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Abstract
We present YinYang, a language designed for enhanced code
completion. So that type declarations do not obscure com-
pletions, YinYang supports typeless programming as an ag-
gressive form of type inference that works well with object-
oriented features like subtyping. YinYang forgoes traditional
set-based types, instead tracking usage requirements in mod-
ular term assignment graphs where necessary usage require-
ments flow backward toward assignees to provide semantic
feedback and a basis to form objects. Programs then lack
type declarations but can still be separately compiled to sup-
port local reasoning on semantic feedback like type errors.
This paper describes our design, trade-offs made for feasi-
bility, and an implementation.

1. Introduction
Although types enable code completion, type declarations
obscure completions by restricting how objects can be used:
if the programmer does not know what type to select or
selects the wrong type, they will miss completions useful
in forming their program. We discussed in [15] how infer-
ence can avoid this problem by automatically defining ob-
ject types based on how the objects will be used. That ap-
proach is refined in this paper into what we call typeless
programming as an aggressive form of type inference where
programs completely lack type declarations. Such a goal has
yet to be achieved even in universal type inferred languages
like OCaml [12] and Haskell [8] where type inference does
not work very well across data abstractions.

Typeless programming forgoes computing traditional set-
based types to instead compute term usage requirements.
Consider how the assignment “X = Y” typically restricts us-
age of the assigned term X by generalizing X’s type to con-
tain Y’s type [1, 22–25]. Typing instead flows backwards
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in our approach: the assignee term Y’s requirements, such as
classes needed for use, are expanded by X’s requirements.
Traditional types describe what terms provide for use, while
we prescribe term needs based on usage to eliminate type
declarations. Object definitions are then inferred from usage,
leading to the more flexible code completion as in [15].

Beyond better code completion, we also found that by
avoiding types, subtype, parametric, and data polymorphism
are no longer explicit concerns of this type system or the
programmer using it. The “type” of a compilation unit is a
graph of its assignments between terms that can be encapsu-
lated into signatures to enable separate compilation [4] for
efficiency and local reasoning about semantic feedback. A
compilation unit’s signature can then be applied generically
by clients without re-processing the unit or global analysis.

Type information in this approach cannot be used alone to
resolve overloaded names. However, rather than have types
drive symbol selection, symbol selection drives object type
definitions so inference can be used more widely. Name
ambiguity can be resolved as needed using context and type-
informed search-like interactive code completion [15].

This paper describes our type system as realized in the
YinYang language [15]. Although our theory is undevel-
oped, we show through example how YinYang is a new and
interesting option in the type system design space. Term
usage requirements in YinYang are extensions to mixin-
like [3, 19] traits [6, 21] that are more flexible than classes;
trait extensions are then propagated toward assignee terms
in unit assignment graphs. YinYang’s design involves many
challenges that we address in successive sections:

- Assigning encapsulated objects to visible terms freezes
them so that they cannot be expanded outside of their units
(Section 2);

- Aliasing relationships between object slots, like fields, are
accurately encoded in the assignment graph to capture co-
variant restrictions; also, our support for recursively nested
terms is safe but not well developed (Section 3);

- Tension between polymorphism, encapsulation, and over-
riding limits YinYang to one level of genericity: traits and
top-level methods are generic, while trait methods share
their type variables with containing objects (Section 4);
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- YinYang’s lack of type-based name resolution, computed
types, and explicit signatures presents many usability chal-
lenges that are handled by the editor (Section 5); and

- YinYang is a live programming language [16] and so re-
quires an incremental implementation (Section 6).

Section 7 describes related work and Section 8 concludes.

2. Basics
We begin by describing traits and basic inference of trait
extensions; the examples used in this section are simplistic
since we avoid discussing fields and slots until Section 3.
Traits in YinYang are similar to those in Scala [21] in that,
unlike classes, they support a form of mixin-style [3, 19]
linearized multiple inheritance. Inference along assignments
propagates trait extensions required for each object, which
are seeded by term method invocations; consider:
trait Duck:
| def Waddle(): ...
...
var A = new() # allocate . Duck
A.Waddle() # seed A . Duck

YinYang is based on Python-like syntax [30] where inden-
tation determines block structure; we precede indented lines
with lightly shaded bars that indicate nesting depth. The #

character precedes Python-like comments in YinYang that
we use to document type system results, where . indicates
extension. A “new” expression creates a new object whose
trait extensions will be inferred; e.g. the new object of this
example assigned to the A variable extends the Duck trait be-
cause Waddle is called on A. What traits an object extends
then depends on what it could do, reversing the more tradi-
tional role of extension in restricting usage. Because they are
mixins, traits support fine-grained functionality; consider:
trait Bordered:
| var Thickness
trait Button:
| def Pressed(): ...
...
var A = new() # allocate . Button . Bordered
if A.Pressed(): # seed A . Button
| A.Thickness = 10 # seed A . Bordered

Propagation in YinYang is flow, path, and context insensi-
tive: only the assignment topology is relevant and condition
or assignment order are ignored. The object assigned to the A

variable extends the Button trait because the Pressed method
is called on it, while it extends the Bordered trait because its
Thickness field is assigned. With inference, programmers can
ignore the traits and focus on calling methods that they dis-
cover through completion menus [15]. Library implementers
can then factor functionality into many small traits without
overwhelming programmers with lots of little traits.

Because traits support multiple inheritance and are ex-
tended on demand, it might appear that YinYang lacks type
errors. However, many combinations of trait extensions are
obviously not sensical; e.g. an object that extends both Int

and String. A type error occurs in YinYang when two traits
extended by a term are not “compatible” with each other;
e.g. if they implement the same abstract method. Consider:

trait Animal:
| abstract def AnimalSound()
trait Duck:
| def Waddle(): ...
| implement def AnimalSound():
| return ``Quack'' # seed this . Animal
trait Cat:
| def Purr(): ...
| implement def AnimalSound():
| return ``Meow'' # seed this . Animal
...
var A = new()
A.Waddle() # infer A . Duck
A.Purr() # infer A . Cat

con�ict: Duck cannot be Cat

The Duck and Cat traits are incompatible because they each
implement the abstract AnimalSound method defined in the
Animal trait. The last assignment of the example then leads to
the type error con�ict: Duck cannot be Cat , meaning incompat-
ible extensions cannot be satisfied by any object assigned to
the A variable. Incompatibility is also specified for primitives
like the Int and String traits whose representations conflict.

