Excerpted from Handheld Systems 6.5. © Copyright 1998 by Creative Digital Publishing Inc. unless otherwise noted. All rights reserved.

Ghost Machine

A Distributed Virtual Machine Architecture
for Mobile Java Applications

Sean McDirmid, University of Washington
mcdirmid@cs.washington.edu

Copyright © 1998 by Sean McDirmid. All rights reserved.

“=—=" he Ghost Machine platform lets you run a limited subset of
| | Java on mobile computing devices. Because it supports a true
Java subset, the same programs can also be compiled and run on
any fully-implemented Java platform. The Ghost Machine plat-
form currently supports PalmOS devices such as the PalmPilot. It
has been designed with special consideration given to memory
= = footprint and efficiency.

Mobile computing is increasing in popularity at a rapid pace. The
PalmPilot organizer is almost ubiquitous in the business community.
Microsoft's Windows CE handheld and Palm-size PCs are becoming
more popular and are being marketed heavily. Smaller devices such as
the REX and smart cards are increasing growing in importance and use.

Mobile devices are popular not because they attempt to replace the
traditional desktop computer, but because they extend the reach of the
desktop computer beyond the desktop. They let people view, add and
update information on their desktop computers. Using synchroniza-
tion, mobile devices can maintain data consistency with desktop PCs in
a drop-and-go manner — the user need only drop a device onto a PC
(using a cradle or cable), synchronize and then go about his or her busi-
ness.

Of all the mobile computers currently on the market, PalmOS-
based devices stand out. They have gained widespread acceptance
among both consumer and business users. The PalmOS was designed
specifically for PDAs. It is small, efficient and simple, and most impor-
tantly, it easily synchronizes with desktop computers, making it an ideal
mobile computing platform, despite its constraints. The PalmPilot, for
instance, has only one megabyte of memory for both data and applica-
tions and a modest 17 MHz 32-bit processor.

Development Obstacles

Mobile computing platforms are becoming more open to third-party
application development. Despite many opportunities, however, third
party development is proceeding slowly. This is changing with plat-
forms such as Windows CE and PalmQOS, yet there are still no known
killer third-party applications.

Development for these devices is difficult and different for conven-
tional developers. In most cases the programming languages (C and
C++) are the same but the APIs can be very different. The PalmOS Ap-
plication Programming Interfaces (APIs) are nonstandard; they have are
no desktop equivalent which imposes a substantial learning curve on
desktop developers. Windows CE tries to remedy this problem by using
modified Win32 APIs. They are, however, significantly different from
their Win32 counterparts and the Win32 APIs are complex and difficult
to learn.

Effective application distribution also presents a major obstacle. Un-
like the desktop, which has a few platforms with large installed user
bases, mobile devices are more specialized. In order for an application
to be economical, it may have to target multiple platforms. Even among
Windows CE handhelds, devices with different versions of the OS or
different processor architectures require different binaries. As a result,
the developers have to target and test each device individually.

The Java Application Environment

Java has the potential to solve these problems. The Java Application En-
vironment (JAE) has a virtual machine that executes machine-indepen-
dent bytecodes and a standard set of core classes. Java was originally
conceived for mobile and embedded devices. However, it’s mostly

known for its desktop use. With the advent of the World Wide Web, Ja-
va’s portability and safety have made it the platform of the Internet.

Java programs compile into one or many class files that contain ma-
chine-independent bytecodes. The class file format is defined not only
to ensure portability but also to allow most type checking to be done
statically. This drastically reduces the amount of runtime checking
needed to run Java programs, allowing safe execution with reasonable
performance. With safety, it is possible to build and enforce runtime se-
curity policies.

Security and safety are perhaps more important on mobile devices
than on desktop workstations. Software failure on a mobile device can
lock up the entire operating system. Safety makes crashes due to buggy
application code nearly nonexistent. Security ensures that sensitive in-
formation stored on a mobile device is not read or modified by unau-
thorized applications. It is almost impossible for an end user to ensure
these qualities without substantial and costly hardware assistance, using
code that is compiled and distributed in a native-executable format.

