Go Against the Flow for Typeless Programming

Sean McDirmid

Microsoft Research, Beijing, China
smcdirm@microsoft.com

Abstract. This paper introduces a novel type system that can infer an
object’s composition of traits (mixin-style classes) according to its usage
in a program. Such “trait inference” is achieved with two new ideas. First,
through a polyvariant treatment of assignments (a := b) and implied
field sub-assignments, assignment can usefully encode trait extensions,
method calls, overriding, and so on. Second, rather than unify term types
or solve inequality constraints via intersection, we instead propagate trait
requirements “backward” to assignees, ensuring that trait requirements
are compatible only for terms used in the program. We show how this
system is feasible without type annotations while supporting mutability,
sub-typing, and parametricity.

1 Introduction

Traits like those in Scala [22, 6] are classes that support a mixin-like form of lin-
earized multiple inheritance [5,19]. Although traits allow for much finer-grained
modularizations than classes, they incur a huge burden on programmers who
must often manually compose many traits in program type annotations and ob-
ject definitions. Programmers must also pre-commit to annotations that limit
what options appear in code completion, preventing them from discovering use-
ful functionality that is contained in more obscure traits [16].

The goal of our language, called YinYang, is to infer what traits an object ex-
tends based only on how they are used, rather than restrict usage based on type
annotations. Global type inference that would achieve this has been elusive in
object-oriented languages where subtyping leads to inequalities that defy stan-
dard Hindley-Milner unification [10, 18] and are expensive to solve as constraints,
especially when mutable fields are considered (as in [2]). More significantly, most
OO type inference systems work in the wrong direction by intersecting types to-
ward assigned terms and away form object compositions.

Using two new ideas, this paper rethinks type inference, and typing in general,
to enable object trait inference. First, a novel polyvariant treatment of term
assignments along with implied field sub-assignments precisely captures the flow
of objects through a program. Assignment and fields can then completely encode
trait extensions, method calls, overriding, and so on, transforming the problem
of type checking and inferring types into one of reachability within a data flow
graph. Second, rather than solve inequality constraints via intersection in the
direction of assigned terms, we instead solve them via union in the direction of

assignee terms. What traits an object extends can then be inferred, but comes
at the expense of not being able to directly verify programmer intent; e.g. did
they really mean for that object to be a duck? We temper this problem with
trait compatibility where certain traits cannot be extended by the same object,
e.g. Duck and number cannot be extended by the same object, which is checked
only for terms referenced in the program.

We are implementing these ideas in our type inference system for our YinYang
language; earlier broken versions of this system have already been prototyped,
gaining us the understanding that we present here. The paper continues in Sec-
tion 2 to describe a novel sound treatment of assignment and fields. This treat-
ment is then applied to YinYang in Section 3, showing how, when combined
with a backward propagation of trait requirements in the direction of assignees,
object extensions can be inferred while subtyping, overriding, covariance, and
parametricity are accounted for correctly. The challenges of decidability and
scalability are tackled in Section 4 by treating inference as a problem of reacha-
bility within a tree of nodes connected together by assignment edges. Section 5
presents open issues; e.g. YinYang cannot currently deal with dynamic type
checks. Related work is covered in Section 6 while Section 7 concludes.

2 A Better Treatment of Assignments and Fields

Reference assignment and subtyping are difficult to handle in most type inference
systems [7, 11,24, 33,34] and is often heavily restricted compared to functional
programming styles. Semantically, subtyping and assignment are very similar
when considering the sets of objects that can be bound to extensible traits (or
classes) and assigned terms. For an assignment A := B in a typical Andersen’s
points-to analysis [4], the set of objects that term B can be bound to, which we
denote as Bs, is a subset of those that can be bound to term A, so Bs C As.
Likewise, for a trait/class extension S extends T, S; C Ts;. This suggests that
inheritance and assignment can be modeled the same in a type system: if we
define A := B to be type-wise equivalent to Bs; C As, then T := S also expresses
an extension of T by S, and T := A expresses that term A must be of a type that
contains trait T. Rather than shoehorn subtyping or assignment in a system of
quantified and constrained type variables, we instead focus on just assignment.