Code completion presents all methods to programmers
that can be invoked without error on an object; e.g. after
Waddle is called on A, Purr will no longer be visible in A’s
completion menu. This can lead to many options in code
completion menus, which is beyond the scope of this paper
and we handle using probability in [15].

Term Assignment Graph
A term assignment graph is built during compilation to prop-
agate trait extensions as inference results. The vertices A

(overbar indicates set) of compilation unit U’s implementa-
tion (term assignment) graph G(U) = (A . T,B = C) are the
terms used in U’s construction, such as the parameters and
return value of methods, local and temporary variables, new
objects, and a trait’s this variable; Section 3 will adds to this
nested terms that refer to slots. The edges of G(U) are assign-
ments B = C between term vertices in A. G(U) also defines
extensions . T for each term A, which extends all traits in T.

All typeful operations in YinYang are translated into as-
signments and extensions according to their semantics to
form G(U); e.g. an assignment A = B evaluates to one edge; a
C-style condition expression “A ? B : C” evaluates to a tem-
porary variable term D where D = B and D = C where A is
also seeded to extend the Bool trait (A . Bool); and the call
C.Waddle() seeds C to extend Duck (C . Duck).

Unit type checking propagates trait extensions from as-
signed (LHS) terms to assignee (RHS) terms; i.e.
D . S ∈ A . T E . R ∈ A . T D = E ∈ B = C

G(U) = (A . T,B = C) ` S ⊆ R

This is basically a form of iterative data-flow analysis. Con-
sider an example of propagation:
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trait Wild:
| def DoWildThing(): ...
...
var A = new() # allocate . Wild . Cat
var B = new() # allocate . Wild . Duck
var D = A # infer A . Cat . Wild
var C = D # infer D . Wild
C = B # infer B . Wild
B.Waddle() # seed B . Duck
C.DoWildThing() # seed C . Wild
D.Purr() # seed D . Cat

The Wild trait, which defines the DoWildThing method, is
seeded on the C variable and propagated to the B, D, and
A variables. The Cat trait is seeded at D and propagates to A;
so the code allocates a wild cat, assigned to A, and a wild
duck, assigned to B.

Encapsulation
Compilation units in YinYang are either top-level methods
or traits. Each compilation unit U has a signature H(U) that
encapsulates its implementation graph G(U) by: (a) pruning
all hidden term vertices of U and the extensions and edges
that refer to them; (b) adding assignments to preserve indi-
rect assignment relationships between visible terms that oc-
cur through hidden terms; and (c) flagging visible terms that
are assigned from hidden object definitions as frozen. Units
are then instantiated by other client units via these signatures
as a form of linking in separate compilation [4].

The “root” terms that remain visible in the signature of
a unit are arguments and return value for top-level methods,
or the this parameter of a trait. Other terms represent field
or other slot accesses, and have more complex visibilities
that we discuss in Section 3. All terms encoding temporary
and local variables, constants, defined objects, and so on, are
elided from a unit’s signature graph. All edges that refer to
hidden terms are also elided from a unit’s signature graph,
while new edges are added to the signature as necessary so
indirect assignments are preserved between visible terms.
For now we will only consider encapsulation of top-level
methods; trait encapsulation is more complex and will be
described more fully in Section 4; consider:
def Foo(A,B,C):
| var V = A
| var W = B
| if true: V = B
| if C: W = V
| return W

Foo’s signature hides the V and W local variables, and assigns
A and B to return to preserve their implementation assignment
relationships; i.e.

Terms here are rounded rectangles; and assignments are
edges from assigned to assignee terms in direction of prop-
agation. Dashed (and blue) nodes and edges are hidden by
Foo’s unit signature, and dotted (and red) assignment edges
are added to Foo’s unit signature to preserve indirect assign-
ment relationship between visible terms.

Units are instantiated by splicing their signature graphs
into client unit implementation graphs, substituting their vis-
ible root terms for binding terms of the client unit; consider:

var D = new() # allocate new1 . Wild . Duck
var E = new() # allocate new2 . Wild . Cat
var F = Foo(D, E, false) # T1 used for return
D.Waddle() # seed D . Duck
E.Purr() # seed E . Cat
F.DoWildThing() # seed F . Wild

The Foo method of the previous example is instantiated here
with arguments D, E, and false bound to the original A, B, and
C arguments. Additionally, a temporary term (T1) is bound
to Foo’s return value. Instantiation copies assignment edges
and required trait extensions splicing in bound terms of the
client unit for original root terms of the signature; i.e.:

Dotted (and red) edges are copied in on application of the
Foo method; traits are ellipses; and trait extensions are edges
from extended traits to extending terms. In this graph, D

and E are assigned to T1 because A and B are assigned
to RET in the signature of Foo; the false constant is also
required to extend Bool because of the instantiation, even if
redundant in this case. Because edges are copied, the Foo call
is polymorphic so the Wild trait extension propagates from F

to D and E through T1.
Local objects cannot support further inferred trait exten-

sions outside of their defining units; consider:

def Bar():
| var V = new() # allocate . Duck
| V.Waddle()
| return V
var W = Bar() # infer T2 . Wild, fails

frozen: cannot be Wild
W.DoWildThing() # seed W . Wild (causes error on T2)
W.Waddle() # seed W . Duck (without error)

Bar returns an object that is absolutely just a Duck; clients of
Bar cannot cause it to extend additional traits as its definition
cannot be updated with additional configuration details such
as constructor parameters. A visible term that a local object
is assigned to, directly or indirectly, becomes frozen in its
unit signature, and their extensions will be restricted by what
the local object is already inferred to extend. In our example,
Bar’s return value is frozen to extend only what is inferred
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by the DoDuckThing call (Duck and Animal). Frozen signature
term extensions are then passed to binding terms from the
client unit, so in this example, the temporary term (T2) that
is bound to Bar’s return value is frozen to be just Duck and
Animal, and inferring Wild causes a type error.