Application programming interface portability is at least as impor-
tant as binary portability. It provides convenient and universal abstrac-
tions for input/output, utilities and various system resources such as the
file system and the clock. Perhaps one of the most important class li-
braries include in the JAE is the Abstract Window Toolkit (AWT). The
AWT lets programs implement portable and consistent user interfaces
across various platforms. An implementation of the JAE is not complete
without an AWT.

PersonalJava

The PersonalJava specification, designed for network-enabled applica-
tions on consumer, home and mobile devices, is a large subset of the
desktop Java specification. It can run most applets written for the desk-
top. The Personaliava Application Environment, a JAE that implements
the PersonalJava specification, requires about two megabytes of read-
only memory and between one half and one megabyte of RAM. It also
requires a 50 MHz 32-bit CPU. PersonalJava is the Java subset that
needs to be supported on mobile devices such as the PalmPilot.

Due to these Personallava resource requirements, there is no suc-
cessful PersonalJava port that runs on any PalmOS device — the Palm-
Pilot has neither the memory nor CPU speed. The Personallava API
may be too large, but the real problem with porting a Java application
environment to the PalmPilot is the monolithic structure of the virtual
machine. If these mobile devices are meant to be extensions of the user’s
desktop machine, why not make the desktop machine an extension of
the mobile device?

The Ghost Machine moves up-front virtual machine services from
the client device running the Java application to a desktop server work-
station. These services are used only once on a class file at the beginning
of its execution. The Ghost Machine is designed to minimize both its
installation and its runtime footprint. Compared to the PersonalJava
Application Environment, the Ghost Machine is targeting a require-
ment of 256 KB of read-only memory and 128 KB of RAM.

The Ghost Machine Architecture

The Ghost Machine architecture is designed for efficiency, minimized
memory footprint, portability and simplicity. To do this, the Ghost Ma-
chine architecture contains distributed and layered components.

Perhaps the most innovative feature of the Ghost Machine is its dis-
tributed design. Since a Java class is verified and processed for running
only once, these are ideal services to move off the client. Since these ser-
vices are only executed up-front, the client device need only be connect-
ed to the server when it is installing a new application, not when the ap-
plication is executing.

The conventional Java virtual machine architecture is monolithic.
All services are performed within one process on one machine. The
class file enters the virtual machine (perhaps from the Internet) and ex-
ecutes as shown in Figure 1.

The Ghost Machine platform, however, can move very resource-in-
tensive up-front services onto a server as shown in Figure 2. Since these
services are no longer present on the client, the client virtual machine is
smaller and need only focus on the class execution.

Handheld Systems 6.5 = Sept/Oct 1998 37

Excerpted from Handheld Systems 6.5. © Copyright 1998 by Creative Digital Publishing Inc. unless otherwise noted. All rights reserved.

The Server

The Ghost Machine server is responsible for the up-front processing of
Java classes and delivering the processed classes to the client. It reduces
the installed memory footprint of the each class while putting the class
into a runtime form that requires the client to do little extra work to
complete the class loading.

The server reduces the memory footprint of a Java class by trans-
forming class type information normally stored as strings into an inte-
gral data type. Type information is used to identify method signatures
like void foo(int x) , field signatures like public String
bar and classes like java.lang.Object during verification and
linking. Storing this information as strings keeps Java classes loosely
connected: a change in one Java class does not necessarily require re-
compiling another class that depends on it. However, after linking, it’s
safe to discard the strings as long as types can be consistently identified
across all installed Java classes.

To do type transformation the Ghost Machine server maps the
string representation to unique and consistent integral data types. This
map is maintained persistently across class installations; the server must
remember what types are already assigned identifiers and the identifier
values. If a type is encountered in another class file the same identifier
must be used. If a type is encountered for the first time, an integral
identifier that is not currently assigned is assigned to the new type.

The constant pool contains entries for all constants needed for exe-
cution, including strings, constant integral data types and instruction
arguments. Each entry in the constant pool is tagged so that during ver-
ification the verifier can ensure that all instructions access the constant
pool properly. After verification the tags can be eliminated. Also, the
constant pool must be reorganized to prepare a class for execution.