Field sensitivity [36] complicate the semantics of how objects flow across an
assignment: given an assignment A := B, a store to a field via A only affects the
objects pointed to by A, such as those in B, and only in that field. Most previous
work on field sensitivity [12,13,31, 36| deals with fields indirectly: rather than
determine how fields of A and B are related by assignment, object flows between
fields are “expanded” out based on object flows to their parents. While this might
be appropriate to compute points-to relationships, it does not make sense for a
type system that does not. We propose instead a treatment of fields that decodes

their flow behavior into assignments to avoid actual object propagation.
For some field F present in A where A := B, we could assume that A.F .= B.F
to capture the intuition that B.F; C A.Fs. However, consider:

@A=B | @AF=D |®A=C

With assignment @, objects bound to Ds C A.Fs, but since Bs C As, we must
conservatively assume that Ds C B.F; as well. Perhaps sub-field assignment is
bi-directional, unifying B.F and AF (i.e. B.F = A.F). Assignment ® would then
indirectly unify C.F and A.F (B.Fs; = C.F5): because A can only bound to at most
one object from either B or C at a time, there is no intuitive flow of objects
between B.F or C.F, meaning unification is too conservative! Because A could be
bound to either an object in B or C, the assignments B.F := D and C.F := D are
still conservatively necessary, but any assignments between B.F and C.F are not.

For more precise reasoning about how objects flow across field subassign-
ments, we define a new weak assignment operator :— in addition to conventional
“strong” assignment (=) to propagate field sub-assignment operations as being
“different” even if it still represents the flow of objects through terms. Weak
assignment is defined and used as follows:

I'te, :=¢p I'te,:— e I'te, :—ep, eq.Fi=e,
I'Fe, :— e I'te,.F:i— ep.F © I'keyFi=e.

I' is an original program of assignments expressed by the programmer; e are
terms in this program of the form e == (R | €).F | new; F identifies a unique
object field; R is a root term bound to a root object; and new are object allocation
sites. Strong assignment derives weak assignment in @; in ® weak assignment can
then be derived between the fields of terms related by weak assignment, which
we refer to as field subassignment. Finally, reassignment in @ matches term weak
assignments and child field strong assignments to derive new strong assignments,
capturing appropriate object flow while avoiding conservative field unifications.
A program I' is defined as follows:

gui=gF|R I'=gF=hFk

Ii=gF=h I
h o= qg.F | new g.F == h

Note on syntax: we use = to deconstruct symbols in derivations; overline
means a list, and I - T expands out to I' F xg, x1, . .., meaning each element of
the list is its own derived judgment. Because g.F and h terms can be used as e
terms, program assignments can be derived directly as e := e relationships.

A proof of soundness requires the use of a transitive weak assignment operator
(:—*) to express object reachability: if e :—* new, then new could be assigned
indirectly to e. Transitive weak assignment (:—*) is defined as:

I'te, :—* ey, ep:i— e
I'Fe, - —* e,

I'kFe:—"e¢

Lemma 1 shows that reassignment is still valid with transitivity.

Lemma 1. I'te, :—" ¢, eo.Fi=e. = ['Fep.F = e,

*

Proof. Straightforward by applying reassignment inductively on e, :—* ¢, rela-

tionships, with a base case of one :— relationship.

Operational Semantics. Soundness is shown over traces of I’ program ex-
ecutions where assignments in I" are mixed up in repeating orders to account
for control flow and concurrency in our semantics. A trace b has an arbitrary
length where b; € I is the i*" assignment to execute in the trace. A non-root
object is encoded as (news,j), which is created by the j*" trace assignment
b; = g;.F := new,, where many objects can be created from allocation site new,.

A store ©; tracks object field assignments to other objects before executing
b; of the trace; ©;(({newq, j) | R).F) = (newsp, k) evaluates to what (newg, j).F (or
R.F) was most recently assigned to ({news, k)). Application of ©; is defined on €’s
possible forms: ©;(e.F) = 0;(0;(e).F), O;(newy) = {new,, i) as object allocation,
and ©;(R) = R. Execution of an assignment is as follows:

Qi X b; = g;.F = h; — 9i+1 = @1[91(91)F — @z(hz)]

Where 0,41(0;(g:).F) = ©;(h;). Let ©g be an empty store without assigned ob-
ject fields, then ©; x b; — ;4 for the i'" assignment b;. Access to an unassigned
object field in @; causes execution of a trace to abort in an error, which we use
in Lemma 2 to aid in showing soundness.