Frozen term trait restrictions are intersected if multiple
objects are assigned to the same visible term. Also, terms
frozen on unit instantiation are considered like objects if they
are hidden on further encapsulation. Finally, all constants
except null are pre-frozen with fixed trait extensions.

3. Slots
Without object fields, we can hardly use YinYang to encode
interesting programs. YinYang supports fields as slots that
fully participate in type inference; for reasons presented
in Section 4, trait method arguments and return values are
also encoded as slots. The type inference of slots is also
essential to expressing generic collections like lists and maps
as YinYang does not have explicit type variables. Consider
the definition of a simple generic Cell trait:

trait Cell:
| var ValC
...
var C = new(), X = new(), Y = new()

C.ValC = X # infer X . Wild, fail infer X . Cat

con�ict: Duck cannot be Cat
C.ValC = Y # infer Y . Wild . Cat
C.ValC.DoWildThing() # seed C.ValC . Wild
X.Waddle() # seed X . Duck
C.ValC.Purr() # seed C.ValC . Cat

When a trait is instantiated, all of its visible nested terms are
spliced into the extending object; e.g. when C extends Cell in
this example, C.ValC is a unique nested term in the assign-
ment graph. Inference affects nested terms that access slots
as it does root terms, so the nested term C.ValC, which ac-
cesses field ValC on root term C, will propagate the Wild trait
extension to both X and Y. Likewise, the Cat trait extension
is propagated to both X and Y given the call of Purr on C.ValC,
but a type error occurs on X, which also extends Duck. This
type error is reported on the assignment of X to C.ValC, which
is where the incompatibility is detected.

Programs consist of multiple objects whose collective
structure can determine the capabilities of each; e.g. a Win-
dows UI [20] FrameworkElement object can be manually posi-
tion when it is in a Canvas. However, no type relationship in
C# exists between an element object and the Panel object that
contains it: setting an object position that is not contained in
a Canvas object is silently ignored! YinYang improves on this
with reasoning about graphs of objects; consider:

var P = new(), W = new()
P.AddP(W) # L1: seed P . Panel, infer W . Widget
W.SetPos((10,10)) # L2: seed W . WidgetInC, infer P . Canvas
W.PutLeft() # L3: seed W . WidgetInD, infer P . Dock (fails)

con�ict: Canvas cannot be Dock in ParentW

trait Panel:
| def AddP(W): W.ParentW = this # seed W . Widget
| abstract def LayoutP()
trait Canvas:
| implement def LayoutP(): ... # seed this . Panel
| def MovedC(W): ...
trait Widget:
| var ParentW
trait WidgetInC:
| def SetPos(P):
| | this.ParentW. # seed this . Widget
| | | MovedC(this) # seed this.ParentW . Canvas
trait Dock:
| implement def LayoutP(): ... # seed this . Panel
| def InvalidateD(W): ...
trait WidgetInD:
| def PutLeft():
| | this.ParentW. # seed this . Widget
| | | InvalidateD(this) # seed this.ParentW . Dock

Figure 1: Traits that encode widget/panel relationships.

This example uses UI traits defined in Figure 1. Variables W

and P respectively extend the Widget and Panel traits given
the AddP call (L1), which also assigns P to W.ParentW. As
a result, the SetPos call (L2) causes W to extend WidgetInC,
and also causes P to extend Canvas because of the aforemen-
tioned assignment edge. The new object assigned to P will
then be allocated as a Canvas without further programmer in-
tervention. As with root terms, the trait incompatibilities of
slotted terms are detected as soon as connections in the as-
signment graph cause the error to manifest. The SetLeft call
(L3) infers that P extends the Dock trait, which is incompat-
ible with the previous Canvas extension as both traits imple-
ment Panel’s LayoutP method. An error is then flagged at L3
on the ParentW field of W, which is the node in the imple-
mentation graph where the incompatibility is detected. The
ParentW slot must be mentioned in the error message since it
is not specified in the term where the error is detected.

Covariance
We next address how aliasing between nested terms is han-
dled, which is not very straightforward. Consider code that
uses the Cell trait defined at the start of this section:
var A = new(), B = new()
var D
D = A
D = B
...
A.ValC.Waddle() # seed A . Cell, A.ValC . Duck
B.ValC.Purr() # seed B . Cell, B.ValC . Cat
D.ValC.DoWildThing() # seed D . Cell, C.ValC . Wild
D.ValC = new()

con�ict: Duck cannot be Cat

Because A and B are assigned to D, D.ValC has an alias re-
lationship with A.ValC and B.ValC. Accordingly, trait exten-
sions of D.ValC are propagated to both; i.e. A.ValC is a Wild

Duck and B.ValC is a Wild Cat. However, aliasing is not just
a unidirectional relationship: a new object cannot be safely
assigned to D.ValC because such an object would extend Duck
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when assigned to A.ValC and would extend Cat when as-
signed to B.ValC, which are incompatible. In fact, ValC has
become covariant in D: it can be used but not assigned. The
term assignment graph as described in Section 2 appears in-
capable of encoding such covariance.