These installation optimizations reduce class files in size by about
half in the common case, though reduction varies from class to class.

A Java class needs to be prepared only once for execution. This is
done at the server during the class installation. In order for execution to
be efficient, each frequently-used structure in a class needs to be imme-
diately accessible. Variable-length structures need to be eliminated or
extra data must be added to the Java class with any offsets that are not
automatically known. The constant pool is variable length, but most en-
tries are easily transformed into an array of constant-length structures
(the only entries that cannot be made constant length are strings). The
other inherently variable-length structure in a Java class is the array of
method bytecodes. Extra offset tables are added to the processed class to
accommaodate these structures.

:, Files \

A
e

Venfication

| Lesding

L 3

Conventianal Virtedl Machine

m [{}] m

Operatisg Sy=ten

besktop Conpeter

Figure 1 - Conventional Java virtual machine architecture.

Another important issue in preparing a Java class for execution is
the byte ordering and alignment of integral data types and integral data
type composites. It is important to ensure that the alignment is compat-
ible with the target platform. Also, byte ordering should be swapped if
necessary. For the PalmOS, each integral type must be aligned on a
boundary divisible by its size. The PalmOS is little endian so byte swap-
ping is not necessary.

Finally, after the Java class is processed the server is responsible for
delivering it to the client. This can be done with a constant network
connection, the server can inform a desktop synchronization manager
to install the class on its behalf, or the server might even relay the class
directly to the client using the serial port.

Since type information is transformed from its string format into
identifiers, virtual machine features that require runtime type informa-
tion in string format are difficult to support. This mainly applies to re-
flection, the process of examining the attributes of a class in human-
readable format. Reflection is a part of the PersonalJava specification
and can be supported by sacrificing memory, though the strings needed
to support reflection can be shared among all the installed classes on the
client and can be compressed.

Sometimes client native code needs to access class resources by their
specific type signature. Unfortunately, client native code is usually com-
piled before type strings are assigned their integral identifiers. As a con-
sequence, neither type-specific strings nor integral identifiers can be
embedded in native code. The Ghost Machine solves this problem by
adding a level of indirection to the server’s resource access mechanism.
When the native code is written, the programmer declares the type sig-
natures in an intermediate type list. The programmer then uses the off-
sets into the intermediate type list to refer to the type signatures. After
the signatures are assigned integral types, the server uses the intermedi-
ate type list to generate an intermediate type database. At runtime, this
database is used to resolve the offsets used by the programmer to the
integral identifiers of the types they represent.

The Client

Since the server handles most of the class loading responsibilities, the
client can be quite small. It is still responsible for important services
such as bytecode interpretation and garbage collection. Since the client
services are limited by the client’s computing resources, extra care must
be taken in coding these services efficiently. Portability and maintain-
ability were also strongly considered when the client was designed.

\erfication |

Freceans

Bhast Seruer
besitap

Prelpacec

“Rrore]

D at il
Ghost Elienk Systen

DeskEop

Figure 2 - The Ghost Machine architecture.

38 Handheld Systems 6.5 = Sept/Oct 1998

Excerpted from Handheld Systems 6.5. © Copyright 1998 by Creative Digital Publishing Inc. unless otherwise noted. All rights reserved.

The client software is divided into three layers (see Figure 3). These
layers are tightly coupled during runtime to ensure efficiency. They are
conceptually important only at the source-code level to enable good
portability characteristics.

The Platform Abstraction Layer

The Platform Abstraction Layer (PAL) factors out platform-dependent
services needed by the core virtual machine. The PAL provides only the
minimum necessary to run the virtual machine. Platform-specific func-
tionality added at the third level layers extends the virtual machine to
provide new services.

The PAL is responsible for providing the core virtual machine with
heap-management methods. The heap is a pool of memory borrowed
from the operating system — platform-dependant code is needed to ad-
just the size of the heap, create new heaps and give unused heaps back
to the operating system. The PAL is also responsible for providing the
virtual machine a way to access the classes installed by the server. Final-
ly, the PAL contains the routines needed to boot the virtual machine
and enter the virtual machine event loop.