Lemma 2. For b; = g;.F; = h; we say that g; and h; are referenced in b;. Given
a term of the form g,.F. referenced in a non-faulting b;, there exists a b; < b; in
the trace where b; = g;.F. == hj, ©,(g;) = ©;(9z), and O;(h;) = ©;(gs-Fa).

Proof. Because b; exists in a non-faulting trace, there must be an assignment b;
with a ©; where j < i and Oj41 = 0;(0;(g9x).Fs = O;(ga-Fz)].

To show soundness in Theorem 1, we need a 1" operator to extract object
allocation sites from objects in the store: 1;(e,) = new, if O;(e,) = (new,, j) and
Y;(R) = R; by this definition if O;(e,) = O,(ep) then Ti(eq) = T (esp).

Theorem 1. I' - h; :—* Y;(h;) for a term h; referred to in b; and an assigned
©;(h;) in a trace of I that does not abort before or during b;.

Proof. h; could either be 7;(h;), which is then trivial, or g;.F where by Lemma 2,
there must be a b; < b; of the form b; = g;.F == h;, ©,;(g;) = Oi(g;), and
O;(hj) = O;(h;). Because base cases are eventually reached (h = new) and
because j is decreasing in a finite trace, we can perform induction on ¢ where
our lemma holds for j < 7; the proof then proceeds as:

I'tg; =" Yi(g;) = Yi(g;) Inductive hyp./Lemma 2: @

I'+hj =" Y;(h;) = X;(h;) Inductive hyp./Lemma 2: @

I'F7Ti(9:).F == h; Lemma 1 on @, b;: ®

I't7;(g:).F =" Ti(hi) Transitivity on @, @: @
If we can show I' b ¢; :—* Y;(g;), subassignment yields I' + g¢;.F :—* 1;(g;).F
and transitivity yields I' - g;.F :—* 7;(h;), proving the lemma. Our inductive
hypothesis alone does not give us this premise, but g; is either R, in which case
we have reached another base case, or is of the form g,.F,, where the base case

R is eventually reached by decomposing g, and its parents recursively, and so
we can take I' - ¢g; :—* 2;(g;) as a second inductive hypothesis. O

e = ep
ea X et | [er = eg] = (eg + (€a — €p)) X
(eg + (er — b))
et A ep

ea X e [en = eg] = eq X (er Mep Xeg)

€q X €t €—eq Xer

ea X et (poopr) —
(ea x et L po) I p1

€a = €q
€q — €q —> € ev.F—eq = F+ (ep —eq)

€a Sep e <€
¢ “ eate—>e, e+ (F+f)—>eF+ S

ep.F <eq ey, S eq

eq S ep ep = eq eb.Fy A €q.Fa,€a.Fa £ €p.Fp
eq Mep —>ep €q Xep—eq €q.Fo X ep.Fy = €4 X ey

e X new -+ R

Fig. 1. Definitions for term rewriting |, term child of < (strict <), term field subtraction
— and addition +, and common parent term join X.

Parametricity

We model traits as assignable constructs as fields hanging off R. Consider then
a definition and use of a trait R.T in a program:

@O RTV:=RTW | @ RT =RA | ® RD = RAV

Subassignment gives us R.T.V :— R.A.V, reassignment R.A.V := R.T.W, and transi-
tivity R.D .= R.T.W. The result is that term R.D is then assigned indirectly from
every term that assignable from the R.T.W field, which is way too restrictive—in
particular it prevents us from usefully modeling parametric traits or methods
as fields. To solve this problem, we could copy trait R.T’s implementation so
that its fields, which are essentially type variables, are not shared by indepen-
dent references of R.T. However, integrating disparate R.T copies that happen
to become eventually assigned to the same term would be quite messy!