Our solution to this problem relies on the observation that
even though D.ValC is an alias of A.ValC and B.ValC, A.ValC
and B.ValC themselves lack an aliasing relationship because
D cannot be assigned from A and B at the same time. We
then leverage this observation by encoding each term in the
assignment graph as two nodes: a hard node that tracks real
trait extensions for terms as before, and a soft node that tracks
latent trait extensions that only turn into hard extensions on
an explicit assignment to the term. On an explicit assignment
X = Y and for any slot S that is directly accessible in both X

and Y, the following 5 kinds of assignment edges are added
between hard and soft nodes in the term assignment graph;
we use→ and← to indicate propagation direction of :
1: X_hard → Y_hard # as before
2: X_soft → Y_hard # propagate soft reqs as hard reqs
3: X.S_hard → Y.S_hard # propagate hard reqs, ignore soft reqs
4: X.S_soft ← Y.S_hard # propagate in reverse both hard and
5: X.S_soft ← Y.S_soft # soft reqs as soft reqs

The first two edges deal with explicitly assigned terms. Edge
1 is expected as assignment should always propagate hard
trait extensions to the assignee. Edge 2 goes further: any
soft trait extensions in the assigned term become hard trait
extensions in the assignee term on the intuition that aliasing
causes propagation on assignment, and does not otherwise
interfere with usage. Edges 3–5 are duplicated for each slot
S accessible in both X and Y; a slot S defined in trait T is
accessible from term C if C . T (where . is a hard extension).
Edge 3 deals with standard propagation of hard constraints;
soft extensions are not propagated from X.S to Y.S as this
would capture soft extensions from peer aliases that we
observe are unrelated. Finally, edges 4 and 5 propagate the
hard and soft extensions of Y.S in reverse to X.S as soft
extensions, setting up a propagation that is triggered on
explicit assignment to X.S via edge 2.

Consider the assignment graph of our example in Figure 2
where the Duck and Cat traits are propagated (dotted red left-
to-right edges) via D.ValC’s soft nodes to become hard ex-
tensions of the new object, leading to the detected incompat-
ibility. On the other hand, D.ValC can still propagate (dashed
blue right-to-left edges) the Wild trait to A.ValC and B.ValC

without error.
Edges are added for an explicit assignment between sub-

slots to mirror those of their parent terms; e.g. given X.S_soft

← Y.S_hard and a R slot accessible in X.S and Y.S, X.S.R_soft
← Y.S.R_hard is added to the graph. However, such implicit
edges are problematic with respect to recursive terms.

Recursion
YinYang does not have a problem per se with recursion:
term assignment graphs can have cycles while methods can

Figure 2: Soft/hard assignment graph for our example; different
ports are indicated for each term’s hard and soft node.

call each other without restriction. However, recursion that
results in terms of infinite lengths are a problem; consider:
def Explode(C): Explode(C.ValC)

The recursive non-nonsensical top-level Explode method re-
quires that C is a cell of cell of cell, and so on. The problem
is not the recursive instantiation of Explode, but the fact that
an infinite term C.ValC.ValC... can be derived at all. Even sen-
sible basic looping code can be problematic; consider:
trait LinkedNode::
| var ValLN
| var NextLN
...
def DoAllDucks(H):
| A = H
| while A != null:
| | A.ValLN.Waddle()
| | A = A.NextLN

The DoAllDucks method walks a linked list starting from its
H argument, calling Waddle on each element. YinYang would
derive infinite H.NextLN term if terms could be nested indef-
initely, which it does not for this reason. Instead, operations
that would derive a nested term that mentions the same slot
twice will instead derive the term up until the first mention
of the slot, effectively merging their type information. For
example, if an operation would derive the H.NextLN.NextLN

term, YinYang will instead derive the term H.NextLN. Elim-
inating slot recursion in this way allows type checking to
adequately deal with the Explode and DoAllDucks methods cor-
rectly. However, this approach is very conservative and can-
not express reasonable constructions; consider:
var C = new(), M = new(), D = new()
M.ValC = D
C.ValC = M
C.ValC.ValC.Waddle()

con�ict: Cell cannot be Duck

In this example, the second ValC field access in the above
code will collapse to just one ValC access, causing the prob-
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lem where the type system thinks that C must be a cell of cell
and cell of duck. At best, an incompatibility is falsely raised,
and at worst, a weird Duck Cell object is created!

Our current solution for recursion is inadequate but still
allows us to express interesting programs. As future work,
we hope to relax this restriction and detect non-convergent
nested term recursion with type errors.

4. Trait Methods
With our support for slots in Section 3, we can now discuss
encapsulated fields and trait methods. For one thing, the
visibility of a nested term, which has a parent term and refers
to a slot, depends recursively on the visibility of its parent
and the visibility of the slot in the unit being compiled;
i.e. given the term A.S, the visibility of this term is the
conjunction of A’s visibility and, if S is private, if the unit
that contains A.S is the trait that defines S.

As mentioned in Section 2, top-level methods, which are
not nested in traits, are instantiated polymorphically. Traits
are also compilation units that are instantiated polymorphi-
cally, replacing the single this root term in their signature
with the term extending the trait. Unlike top-level methods,
traits have two encapsulating signatures: a private signature
for use inside the trait that elides local and temporary terms
of its method definitions, but still has terms that refer to trait
private members; and a public signature for use outside of
the trait that elides private members. Private signatures is
only used for non-this terms that extend a trait and are used
inside that trait’s definition.

YinYang does not treat trait methods as compilation units;
instead their arguments and return values are treated as slots
of the object being defined, which is either a root this or a
term substituted for it. We do not treat trait methods as units
because methods of the same trait share its private fields,
making encapsulation extremely complicated; consider:

trait Cell:
| private var ValC
| def GetC(): return this.ValC
| def SetC(B): this.ValC = B
| def Foo(A): A.ValC = this.ValC

If Foo, GetC, and SetC were instantiated polymorphically, we
would have to add additional edges to the instantiating graph
to express that traits would propagate from whatever was
bound to the B term of each call to SetC to whatever was
bound to the return value of each to GetC. This scheme is
conceivable but would ruin the nice properties of our graph
abstraction as additional book-keeping would be needed to
ensure that these edges were generated automatically. The
Foo method also creates an inter-object relationship through
an encapsulated field so that the book-keeping would be
required to synthesize these edges across multiple objects!
Without encapsulation, there would be no problem since the
intermediate fields needed to relate method arguments and
return values would never be elided.

trait Map:
| abstract def GetM(K)
| abstract def PutM(K,E)

trait HashMap:
| private var Tbl = new(LenA = 100)
| implement def GetM(K): # public: GetM@RET = PutM@E
| | # public: GetM@K . Hashable
| | return this.Tbl.GetA(K.Hash % this.Tbl.CountA)
| implement def PutM(K,E):
| | this.Tbl.SetA(K.Hash % this.Tbl.CountA, E)
| def PutH(K,E): # public: PutM@E = PutH@E
| | this.PutM(K,E) # public: PutM@K = PutH@K

Figure 3: An abstract Map trait and a simple HashMap trait.

