in this paper to
measure the distortion, and ASAD; (j) is the reduced SAD of the
i*" MB after performing Pass;(j). Furthermore, we use N;(5)
to represent the consumed time since in most ME algorithms the
computing time for each candidate MV is invariant (i.e., the dis-
tortion calculating is of constant complexity). Also note that only
the predicted value of P;(j), denoted as P;(j), can be obtained
in practical systems since AD;(j) cannot be calculated without
finishing Pass;(j). Details of the priority prediction will be dis-
cussed in Section 3.

Now the computational resources can be allocated as follows:
a priority table which contains IV priority elements is first created
for a video frame consisting of N MBs. Each priority element rep-
resents the predicted priority of the current unperformed pass for a
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Figure 2: Distortion vs. number of passes (obtained with DS algo-
rithm for the Foreman (CIF) sequence).

certain MB. Next, the MB which has the largest priority is selected
for one pass of ME. After finishing that pass, the new priority of its
next pass is then predicted and the corresponding priority element
is updated as well. This resource allocation process continues re-
cursively until either the available computing time is consumed or
there is no new pass left for any of the N MBs.

Ideally, the highest resource utilizing efficiency can be attained
by the above method if the priority can be obtained accurately and
the priority function for any MB is convex. However, the priority
function is not always convex in practice. To make our algorithm
more robust, we also take into account the non-convex case when
predicting the priority.

On the other hand, it is critical to limit the implementation
complexity for both priority prediction and table maintenance. In
particular, we have observed that the most time consuming work
for the table maintenance is to find the largest priority element
from the table, especially for a large table. In one of our imple-
mentations, we separate the priority table into several sub-tables
with different priority ranges, and all the MBs belonging to the
largest prioritized sub-table are searched at every resource allo-
cation step. Doing this can significantly reduce complexity, only
with a slight performance loss.

3. PRIORITY PREDICTION

We have discussed a new ME framework in Section 2 that offers
scalability. By smartly determining the priority of each ME search
pass, an encoder can adapt to the limited/varying computational
resources with efficient resource utilization. In this section, we
present an effective and robust priority prediction method which
does not require complex computation.

Usually, in fast ME algorithms, prior search passes are more
likely to catch the optimal MV than the subsequent passes. This is
the main reason that fast ME algorithms can dramatically reduce
complexity. It also implies that the distortion reduction efficiency
of a prior pass is usually greater than that of the subsequent ones.
In other words, from the statistical point of view, the distortion
reduction function for a ME process has a decreasing slope. Based
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Figure 3: Probability density function of P;(j)/P;(j — 1).

on this assumption, the priority of Pass;(j) can be predicted as:

0, ifj=1
aSAD; (j — 1)/N(j), ifj =2
min (BP;(j —1),aSAD;(j — 1)/N;(j)), else.

(2
In the above, only AD;(j) needs to be predicted whereas N;(j)
is explicit before performing Pass;(j). The priority is first set to
infinity because we have no knowledge about each MB at the first
pass of the ME process. Then, the predicted distortion reduction
of the second pass is simply obtained from the current SAD scaled
down by a pre-determined factor . As for the remaining passes,
priority P (7) is related to the actual priority of the previous pass,
P;(j — 1), scaled down by a pre-determined factor 3. Meanwhile,
a minimum value is chosen to ensure that P; (4) is always within a
reasonable range.

Note that in Eqn. (2) we assume the distortion reduction effi-
ciency is convex for any ME process. However, it is not always
convex in practice. Although the above method might still be ro-
bust for many non-convex cases where there is not any inefficient
pass(es) (which has very small priority) before efficient pass(es), it
cannot handle an inefficient pass which will block the search pro-
cess. To make our algorithm more robust, we check the priority
with another item:

Pi(j) =

3

P2G) = mas (P9, FARU 0 )

Ni(j)
where K denotes the number of consecutive inefficient passes prior
to the current pass; and +y is a pre-determined scaling factor. From
above equation, if consecutive inefficient passes are detected for a
certain MB, it is believed that a global or near-global minimum is
found, and thus low priority should be set for that MB.