Portable Core Services

The second layer of the client software provides the core virtual ma-
chine services that are C source code portable across multiple platforms.
The services implemented by this layer are the minimum needed to run
Java bytecodes and provide an interface to native methods.

Automatic memory management is an important aspect of the vir-
tual machine and a core virtual machine service. Data, when allocated
by a Java bytecode, is not reclaimed until it can be proven that it is not
in use. To determine this, the garbage collector sweeps through the
runtime structures for objects that are still alive. Those objects that are
not in the alive set must be dead (though the converse of this statement
is not always true).

The Ghost Machine currently implements a mark-and-sweep algo-
rithm with compaction. When memory allocation fails because the ob-
ject heap is exhausted, the garbage collector is invoked. The mark-and-
sweep algorithm first determines what data is still alive and then all live
data is compacted to the bottom of the object heap. Not only does this
prevent memory fragmentation, it also facilitates quick object allocation
by merely incrementing a top pointer.

The core virtual machine implements an interpreter to execute Java
bytecodes processed by the server. The interpreter loop is a giant switch
statement that mostly executes instructions according to the Java Virtual

FlabFora Ahsbrackion Lagper

Core Portable Seruices

Habive Hethods

ey Classes

Figure 3 - The client architecture.

Machine Specification and lets Java bytecodes interface with the virtual
machine. In addition, an important virtual machine service is interfac-
ing bytecodes with native methods. To do this, the virtual machine ex-
ports a native method interface for people who want to write native
code, providing native code consistent and convenient access to virtual
machine services and the data in the Java class environment.

Classes and Native Methods

Native methods and Java classes comprise the third and final layer. Na-
tive methods let you extend the virtual machine without modifying the
core virtual machine services, in a manner not possible with Java code.
Native methods are suitable for implementing advanced virtual ma-
chine features, such as getting the name of a class and adding platform-
specific features such as getting the time under PalmQOS.

You can also use Java classes to implement virtual machine and plat-
form-specific functionality. By keeping the native methods primitive
and factoring out to Java classes more advanced capabilities using these
primitives, the virtual machine becomes more flexible since Java code is
more flexible than native code. An example of this technique is the Pal-
mOS AWT described in the next section.

The PalmOS Ghost Machine Implementation

PalmOS devices do not have desktop-level computing resources, mak-
ing it a challenge to create software like the Ghost Machine. The Palm-
Pilot is limited to one megabyte of battery-backed RAM that maintains
its contents even when the device is powered down. It uses a Motorola
68K CPU that runs at 17 MHz. Other devices may have more or less
memory but all currently share the same CPU.

The PalmOS also has many input/output constraints that affect the
Ghost Machine AWT implementation. The screen is fairly small and
supports only 160 X 160 pixels. Color depth is limited to two bits and
the PalmOS supports only one bit depth. Input is from a pen device and
text can be entered using Graffiti handwriting recognition.

The PalmOS is designed to be fast and efficient given its resources.
Because of this, there are many memory-model limitations imposed by
the operating system. Applications and databases cannot exceed 64 KB.
The runtime application heap is very limited under PalmOS 2.0 — it
ranges from 14.5 KB (including stack space) to around 40 KB if TCP/IP
is not being used. PalmOS 3.0 is a bit more lenient, allowing around 36
KB for the runtime application heap.

The Server

The server is currently implemented as a Java command line tool. It
transforms groups of Ghost Machine-processed classes into PalmOS
database files for loading using HotSync. The server also keeps track of
its mappings in a persistent text file.

The grouping of classes to be installed in a single database file is lo-
cated in a list file, with an extension of “LIST”. Each class must be listed
by its full internal qualified name: Object ~ becomes java/lang/
Object , not java.lang.Object . Care must be taken to ensure
that the generated database files are not greater than 64 KB.

The server can be invoked on each LIST file this way:

java ghost.classinfo.PilotProducer
<local classpath> <system classpath>
<base name of list file>

The first two arguments are paths to the local and system classes. They
can either be the path to a directory or to an uncompressed zip file. The
local classpath should include application classes as well as ghost classes.
The system classpath should include the classes included with the JDK
1.0.2 distribution.