Overriding and Cat-calls
Another reason to forgo separate trait method instantiations
involves overriding (and implementing) virtual and abstract
methods. YinYang places no restriction on what assignment
relationships can be added by a trait method definition, re-
gardless of what it is overriding or implementing. Generic
trait methods would interfere with that simplicity, perhaps
leading to stricter rules in the assignments that overridden
methods could introduce. Besides, top-level methods can be
used to express common generic functionality such as map-
ping using public trait methods. The rest of this subsection
explains how overriding works.

Overriding in YinYang is type checked through nested
term assignment with no special rules imposed on overrid-
ing method implementations. Consider an abstract Map trait
and implementing HashMap trait in Figure 4. The Map trait is
completely devoid of code, so the relationship between the
arguments and return values of its methods are unknown. In
contrast, the HashMap trait implements the Map trait, estab-
lishing with its code the standard mutable map relationship
where items put into the map via PutM calls are possibly re-
turned via GetM calls. This is all missing for terms that just
extend Map; consider:
def Bar(M, A, B, C):
| B.Purr() # seed B . Cat
| M.PutM(A,B) # seed M . Map
| # seed M.PutM@K = A
| # seed M.PutM@E = B
| M.GetM(C).Waddle() # seed M.GetM@K = B
| # seed M.GetM@RET . Duck

In Bar’s implementation, B extends Cat and is put into M,
which extends Map. Since Map specifies no relationship be-
tween GetM and PutM slots, B is not required to also be a
Duck by the last call. Consider an instantiation of Bar:
var H = new(), J = new(), K = new()
H.PutH(0, K) # seed H . HashMap
Bar(H, 1, J, 1)

con�ict: Cat cannot be Duck

A PutH method is added to HashMap in Figure 4 to infer that
H is a HashMap when the method is called on it. Although
contrived, the programmer must indicate a usage signal so
the right trait is chosen; in this case, the signal indicates that
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Figure 4: A graph of code that instantiates Bar and HashMap.

an element is put in the map via “hashed keys.” We will come
back to this design issue later.

In our example, the editor has correctly detected that Bar’s
third argument (B) extends both a Duck and Cat. No global
analysis is necessary to detect this type error as it can be
detected by instantiating the public signatures of HashMap

and Bar into the implementation graph of this code. Even
though Bar is unaware that it will be passed a HashMap, it
does “assign” the K arguments of M.PutM and it seeds the
return value of M.GetM with an extension to Duck, both of
which are visible in its signature. Combined with HashMap’s
assignment relationships present in its public signature, this
is enough to detect the type error as shown in this graph
for the example in Figure 4. All term nodes shown are hard
as soft extensions play no interesting role in the example;
dashed (blue) edges are due to the instantiation of the Bar

method; and dotted (red) edges are due to the instantiation of
the HashMap trait on H. Given just dashed (blue) edges copied
from Bar’s signature, only the Cat trait propagates to J; it is
only in combination with the bold (red) edges copied from
HashMap’s public signature that the graph can detect that the
Duck trait also propagates to J and there is an incompatibility.

As defined this way, overriding is fairly easy from both a
semantic and implementation standpoint: overridden meth-
ods are free to introduce new assignment relationships, and
these will be taken into account at some point during mod-
ular type checking of compilation units. Combined with
how covariance in nested terms are dealt with in Section 3,
YinYang traits also safely avoids Meyer’s “polymorphic cat-
call” [17] problem without requiring programmers to plan
ahead in super classes (traits); e.g. if cows eat grass and pan-
das eat bamboo, both Cow and Panda traits can implement
Animal’s eat-food method each with their required food type.

Even if type errors will be detected eventually, program-
mers are deprived of timely semantic feedback when call-
ing abstract methods that lack code. This problem is solved
with abstract code that resembles normal YinYang code but
whose only role is to establish relationships in the implemen-

tation graph of the trait being compiled. Consider a richer
definition of the Map trait:

trait Map:
| type E
| abstract def GetM(K):
| | return this.E # public: GetM@RET = E
| abstract def PutM(K,E):
| | this.E = E # public: E = PutM@E

The type keyword defines slots that are used to build the
unit implementation graph but do not exist during execution.
Given this definition of the Map trait, the incompatibility of
the method Bar’s B argument would be detected inside Bar as
opposed to when Bar was instantiated. Again, overriding def-
initions are under no restriction with respect to abstract code,
whose assignments need not be reproduced. However, they
must live with the conservative consequences of these as-
signments, meaning superfluous assignment will never make
the program less safe but could result in unnecessary type er-
rors and trait extensions.

Other Design Issues
We have assumed so far that trait (type) selection can be
completely inferred based on the methods selected by the
programmer, which is dubious in practice; consider:

var H = new(), K = new()

abstract: Map unimplemented

H.PutM(0, K) # seed H . Map

As the Map trait has abstract methods, inferring just it alone
on an object raises an “unimplemented” type error. We
avoided this issue previously by using HashMap’s freshly
defined PutH method, which was admittedly contrived. In
this case, HashMap’s functionality is indistinct compared to
Map’s, so method selection alone is not good enough. Rather
than rely on contrived methods, other options include:

- The programmer could select HashMap for H by adding an
explicit type assertion to the code; or

- The system could infer HashMap as the implementation of
Map, as this what the programmer probably wants.