From our testing, we observed that the performance is not very
sensitive to the choice of parameters v, 3, and . Hence we just
set « and 7y to 1/4 and 1/8 respectively throughout our experi-
ments. As for f3, its value can be calculated by averaging over the

probability density function (PDF) of H ( P () ) :

Pi(j—1)

+oo
8= / x X H(x)dx. 4)
0

To improve robustness, only large P;(7) is used for collecting the
PDF. Moreover, 3 can be either calculated beforehand or updated
frame by frame. Fig. 3 shows one example of the PDF obtained
from the Foreman (CIF) sequence. The corresponding (5 equals
0.95, which is used throughout our experiments. It can also be
seen from Fig. 3 that the non-convex case (i.e. P;(j)/FP;(j —1) >
1) happens very often.

4. EXPERIMENTAL RESULTS

Many experiments have been performed to evaluate extensively
the performance of our proposed framework. The standard test
sequences Foreman, Carphone, and News of CIF resolution at 30
fps are used as our test set. Only the first frame is encoded as an I
frame and all others as P frames.

We implemented our framework upon the MPEG-4 encoder
[8]. The DS algorithm [3] is used for ME with integer motion ac-
curacy. The parameters o, 3, and y are invariant throughout the
experiments. The priority table is split into 16 sub-tables as dis-
cussed in Section 2 in order to reduce the complexity of table main-
tenance. To better evaluate the proposed framework, two other
schemes are also implemented as benchmarks for comparison. In
the first benchmark (named ‘Benchmark 1’) the computational re-
sources are uniformly allocated to different MBs. In the second
benchmark (named ‘Benchmark 2’), we assume that the priority
is known beforehand. It serves as a performance upper bound of
our framework since the priority has to be predicted in practice
(although it can only achieve sub-optimal performance due to the
non-convex cases, we still treat it as the upper bound).

We first evaluate the resulting SAD for a random selected frame
after checking a limited number of MVs. It is clear from Fig. 4
that, without considering the priority, the performance (achieved
by ‘Benchmark 1) is bad. On the contrary, our proposed frame-
work achieves very good performance which is also close to the
upper bound (i.e. ‘Benchmark 2’). Similar performance is also
observed from other frames.

We then evaluate the PSNR values of different sequences un-
der a rate of 1024 kbps. As shown in Fig. 5, the simple ‘Bench-
mark 1’ scheme may suffer more than one dB loss compared with
the performance upper bound. But our proposed framework sig-
nificantly reduces the big gap, especially for the News sequence
where our performance is very close to the upper bound. This
demonstrates the effectiveness of our priority prediction approach
used in the framework. It can also be seen that, by stopping MV
prediction at any point on these curves, the encoder can easily
adapt to the limited/varying computational resources only with a
slight performance loss. This indicates that good embedded avail-
able computational performance is achievable.

5. CONCLUSIONS AND DISCUSSIONS

Computational-complexity scalability is an important yet practi-
cal topic in real-time video encoding. This paper presents a novel
ME framework that offers fine-granular computational-complexity
scalability. By partitioning the ME process into multiple search
passes and prioritizing each pass according to its search efficiency,
computational resources can be efficiently allocated in a progres-
sive manner. Thus good embedded available computational per-
formance is achievable. Good results have been observed in our
experiments.

5475



6.5 T T

—O—- Benchmark 1
©- Benchmark 2
—A— Proposed §

SAD

351

3
0

Num of Checked MVs

Figure 4: SAD vs. number of checked MVs (obtained from the
71t" frame of the Foreman sequence).

Many of the popular fast ME algorithms can be integrated with
the proposed framework, as long as they can be partitioned into
multiple search passes. Also, we believe that the performance of
the new framework could still be improved by using a better prior-
ity prediction approach.
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Figure 5: Comparative evaluation of the proposed framework.
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