The base name of the list file is the name of the list file without its
extension. If the server processes the list of class files successfully, it cre-
ates a PalmOS database file with the extension “PDB” and the same base
name as the list file. Installing the PDB file on the PalmOS device over-
writes any other data previously installed using a PDB file generated by
the server with the same name.

Handheld Systems 6.5 = Sept/Oct 1998 39

Excerpted from Handheld Systems 6.5. © Copyright 1998 by Creative Digital Publishing Inc. unless otherwise noted. All rights reserved.

The intermediate type list is created to facilitate installing new native
code. If only Java applications are being installed, the intermediate type
database does not need to be rebuilt. Each intermediate type list is tight-
ly coupled to the native code that depends on it — if the intermediate
type list changes, the native code that depends on it needs to be rebuilt.

In the PalmOS implementation, the intermediate type list is kept in
a file with the extension “NAT". To rebuild it, enter the following:

java ghost.classinfo.PilotProducer —s
<local classpath> <system classpath>
<base name of nat file>

The resulting file has the extension“_MAP.PDB” added to the base
name of the NAT file. This file should be reinstalled on the PalmOS de-
vice. Currently, only one NAT file, SYSTEM.NAT, is supported in the
virtual machine. Both native methods and core virtual machine services
use this when they need to access type-specific resources from Java
classes. When installable native code becomes more common, support
for multiple intermediate type databases will be added.

The Client

The only client layers that require PalmOS platform-specific source
code are the PAL and the installable layer that contains Java classes and
native methods. When possible, platform-specific functionality is ex-
pressed with Java classes using native methods only when necessary.
Heap management and the AWT implementation are especially com-
plex and consume a majority of the PalmOS Ghost Machine.

As mentioned before, PalmOS is very restrictive about how much
heap space an application is allowed. Typically, there is more memory
available on a PalmOS device, it just cannot be allocated directly to the
virtual machine. To get around this, the Ghost Machine completely by-
passes the application heap for dynamic memory requests and instead
uses heaps reserved for storage. These heaps are limited to 32 KB in size
and only one heap is allocated for garbage-collected objects. Unlike the
application heap, storage heaps are not directly enabled for writing; a
system semaphore must be obtained when writing to a storage heap. In
addition, this semaphore must be released before a PalmOS system call
is made. This restriction must be taken into account when writing Pal-
mOS-specific native methods.

Abstract Windowing Toolkit

NS

Palm OS Peers

L

Palm OS Ul Data Formats

-
Java

[Switch To Form] [Create Form J

Figure 4 - The AWT implementation.

The AWT

Like the client virtual machine architecture, the PalmOS implementa-
tion of the AWT is layered (see Figure 4). To implement AVT on a new
device, an abstract factory known as a toolkit must be implemented.
This toolkit has implementations of both AWT peers and graphics. The
graphics implementation contains methods for natively accessing rou-
tines to draw directly to its screen. The peers implementation, however,
is very unconventional — interfaces directly with the PalmOS native user
interface support.

The PalmOS user interface is built upon the concept of a form. Each
form is composed of widgets such as controls, labels and fields. The data
of each widget and its form are stored into a resource database. WWhen
creating a user interface using conventional PalmOS programming tools
such as Metrowerks’ Constructor and GNU tool’s PiLRC, these databas-
es are created when the application is compiled and linked into the final
PalmOS executable. This makes the user interface static.

In aJava application, AWT objects are created and added to enclos-
ing containers at runtime. Instead of forms, frame containers which can
contain both sub containers and widgets are used. It’s almost impossible
to statically determine the user interface of a Java application. How can
the dynamic AWT be implemented on the static PalmOS user interface?

Because user-interface objects are merely databases, they can be gen-
erated on the client on the fly and attached to application as resources.
When the frame components change, the database must be recreated.
This makes dynamic AWT features expensive but at least possible.