The first option goes against our “typeless programming”
goals but is pragmatic. Although the second option involves
dangerous speculation, it could be coupled with a warning
so that programmers are aware of the under specification but
can still run their programs anyways.

As mentioned in Section 2, objects defined with new() op-
erations must be completely defined in their containing com-
pilation unit and are frozen to further extension by clients.
YinYang also allows for objects to be declared as public trait
members that are open to extension up until their containing
become hidden; consider:

trait Farm:
| object FarmAnimal
trait DuckFarm:
| def Init(): this.FarmAnimal.Waddle()
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The Farm trait has one FarmAnimal object member that be-
comes a Duck in a DuckFarm trait that extends Farm.

We have yet to support function parameters in YinYang,
but they would be supported in a way that is similar to a
trait method; i.e. an instance of a FunctionN trait whose Apply

method argument and return value slots encode both binding
from the caller and use by the callee. Because functions are
not instantiated independently, they are best used in top-level
methods that are called polymorphically.

Although YinYang typing is flexible, there is still a need
for dynamic downcasting; consider iterating over a list of ob-
jects where Cat objects are singled out for special attention:
var A = new() # allocate . Duck
var B = new() # allocate . Cat . Wild
Es.AddL(A) # infer A . Cat ⇒ Wild
Es.AddL(B) # infer B . Cat ⇒ Wild
A.Waddle() # seed . Duck
B.Purr() # seed . Cat, infer . Wild
for E in Es: # infer Es.GetL@RET . Cat ⇒ Wild
| switch E: # infer E . Cat ⇒ Wild
| | case C . Cat: C.DoWildThing() # seed . Cat . Wild
| | default: continue

This code iterates over a list of two objects, a Cat and a
Duck, choosing elements that extend Cat for an operation that
causes them to extend the Wild trait. Although we have yet
to implement this in YinYang, extended traits inferred for a
downcast result must be propagated as latent extensions of
the original term; e.g. the Wild extension by downcast result
C propagates to original term E as . Cat⇒Wild, meaning Wild

is only extended by objects in the list that extend Cat.

5. The Programming Experience
YinYang’s lack of type-based name resolution, computed
types, and explicit signatures presents many usability chal-
lenges that can be compensated for by a language-aware ed-
itor. As suggested in [15], tooling should be a part of the lan-
guage so trade-offs can be freely made between a language’s
semantics, syntax, and supporting tools, like the editor. Ac-
cordingly, we take a non-traditional approach or design that
considers editing as a first-class part of the language.

Although this paper avoids name overloading for reasons
of clarity, our technique does not preclude it. Instead, other
signals such as probability and explicit programmer selec-
tion can be used to resolve ambiguous names. Our previ-
ous work [15] even shows how code completion benefits
from being informed, but not driven, by types, where oth-
erwise useful options are hidden from programmers because
they have yet to specify the right types. There is the con-
verse problem that programmers, without the use of types
as filters, will be overwhelmed with too many options in
code completion menus. However, these options can still be
filtered by which ones will cause type errors, and the rest
can be categorized and prioritized using probability [15].
Programmer decisions about each symbol must be recorded
in code; e.g. code refers to GUIDs while ambiguous short
names are input by and presented to programmers [7].

Type Debugging
The lack of type declarations or inspectable syntactic types
leads to significant usability challenges in how programmers
understand type errors or how objects are formed. The edi-
tor can help by making trait extensions visible as meta-text
through probing; consider a modification of our second ex-
ample from Section 2:

trait Widget:
| abstract def Render()
trait Bordered:
| override def Render(): ...
| var Thickness
trait Button:
| implement def Render(): ...
| def Pressed(): ...
...
var A = ^new()

. Button . Bordered

if A.Pressed(): A.Thickness = 10

The caret symbol can be prepended to any term to view
trait extensions of that term in the editor, just like a type
error. In this example, we see that the object being created
extends Button and Bordered; it also extends Widget but this
is elided because Button and Thickness themselves already
extend it. Extensions for nested terms are not shown, but
can be viewed by just writing the expression along with the
probe; consider this example from Section 3:

var W = new()
W.SetPos((10,10))
W.^ParentW

Canvas

Here the programmer can see that W.ParentW extends Canvas.
Probing syntax allows programmers to focus on the type
information they care about at the expensive of having to
make direct edits; i.e. they can interactively “debug” [28]
type inferences as needed.

Probes, however, do not help programmers reason about
the assignment graph that propagated traits to a term in the
first place Although this reasoning is “local,” the assignment
graph is formed from a compilation unit’s entire implemen-
tation, not to mention the obtuse public signature included
for the units it instantiates. The computer should help out
since it knows the assignment graph. Each trait listed in a
type probe or error message can be clicked on to navigate
to the statement where the extended trait propagates or is
seeded into the unit. However, even this is not always good
enough: the programmer might need to examine the graph
visually to determine what assignment or instantiation led to
a type incompatibility. McAdam [14] describes how graphs
can be recorded, which we already do in YinYang, and pre-
sented to programmers. Future work on YinYang can explore
how term assignment graphs can be used to help program-
mers debug their type errors.

Unit signatures are essentially undocumented given that
they are inferred like everything else. As with reasoning
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about an implementation, the editor can reveal the graph to
the programmer, but, especially given that trait method ar-
guments and return values are nodes in this graph, it would
often be very messy. Unit signatures can also change very
easily when their implementation change, possibly breaking
client units in unintended ways. The best idea we can offer
on this point is to add the ability to “lock” units to ensure
their signatures do not change. An implementation change
that changes the signature can then be detected and flagged
as an error. At any rate, our implementation tracks depen-
dencies between units and is able to incrementally re-check
client code whenever unit signatures change.

6. Technology
Although we have yet to explore our type system from a rig-
orous theoretical perspective, we have implemented much
of YinYang, sans downcasting and function parameters, in a
prototype that we describe here. The core type system and
inference engine consists of about 1100 lines of C# code
that plugs into 2000 lines of language-specific type checking
and parsing code. The type system also relies on a frame-
work called Glitch (1300 lines) that supports incremental
and iterative computations using optimistic transaction-like
processing and dependency tracing along with the ability to
roll-back effects that are no longer performed. Glitch enables
incremental parsing and type checking, which is essential to
YinYang’s overall goal of live programming [16] that pro-
vides continuous semantic and execution feedback to pro-
grammers as they type. This feedback is then presented to
the programmer inline with edited code as in Section 5.