Instead we make another important observation about reassignment seman-
tics: given an assignment of the form R.T.V := R.T.W, what object R.T is assigned
to will remain constant during execution of the entire assignment, meaning an
object reference is just being moved within R.T between its fields. An assignment
is then naturally parametric with respect to a sub-tree that fully contains the
assignment; e.g. R.T contains R.T.V := R.T.W. Leveraging this phenomena requires
new judgment definitions, which are based on the rewriting of Fig. 1:

I'Feq=e€p xe I'Heq:—efTp
® I'Fe, i—ef 1 [eq = ey] I'kegF:—epFtp

I' e, :—er 1D, eqFi=egXe

I'FefFi=egxep lp

Each strong assignment is annotated with a scope parent term (e; in e, :==e fX et)
that will stay constant when the assignment executes. A rewrite path (1 p) of

strong assignments is also generated and propagated in the direction of assign-
ment and the term’s field subassignments via :— relations (p == [e :=¢] | € | p o p).
This path is used to rewrite (]) the assignee term on reassignment, where rewrites
of the assignee via the rewrite path must occur only through the scope term as
defined in Fig. 1; otherwise reassignment could miss possible object flows.

The scope assignment term of encoded program assignments is the common
parent of assignment terms computed using the join (x) operator of Fig. 1:

I'=gF=htgF=hx(g~xh)

The assignment in our previous example derives R.T.V := R.T.W x R.T where R.T
is the common parent. The new judgments derive R.AV := RAW x A given a

rewrite path of [T := A], preventing R.D from being assigned through R.T.W.

A scope becomes progressively weaker (i.e. closer to R) through multiple
reassignments to account for “breaks” in the rewrite path where stable evaluation
of an assignment’s original common parent can no longer be assumed; consider:

@ RTAF=RTG| @RTA=RB| ®RB=RTC| @RT:=RS

On assignment @, the rewrite scope used for reassignment of assignment @ into
R.B.F has already weakened to R, where R.B.F := R.T.G is derived. On assignment
®, reassignment derives R.T.C.F := R.T.G; however the rewrite scope is still R,
which can be fully appreciated after assignment @, when reassignment derives
R.S.C.F = R.T.G! A reassignment of R.S.C.F := R.S.G would have been incorrect
because of assignment @: in an arbitrary ordering of interleaved assignments, R.T
could change what object it is assigned to after this assignment occurs, requiring
a weaker scope as reassignment propagates through R.B.

To show soundness, reassignment transitivity must be shown to work with
rewrite paths. Transitivity of :— is defined to concat rewrite paths using the o
operator that is expanded in the definition of | in Fig. 1:

Tre,—"eftpooe, er—e,1m
Trea— egTpoopioc

I'Fe:—*eteoc

Lemma 1 is redone as Lemma 3 to show the transitivity of reassignment.

I'eqg:—"efTp, eF=¢egxe =
Lemma 3.
I'FefFi=eglpXe

Proof. With rewrite paths, this is slightly less straightforward than in Lemma 1.
Starting with reassignment base cases of e, :— ey T po, €9 :— €1 T p1:

I't=eg.F = e4 X el po
I'epF = (eg xe | po)lp

Using the concat definition in Fig. 1, we can rewrite the last derivation as:
I'tei.Fi= (eg X e | poopr)

Taking p = pg o p1, the proof then proceeds easily by induction. a

eXer—e (eop) Xer —>pXet
et = eq er A eq
([ea =ef]lop) X er — ([ea =ef]op) X er —
fea == el o (px (er + (e —€a))) P (er % eq)

prer—>pre he , ,
. Yoy (eopo) et hpr —po+ethpr
€=~ €t hP p
et = eq et A eq
([ea = eflopo) +et % p1 — ([ea = ef]opo) + et % p1 —

((pr 4 lea = es]) opo) = (e + (ec —€a)) o+ (e @ eq ¢ e8) % (pr o [ea = ef])

ella] »e poopilfa = (podlal)o(pilal)

[ea == €] L [es == €] = [eg + (ea — 1) = eg + (€7 — €1)]

Fig. 2. Definitions of rewrite path multiply (x) and divide (+).

To show soundness, the rewrite paths that now come along with object reach-
ability must be reasoned about. To this end, a multiply X rewrite path operator
is defined in Fig. 2 to aid in path reasoning by allowing rewrite paths to be
broken up based on rewrite scopes. Rewrite path multiplication is equivalent to
scoped rewriting as shown in Lemma 4.