The data formats of the PalmOS user-interface widgets are repre-
sented in Java classes. The peers need only create the proper data for-
mats for the database; when the frame is shown the database is made
into a resource and displayed.

Installation

The Ghost Machine binary distribution is available at www.cs.wash-
ington.edu/homes/mcdirmid/ghost. This distribution contains both the
server and precompiled client. You can use it to install new applications.
It can be uncompressed using either WinZip or standard UNIX tools.
Extract the distribution to its own directory.

The Client

To install the Ghost Machine client on a PalmOS device, the device
should have at least 256 KB free. Install the single PRC file found in the
distribution’s root directory. Then install all PDB files found in the
CLASSES subdirectory. Check the Memory control-panel to ensure that
all components are correctly installed. The client should use around 178
KB of memory.

The Demo Programs
Three simple demo programs are installed by default (the source code
for these demos is included with the Ghost Machine distribution).

TicTacToe, shown in Figure 5 on the next page, is a very simple im-
plementation of the game of the same name. This is the first demo run
under the Ghost Machine in December of 1997. It is almost impossible
to beat this game.

Draw, shown in Figure 6, demonstrates a few user interface widgets
but mainly demonstrates a simple drawing tool. The graphics imple-
mentation is slow and unoptimized so the demo is a little shaky. Touch
the stylus in the middle of the screen then drag it halfway across the
screen, lift the stylus from the screen and repeat. To clear the screen,
press the Reset button.

Route, shown in Figure 7, demonstrates user-interface widgets creat-
ed with AWT. Because of the complex layout, this program takes longer
to load than the other demos because it builds a static database for the
form to display. The application stores records in a vector and lets you
review those records. Each record has name, phone, street, city and state
fields. The Insert button creates a record using the current information
in the fields and inserts it into a vector. The Clear button clears all fields
(but does not remove a record if applicable). The Next and Previous
buttons cycle through the records in the vector.

A special feature you can access using the menu bar is auto complete
— the Route/Query Record menu command attempts to match the cur-

40 Handheld Systems 6.5 = Sept/Oct 1998

Excerpted from Handheld Systems 6.5. © Copyright 1998 by Creative Digital Publishing Inc. unless otherwise noted. All rights reserved.

rent information in the fields with a record in the vector. For example, if
you enter a record with name “Mary” and phone “123-4567", merely en-
tering “ma” into the name field and selecting Query Record displays the
record on the screen if no other records before it in the vector match.

Route/Query City also auto completes a city based on the state en-
tered. For example, if you select Washington as the state and enter “sp”
entered in the city field, Query Record” causes “Spokane” to appear in
the city field. Auto complete is a useful feature for applications running
on the PalmPilot since complete text entry can be time consuming.

The Server
To install the Ghost Machine Server, you need both JDK 1.0.2 (archived
at Sun’s Java site) and JDK 1.1. The JDK 1.1 must be in your PATH envi-
ronment and JDK 1.0.2 must not. Also, the environment variable
JDK102 must be set to the directory of the JDK 1.0.2 installation.

Once you install the server you can install new applications. After
setting the environment variables test the installation by rebuilding a list
file. While in the classes directory, execute the following command:

java ghost.classinfo.PilotProducer .
9%JDK102%l/lib/classes.zip apps

This rebuilds the APPS.PDB file. The command should not generate
any output messages. Reinstall the file and test the demo applications to
ensure that the server is installed correctly.

New applications can be installed onto the Ghost Machine Client
using the Ghost Machine Server. The head class of a Ghost Machine ap-
plication must be a subclass of java.applet.Applet (this is akin
to executing in a web browser). The applet interface is convenient since
it has well defined lifetime (create ,init ,start ,stop ,de -
stroy , finalize). Also, an applet is not expected to create its own
window to run in. Rather it runs in the space allocated by the container
application. The applet interface simplifies the logistics of installing an
application on the Ghost Machine.

To install an application on the Ghost Machine, the Java classes that
make up the application must be located relative to the classes directory.
If the classes are located in an anonymous package, this is the classes di-
rectory. The head class of the application must be listed in the apps list
file. The apps list file is special since the driver application considers all
classes in the generated PDB file eligible for execution and lists them in
the application selector. Other classes should be listed in the AUXAPPS
list file since the user should not consider them for direct execution.