Glitch greatly simplifies the implementation of our type
system: type checking logic is expressed along with pars-
ing logic as if it could all be done in one pass, which is not
true in general given possible cyclic dependencies between
terms, not to mention compilation units! When an AST node
is processed, dependencies of what it depends on are traced
and its processing is replayed whenever they change. Effects
performed during processing are also recorded and are un-
done if replay does not re-perform them. Re-processing be-
tween cyclic dependent nodes continues until they no longer
change; termination is ensured because we avoid repetition
of slots in nested terms (Section 3). This approach also
transparently handles editing by the programmer, which in-
duces re-processing of the edited AST nodes, undoing ef-
fects that are no longer performed, and propagating new ef-
fects through the program.

Language-specific code hooks into the type system us-
ing just two operations: assignment that express the data-
flow of encoded assignments, built-in operations, and trait
method calls; and seeding that express that a trait is known
to be immediately required on a term because of a built-in
operation, a method or field to be called or accessed, and so
on. The type system will handle top-level method and trait
instantiation directly. Language-specific code can also allo-

cate temporary terms, which are bound to AST nodes so that
the number of root terms in a unit are finite. As an example,
consider code for a C-like built-in condition operation (C ?

T : F); we write a simplified version of this code in YinYang
though the real more-detailed code is written in C#:

trait Condition:
| implement def Parse(Cursor):
| | var C = Cursor.ParseExpr()
| | Cursor.Consume(Lexis.Question)
| | var T = Cursor.ParseExpr()
| | Cursor.Consume(Lexis.Colon)
| | var F = Cursor.ParseExpr()
| | C.Term.Seed(Primitives.Bool)
| | var Temp = this.AllocateTemp()
| | Temp.AssignT(T.Term)
| | Temp.AssignT(F.Term)
| | this.Term = Temp

This code performs parsing of the condition’s syntactic
structure and seeds the test condition (C) with a Bool ex-
tension. The code then allocates a temporary term (Temp)
and assigns T and F to it, and uses this temporary as the Term

that is the expression’s result to the type system. Seeding
and assignment for Term inside the type system resembles
the following YinYang code:

trait Term:
| def Seed(Trait):
| | this.Hard.ExtendHS(Trait)
| def AssignT(RHS):
| | this.Hard.EdgeHS(RHS.Hard) # Edge 1
| | this.Soft.EdgeHS(RHS.Hard) # Edge 2
| | for C in this.Children:
| | | var D = RHS.BySlot(C.Slot)
| | | if D == null: continue # not shared slots
| | | C.Hard.EdgeHS(D.Hard) # Edge 3
| | | D.Soft.EdgeHS(C.Soft) # Edge 4
| | | D.Hard.EdgeHS(C.Soft) # Edge 5

The Seed method adds Trait to the hard constraint set of the
node while the AssignT method inserts edges as specified in
Section 3 (Aliasing). Incompatibility and freeze errors are
checked whenever traits are added to the hard constraint
node of a term. Traits are not actually added if an error
is detected and reported, which causes non-determinism in
type reporting as error messages depend on order of trait
extension, but prevents type errors from cascading via trait
propagation. The EdgeHS method of a hard or soft constraint
node simply records the assignment and propagates traits in
the assignee direction; i.e.:

trait HardSoftNode:
| private var Extended = new()
| var Edges = new()
| def ExtendHS(Trait):
| | if this.Extended.CouldAddS(Trait):
| | | ... # check for errors if Hard
| def EdgeHS(RHS):
| | if this.Edges.AddS(RHS):
| | | for T in this.Extended: RHS.ExtendHS(T)
| | ... # propagate assignments implicitly to child slots if necessary

If a nested term, EdgeHS also propagates assignment relation-
ships down to shared child slots. Finally, a unit’s implemen-
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tation graph formed from HardSoftNode objects will be encap-
sulated into a signature by finding a new edge set (EEdges) for
each visible node that refers only to other visible nodes:

trait HardSoftNode:
| ...
| def Encapsulate(Sig):
| | if !Sig.Visible(this.Term): return
| | for E in this.Edges: Encapsulate0(Sig, E)
| | for C in this.Children: C.Encapsulate(Sig)
| private def Encapsulate0(Sig, E):
| | if Sig.Visible(E.Term): Sig.EEdges(this).AddS(E)
| | else:
| | | for F in E.Edges: this.Encapsulate0(Sig, F)

Additional logic breaks assignment loops during processing.
Though not shown here, the Encapsulate method is also where
whether the node is frozen or not is discovered, and what the
freezing constraints are. On unit instantiation, these encap-
sulated edges are applied to each binding term’s hard and
soft constraint nodes:

trait HardSoftNode:
| ...
| def Instantiate(Sig, Bindings):
| | var X = this.HS(Bindings.GetM(this.Term))
| | for E in Sig.EEdges(this):
| | | X.EdgeHS(E.HS(Bindings.GetM(E.Term)))
| | for T in this.Extended: X.ExtendHS(T)
| | for C in this.Children:
| | | if Sig.Visible(C): C.Instantiate(Sig, Bindings)
| abstract def HS(Term) # returns Term.Hard if this is Hard
| # returns Term.Soft if this is Soft

If the original term has been frozen in the unit’s signature,
this relationship is also propagated to the binding term.

Performance Concerns
One of the major problems with our last prototype in [15]
was performance: graph-processing lacked modularity and
involved propagating edge bindings (not just traits), causing
the graph to explode in complexity. Learning from our mis-
takes, we focused more on separate compilation as well as
discovering a more sane way of dealing with assignment and
aliasing (Section 3) so that our graphs could be “normal.”