Lemma 4. e, Xe; [p=-ey4 X e,) px e for any e, and e; where e, < e;.

Proof. Based directly on the definition of rewriting in Fig. 1 and rewrite path
multiplication in Fig. 2, which simply filters out any edges not scoped by e;.

Rewrite path multiplication characterizes reachability between terms and
their rewritten forms as expressed in Lemma 5.

*

Lemma 5. I'Fe,:—"efTp eaxelp—=esXxes=>IFe,:— e lpXe
for any p, e,, and e;, e, < e;.

Proof. By Lemma 4, e, rewritten with pxe; is also ep; rewrite path multiplication
then allows us to move the scope from being associated with the rewrite operation
to an equivalent rewrite path that can qualify :—* relationships.

Notice in Lemma 5 that if e, = e,, then e, = ey, and if e, = R, then
ey = eq, which allows for path interpolation between e, and ey using varying
rewrite scopes between e, and R. This implies that e; can then somehow reach
ey even if it is not e, or ey, which is captured through rewrite path division
(+) also defined in Fig. 2. A rewrite path division includes any assignment edges
filtered out by rewrite path multiplication, where these edges are rewritten into
the space that rewrite path multiplication rewrites to, leading to Lemma 6.

Lemma 6. p= (p x e;)o(p—+e) for any p, e;.

Proof. Directly by definitions in Fig. 1 and Fig. 2. Equivalence here means that
for all terms e, and scopes e; where e, < eg, then e, X es | p = e, X €5 |

(p X er)o(p+er)
We can now relate term rewriting and object reachability in Lemma 7.

*

Lemma 7. I'F e, — epr, eax6t¢p_>eb><es:>['|_ea:_*eb¢
D X e, ey =" ef L p+e for any p, eq, and e, e, = €.

Proof. Directly from Lemma 5 and Lemma 6.

Soundness Theorem 1 is now redone as Theorem 2.

Theorem 2. I' - h; :—* T;(h;) 1 p. can be derived for a term h; referred to in
b;, an assigned ©;(h;) in a non-aborting i-length trace of I.

Proof. Again the base case where h; = T;(h;) is trivial. As in Theorem 1, we
focus on the non-base case of h; = g;.F where by Lemma 2, there must be a
bj = g;.F == h;j where O;(g;) = O;(g;) and ©;(h;) = O;(h;). We also take the
same inductive hypothesis with the addition of rewriting paths:

I'tg; =" Yi(g:) T oy Inductive hyp./Lemma 2: @

I'thj =" Ti(h:) T p- Inductive hyp./Lemma 2: @

I'F7i(g:).F = hj x(g; X hj) L py Lemma 3 on @ and b;: @
I'Fhjx(g; xhj)lp,:— Ti(hi) Tp.+ (g5 X hy) Lemma 7 on @: @

To go further with this proof, we observe that ©;(g; x h;) necessarily evaluates
to the same object during b;’s execution, so we take another inductive hypothesis
where the rewrite paths p, and p, are equivalent in the scope of g; X h;.

Dy X (gj X h]—) =p: X (gj X hj) Inductive hyp.: ®
I'-7i(g9i).F = hj x (g; © hj) | p. Replacement from @ using ®: ®

Finally, by Lemma 7 and transitivity on @ and ®, we get this crazy judgment:

As in Theorem 1, the proof then finishes where we perform induction around
the depth of g; with g; = R as a base case:

I'-R:—"7T;(R)Te
I'=RF =" Ti(hi) 1 [(Ti(gi) = R)-F = hj L p. x (g5 X hj)]op. + (g5 X hy)

Now generalize for depths of 1 (R.F1), 2 (R.F1.F2), and so on, where

Pk = [Ti(hi—1)-Fr == hjn 4 pok X (g0 X hjk)] 0o Dok + (950 X hjg)

for a k-depth term R...F, referenced in b; and a by in the trace that assigns it;
note that 7;(ho) = R:

'R —"7T;,(R)Te
I'-RF —*Ti(h) T,
' RFi.Fo =" T;(ha) T p1opo
I'FRF1.FoFy =" T;(hg) T p1opao...opg

To satisfy the new inductive hypothesis, we must show that all these paths are
equal with respect to scope (g, X hy) if b; = g,.F := h,. It suffices to show that
any successive path concatenation k£ + 1 does not interfere with the path for &
given a scope of R...F,. Given that the first part of py is an assignment from an
object term (7;(hg—_1).Fi), the rewrite path becomes broken for any non-object
terms hanging off R, showing non interference. a

Using this treatment of assignment, traits can be polymorphic with respect
to their fields and members, which achieves parametric polymorphism without
explicit type variables; i.e. all fields are effectively open type variables.

3 YinYang

Our treatment of assignment and fields pays off in that all of YinYang’s typ-
ing properties can be modeled in terms of assignment and fields, which would
otherwise be difficult in other field sensitive anlayses (e.g. [36]):

— Traits are fields of root object R;

— this term of a trait is the trait itself (i.e. the field that model’s the trait);
— actual trait fields are fields of the trait;

— trait methods are fields of the trait;

— method arguments and return values are fields of the method; and

— method local variables are fields of the method.

All field accesses must be safe; e.g. accessing a trait’s methods or fields in a term
requires that the term be assigned to that trait either directly or indirectly.
We achieve this firstly by forgoing name overloading, which is an unsurprising
tradeoff in global type inference approaches; e.g. it is restricted in Haskell type
classes [9]. In cases where a term’s name is not obviously scoped (local or pri-
vate variables), the IDE can help by resolving ambiguous short names into longer
unique ones through type feedback or code completion [16]. A method call sim-
ply assigns to the arguments of a method field and assigns from the method’s
return value; other more primitive language features are implemented in the
same straightforward way.

Additional assignments in YinYang are derived according to Section 2. By
itself, this approach lacks modularity, scaling, and is not even decidable—we
show how how assignment relationships can be feasibly derived in Section 4.
However, we must first do something typeful with these assignments.

10

Going Against the Flow of Assignment

A term X’s type X, in YinYang consists of a set of traits that are extended by
each object bindable to A. If Y5 C X;, then the traits extended by all objects in
X are then extended by all objects in Y, or X :— Y = Y; C Xs = X, C Y,. As in
Agesen’s [1] work on using constraints in type inference, a program then consists
of multiple constraints derived from assignments that must be solved; consider:
Animal := Dog Cat :=C A:=1B

Animal := Cat Dog:=B A:=C

The most conventional way to solve the A, C B, and A, C C, constraints
generated in this code involves restricting the type of the assigned term; e.g.
A; < B, NC,. If B, is (Dog, Animal) and C, is (Cat,Animal), then A, must be
(Animal). The advantage of this approach is that the type of A is driven by what
is assigned to it; programmer intent is assumed to originate from the defini-
tions of B and C where uses of A that violate these definitions is considered bad.
Solving constraints in this direction, however, has two problems:

— Objects are allocated in the direction of assignees so it is not suitable for our
goal of inferring object definitions based on usage.

— Assignments from traits to their extending terms must be special cased in
our treatment given that their extensions should remain fixed.

Alternatively, a constraint of the form A, C B, could be solved by expanding
what traits are required for B rather than removing what traits are provided
by A,. In doing so, objects are defined based on usage and assignments from
traits do not need to be special cased. Expanding extension sets can also be
easily modeled as reachability by promoting transitive trait assignments:

FFT::ea,eaZ—eb I'FT:=e
I'ET =g I'ET € e

The type of e, e;, is then whatever traits it is assigned to. In our example, A has
an empty type because it is not used as an assignee. Adding the code Wild := A
to the program would then cause A,, as well as B, and C,, to include wild.

Going backwards alone, however, provides no way of checking programmer
intent because missing traits are simply added as needed. This can be quite
dangerous: whereas duck typing at least rejects the usage of objects as ducks if
they lack quack methods, YinYang simply infers that an object is a duck when
it is asked to quack! We temper this and other dangers of missing programmer
intent with three checked safety rules:

— Certain kinds of trait combinations are disallowed as nonsensical: either their
value-type layouts are incompatible (e.g. Duck and Int traits), or they imple-
ment the same abstract methods (e.g. UI Button and Slider traits).