After the classes are added to the list files, execute the following
command while in the classes directory:

java ghost.classinfo.PilotProducer .
9%JDK102%l/lib/classes.zip apps auxapps

Reinstall the generated PDB files onto the device. The newly installed
application should appear in the application selector by its name in the
order that it appears in the apps list file.

Deinstallation and System Crashes

It is always possible that the Ghost Machine may crash the PalmOS de-
vice it is running on. Since the PalmOS does not protect the operating
system from its applications, this can lock up your device. First, power-
cycle it. If this doesn’'t work, do a hard reset to prevent the it from re-
maining locked up until its batteries are dead. Doing a hard reset by
sticking a paper clip in a small hole located on the back of the device
causes you to lose all your data. When experimenting with the Ghost
Machine, HotSync frequently to protect data.

Supported Features

Although it’s possible to implement all of these Java features eventually,
long and floating point arithmetic and finalizers have not yet been im-
plemented. The PalmOS does not expose a native thread interface and
green threads, threads that are emulated and not natively, will be hard to
do reliably because of realtime constraints of the PalmOS event queue.

APIs

The Java 1.0.2 version of the APIs was chosen because it has a small
memory footprint in its core libraries (about 300 KB compared to the
1.5 MB of the core Java 1.1 libraries). Almost a third of the 1.1 library
bloat is devoted to internationalization. The java.text.* package
is over 500 KB and java.lang.Character is 139 KB (it was only
about 15 KB in Java 1.0.2). Even after processing, this is too large to fit
onto a PalmOS device. Java 1.1 is just simply too large in its current im-
plementation.

Most AWT features are or will eventually be supported. The follow-
ing components are partially functional now: Frame , Canvas ,
Window, Panel , Button , TextField , Label , Choice ,
Checkbox , MenuBar , Menu and Menultem . Only a few routines
to draw lines, circles and strings are supported in the graphics imple-
mentation.

Some 1.0.2 APIs do not work because the native methods they de-
pend on have not been implemented. These include file system accesses,
networking, dynamic class loading, native arithmetic functions, most
java.lang.Runtime methods and the security manager.

Example Application
Here’s a basic “Hello World” for the Ghost Machine environment on the
Palm Pilot. The class is rather simple:

.Ghnst hachine

Man| query record
Phone: 123-45&7
Street: 321 BRH Mth

City: Seattle
State: - Wazhington
[Mext I Previous]

A<

N

Inzert I Clear J

=86, 30=

Figure 5 - TicTacToe.

Figure 6 - Draw.

Figure 7 - The Route program.

Handheld Systems 6.5 = Sept/Oct 1998 41

Excerpted from Handheld Systems 6.5. © Copyright 1998 by Creative Digital Publishing Inc. unless otherwise noted. All rights reserved.

import java.awt.;
public class HelloWorld extends java.applet.Applet {

public void init() {
setLayout(new GridLayout(0, 1));
add(new Label("Hello World"));
add(new Label("hELLO wORLD"));
add(new Button("EXIT"));

}

public boolean action(Event evt, Object what) {
if ((evt.target instanceof Button) &&
(((String) evt.arg).compareTo("EXIT") == 0)) {
System.exit(0);
return true;

return false;

13

The applet places three user interface objects in one column using a
grid layout (see Figure 8). The first two rows are labels. The last row is
an EXIT button. When the EXIT button is pressed the application exits.
This applet, when compiled, executes in a web browser or from within
appletviewer.

To load this applet in a PalImOS device insert a line with only “Hel-
lowWorld” into the APPS.LIST file in the classes directory. Recreate the
APPS.PDB file by running:

java ghost.classinfo.PilotProducer .
9%JDK102%l/lib/classes.zip apps

Install the new APPS.PDB file onto the PalmPilot, overwriting the pre-
vious one. HelloWorld is now ready for execution. Experiment adding
text fields, buttons and checkboxes to the applet.