Our prototype’s performance on small programs is ade-
quate, but we have yet to reach a point in our implemen-
tation where we can test on larger more realistic programs.
Given our use of Glitch, non-incremental batch performance
should suffer from dependency and effect tracing overhead;
i.e. we should see long load times for large compilation units
followed by a responsive editing experience.

Because of separate compilation, the complexity of an
implementation graph is determined by the number of root
terms in the compilation unit, which loosely correspond to
expressions, followed by the number of slots that each term
inherits from extended traits. This is problematic because,
as mentioned in Section 4, all arguments and return values
of the trait’s methods are also represented as slots, leading
to many nested terms that is only bounded by YinYang’s
inability to deal with recursive nested terms. For this reason,

when a trait is applied to a term, we defer manifesting the
trait’s slots as nested terms along with their sub-graphs until
they are needed as part of an assignment. It remains to be
seen if this is good enough for scaling, especially when slot
recursion is relaxed to be more realistic.

7. Related Work
Most type systems define type [5] as a set of values that con-
straints how these values can be used. YinYang lacks such
types as well as subtyping based on partial order and/or sub-
set relationships and explicit type variables that abstract over
types. Yet YinYang still provides features that are typically
provided by types: type errors are detected while various
kinds of inclusion, parametric, data polymorphism happen.
We are unaware of any other type system that focuses on
supporting code completion.

Unlike YinYang, most type inference work has been
based on some form Hindley-Milner style unification [10,
18]. Relating YinYang to all previous type inference work
is not practical, but a few stand out. Leroy [11] investigates
how to support type inference in the presence of assignment
by treating type variables involved in assignments as dan-
gerous and disallowing generalization, meaning they will
only be inferred to have one type. YinYang is not based on
generalization and, in fact, assignment is involved in most
of the YinYang’s typing aspects.

Agesen explores type inference for objects in the pres-
ence of parametric polymorphism with his Cartesian Prod-
uct Algorithm [1] (CPA) for type inference in Self. CPA
resembles YinYang by also maintaining a graph built from
assignments (an innovation of Palsberg [23]); however, in
CPA’s case, “clone families” propagate from assignees to as-
signments, generalizing their type. YinYang signatures are
analogous to CPA templates; however, templates are poly-
variant and must be recomputed for every combination of in-
put types they are used for while a YinYang signature applies
to all uses. CPA also does not support the data polymorphism
necessary to model collection types; YinYang supports data
polymorphism by instantiating trait signature graphs on ex-
tending terms, and providing the terms with their own slots
to represent members of the trait. Other work [26, 27, 31]
has dealt with data polymorphism using various global anal-
yses, but we are the first to do it modularly while, from a
local typing perspective, dealing precisely with covariance
using the soft term nodes of Section 3.

The “type” of a YinYang compilation unit is derived di-
rectly from its implementation, which is similar to a type
recovery analysis [29]. Palsberg [24] demonstrates equiva-
lence between type systems and type recovery analysis in
properties that can be checked. Anderson et al. describe type
recovery for JavaScript [2] while Zhao [32] improves on
these results with support for polymorphic types; however,
both systems are unable to handle full JavaScript and focus
on detection of structural problems rather than full seman-
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tic feedback. Recency Types [9] can recovery type informa-
tion from JavaScript programs more completely, but does so
with expensive flow-sensitive analysis that models the heap.
YinYang, in contrast, avoids the modularity and scalability
issues of type recovery by not recovering types at all, instead
focusing on just usage requirements.

Typeless code appears similar to code in dynamic lan-
guages like Python [30] or Ruby [13]. However, while typ-
ing in YinYang is definitely flexible, it is still not as flexible
as full dynamic typing. Additionally, “duck typing” changes
fundamentally in YinYang as an object becomes a duck if it
quacks, with the duck trait providing the implementation of
quack; rather than, as in dynamic languages, being usable as
a duck if it has its own implementation of quack. This can be
seen as less safe: at least Python programmers would get a
“message not understood” at run-time if the incorrect object
was used as a duck, whereas a YinYang programmer might
just unintentionally turn some object into a duck!

The design of mixin-like traits in YinYang are based on
Scala’s [21], but are enhanced with compatibility relation-
ships to temper multiple inheritance so that traits can fully
replace the role of classes. Scala supports only local type in-
ference, but then supports advanced typing features beyond
what could be expressed in YinYang such as existential types
and GADTs. On the other hand, having inference define ob-
jects makes fined-grained traits much more viable as they no
longer need to be extended explicitly.

8. Conclusion
Two roads diverged in a wood, and I—I took the one less
traveled by, and that has made all the difference – Robert Frost.

We introduced a new option in the type system design space
that diverges from much of the conventional wisdom devel-
oped about type systems over the last forty years. YinYang
is not based on set theory, generalization, or unification. In-
stead, term assignment graphs derived directly from imple-
mentation code traces usage requirements backwards from
how assignments are typically dealt with. Surprisingly, this
approach works: the type system is quite flexible, encod-
ing many kinds of polymorphism just through assignments,
while separate compilation is achieved by encapsulating
assignment graphs into signatures that can be instantiated
without re-analyzing units for each use. There are also no
special typing rules for the programmer to learn—all feed-
back is derived only from assignment and trait propagation.

Our results are not all roses, however. Type errors can
only be understood in the context of a unit implementation
as no easy-to-read syntactic types are provided, leading to a
need for debugging. Name overloading is thrown away, even
for members in unrelated traits, while letting the type system
form object definitions without explicit programmer buy-in
appears dangerous. However, programmers can reasonably
cope with these problems through good tooling; and actually,

the precision of the type system even enhances how tooling
is capable of helping the programmer.

As future work, YinYang must more flexibly support
nested term recursion while ensuring adequate scaling be-
fore being feasible for general use. We should also formally
reason about the soundness of how the type system handles
encapsulation and slot aliasing/covariance, and, more impor-
tantly, determine how our type system’s properties compare
with those of well known type systems.
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