— Types of object allocations must be fully inferred within their defining traits;
otherwise an object could be instantiated with traits that the programmer
of a trait was not aware of.

11

— Object allocations must be concrete without any unimplemented abstract
methods; e.g. an object cannot extend a UI Widget trait without also extend-
ing trait like Button that implements its abstract methods.

Unintended extension can still occur, but at least the object remains sensible.

The Language

Examples are now shown of our type inference system at work; consider:

trait Duck: var a := new # allocate Duck
def Quack(): ... a.Quack() # Duck :=a

YinYang is based on Python-like syntax [30] where indentation determines block
structure; we precede indented lines with lightly shaded bars that indicate nest-
ing depth. The # character precedes Python-like comments in YinYang that we
use to document derived assignments. A “new” expression creates a new object
whose implementation of trait extensions will be inferred; e.g. the new object
assigned to the a variable extends Duck because Quack can be called on it.

As mixins, traits support fine-grained object modularizations; consider:

trait Bordered:
var Thickness var X := new # allocate Button, Bordered
if x.Pressed(): # Button := x

trait Button:)
x.Thickness := 10 # Bordered := x

def Pressed(): ...
Propagation in YinYang is control flow insensitive: only the assignment topology
is relevant and condition or assignment order are ignored. The object assigned
to the x variable extends the Button trait because the Pressed method is called on
it, while it extends the Bordered trait because its Thickness field is assigned. With
inference, programmers can ignore the traits they are composing and focus on
members discovered through code completion menus [16].

trait Panel: trait Widget:
Panel. AddP.v.ParentW := Panel var ParentW
def AddP(v): v.ParentW := this trait WidgetInC:
abstract def LayoutP() def SetPos(q):
trait Canvas: # Widget := WidgetinC, Canvas := WidgetInC.ParentW
implement def LayoutP(): ... this.ParentW.MovedC(this, q)
def MovedC(v, q): ... trait WidgetInD:
trait Dock: def Shoveleft():
implement def LayoutP(): ... # Widget := WidgetinD, Dock := WidgetInD.ParentW
def InvalidateD(v): ... this.ParentW.InvalidateD(this)

Fig. 3. Traits that encode UI widget/panel relationships.

Programs consist of multiple objects whose collective structure can determine
the capabilities of each; e.g. a Windows UI [20] FrameworkElement object can be
manually position when it is in a Canvas. However, no type relationship in C#

12

exists between an element object and the Panel object that contains it: setting
an object position that is not contained in a Canvas object is silently ignored!
YinYang improves on this with reasoning over graphs of objects; consider:

1: var p := new, w = new
[conflict: Canvas cannot be Dock]

2: p.AddP(w) # Panel := p, p.AddP.v := w = w.ParentW := p
3: w.SetPos((10,10)) # WidgetinC := w = Canvas := w.ParentW = Canvas := p
4: W.ShoveLeft() # WidgetinD := w = Dock := w.ParentW = Dock :=p

This example uses Ul traits defined in Fig. 3. Variables w and p respectively
are assigned from (i.e. extend) the Widget and Panel traits by the AddP call. The
second line AddP call also causes reassignment of p to w.ParentW, where the Panel
term, which models this in Panel, is rewritten as p and Panel.AddP.v is rewritten
as w in the assignment made by AddP’s implementation in Figure 3 according
to the rules in Section 2. The third line SetPos call causes Canvas to be assigned
to w.ParentW through reassignment, which is then propagated through p to the
object allocation assigned to it. Likewise, the fourth line ShoveLeft call causes Dock
to be assigned to w.ParentW through the p variable.