Conclusion

The Ghost Machine architecture was created to let Java applications run
on mobile computers. The current implementation is a proof-of-con-
cept that targets the PalmQOS platform. It is very much a work in
progress with the potential to grow into a thriving platform that turns
mobile devices into first-class platforms for third party applications.

High-priority Features

Currently there is no mechanism in the Java API for a Java application
on a client to interface with desktop synchronization. This is absolutely
necessary if Java is to become a premier mobile computing platform.
Java applications running on desktops should be able to synchronize
data with Java applications running on mobile devices under a model
similar to conduits and HotSync technology. With that functionality in
place, the Ghost Machine platform will have implemented true end-to-

-Ghnst Machine

Hello World
hELLG wORLD

E-IT

Figure 8 - Hello World.

end functionality and will be ready for useful applications.

In order to upgrade to Java 1.1+, a version of the class libraries will
have to be found or built. It must be scalable in memory footprint
down to around 400 KB of unprocessed class files (which would be
about 200 KB after processed by the server). Some features that are core
to Java 1.1 are hard to implement given the dependencies on the intro-
spection of a class yielding the original string types for attributes. This
includes reflection, beans and RMI. These features will be nontrivial,
though not impossible, to support. By including the server mappings of
type strings to integral identifiers on the client, the client could support
reflection at an expense of losing space. Such a database on the client
would be able to take advantage of representing all classes installed on
the client (no redundant information) and compression (since this in-
formation may not be used often).

The performance of a virtual machine relates to speed, response
time and memory footprint among other things. Improving the perfor-
mance of the Ghost Machine platform is an ongoing effort. There are
many parts of the Ghost Machine that either need retuning or redesign.
There are a few modules where most of the gains can be directly made.
Garbage collection which currently uses a mark, sweep and compact
algorithm is responsible for most runtime pauses. This algorithm is
simple to implement but primitive compared to current garbage collec-
tion research. Switching to either a modern incremental or generational
technique will go a far towards improving performance as experienced
by the user. Also, reclaiming memory faster and efficiently can decrease
the runtime memory footprint of the virtual machine.

Bytecode interpretation is slow, an order of magnitude slower than
running native code. The first environment that allowed developer’s to
write PalmOS applications in Java, Jump, used native compilation to
bring performance to an adequate level. The Ghost Machine platform
currently uses an interpreter. With GUI-intensive applications, the lack
of speed goes unnoticed because most cycles are devoted to native
screen refreshes and waiting for user input. However, for more com-
pute- intensive applications the interpreter is perceived as too slow.

It's possible to compile the bytecodes into machine code using the
heavy-duty resources of the desktop workstation. Ideas for integrating
Jump into the server or creating a bytecode-to-machine-code compiler
from scratch are other options. There is also a question about the space
efficiency of machine code as opposed to bytecode. The overall memory
footprint of the virtual machine is a sensitive resource and every trade-
off needs to be chosen wisely.

The Ghost Machine architecture is not exclusively designed for Pal-
mOS devices, but for the whole class of mobile devices. Porting to Win-
dows CE and the Newton OS should be relatively easy (there is already
an effort underway to port the Ghost Machine to the Newton). The
Ghost Machine architecture should also be able to target smaller mobile
devices such as smart cards and pagers. The question “How small is too
small?” remains unanswered.

Low Priority Features

Core API support should be finished eventually. The PalmOS does sup-
port a pseudo file system in memory so implementing the Java file sys-
tem APIs is possible and should be done. The PalmOS also includes a
TCP/IP stack and you can attach a wireless modem to a PalmOS device
for constant connectivity. Full support should eventually be added for
long and floating-point arithmetic. This advanced arithmetic must be
completely emulated and floating-point must operate according to the
IEEE 754 standard.

Open Source Code

The Ghost Machine source code is available for download under a GPL
license. It is ideal for those who want to hack a virtual machine and also
for those who want to see the Ghost Machine evolve. Feature and code
contributions are greatly encouraged. Please contact the author at
mcdirmid@cs.washington.edu for more information. [

42 Handheld Systems 6.5 = Sept/Oct 1998