A type compatibility error is generated on the first line of our example when
P is assigned to a new object: |<:(mﬂi<:t: Canvas cannot be Dock‘. This object is inferred
to extend both Canvas and Dock, but these traits are incompatible because they
both implement Panel’s LayoutP method. Unlike Scala [22], methods in YinYang
can only be implemented once per object even if they can still be overridden
multiple times, which avoids non-nonsensical trait definitions. The error can be
removed by eliminating the ShovelLeft call on the last line, causing the object
assigned to p to be just a Canvas.

trait Animal: trait Food:

abstract def EatA(f) abstract def Consumed()

abstract def SoundA()
trait Cow: trait Duck:

def Moo(): ... def Quack(): ...

implement def EatA(f): implement def EatA(f):

f.MowG() # Grass := Cow.EatA.f f.SquirmW() # Worm := Duck.EatA.f

implement def SoundA(): this.Moo() implement def SoundA(): this.Quack()
trait Grass: trait Worm:

def MowG(): ... def SquirmW(): ...

implement def Consumed(): ... implement def Consumed(): ...

Fig. 4. Traits encode animals and food.

As another example, consider the traits in Fig. 4. The Animal trait defines
an abstract method EatA with one argument f that is otherwise completely un-
specified. The Cow and Duck traits then implement the EatA method with more
specific requirements on its f argument—it must be Grass for Cow and Worm for
Duck—which is achieved simply by assigning the argument as a field to either
trait; e.g. Worm :=Duck.EatA.f. Typically, object-oriented languages do not allow

13

such craziness: method arguments should remain invariant, or at least become
weaker, not stronger! But such “polymorphic catcalls” [17] are not a problem in
YinYang, which deals elegantly with covariance; consider:

var d := new, ¢ := new a.SoundA() F# Animal := a

d.Quack() # Duck :=d # a.EatA.f := new, by reassignment: d.EatA.f := new
c.Moo() # Cow :=c¢ # c.EatA.f := new
var a :==d a.EatA(new)

if .ra=c [conflict: Worm cannot be Grass]

Variable a is assigned to either d (a Duck) or ¢ (a Cow) according to some unknown
condition. The Animal SoundA method can then be called on a without problem,
but EatA cannot be called on a because its argument, an object that is both Worm
and Grass, cannot exist. This is because the reassignment judgment fires on the
EatA call, which is modeled as the assignment a.EatA.f := new, causing assignments
of that new term to d.EatA.f and c.EatA.f, creating a situation where both Worm
and Grass propagate to the new object.

trait HashMap:

var Tbl := new(LenA = 100)

implement def GetM(k):
HashMap.GetM.RET := HashMap. Tbl.F
return this. Tbl[k.Hash % this.Tbl.CountA]

implement def PutM(k,e):
HashMap. Tbl.F := HashMap.PutM.e
this. Tbl[k.Hash % this.Tbl.CountA] = e

trait Map:
abstract def GetM(k)
abstract def PutM(k,e)

Fig.5. An abstract Map trait and a simple HashMap trait that implements it.

As seen in the last example, method implementation can express new as-
signments missing in the original abstract method; this also applies to method
overriding. Calls to an abstract method, which is modeled as just field assign-
ments, eventually become integrated with the assignments of the implementing
methods through reassignment. For example, consider a generic Map trait and its
HashMap trait implementation in Fig. 3. Map is completely unannotated, delaying
any type feedback about a Map object until it is known to be a HashMap or some
other more concrete variant; consider:

trait Sample:
Sample.DoitA.m.PutM.e := Sample.DoitA.g
Duck := Sample.DoitA.g var s := new, m := new, h := new
Cow := Sample.DoitA.n.GetM.RET s.DoitA(m, h) # s.DoitA.n := m, s.DoitA.g := h
def DoitA(n, g): [conflict: Duck cannot be Cow|
g.Quack() m is HashMap # HashMap := m
n.PutM(42, g)
n.GetM(42).Moo()

In this example, the DoitA method of trait Sample manipulates an argument n
that is known to extend Map, but the specific implementation of Map is left
open. When DoitA is called in the right column of the example, its n is assigned

14

to m, which is known to be a HashMap; reassignment then integrates HashMap’s
assignments with those of n. A conflict then occurs on h in the call, which, being
assigned to g of DoitA, must then be both a Duck and Cow.

The Map trait in Fig. 3 is abstract because it has abstract methods. As a
result Map cannot be used alone; consider:
var m := new

abstract Map
m.PutM(100, “hello’) # Map := m

Knowing that the new object is required to extend Map is not enough to instan-
tiate the object, and a more specific type is needed, which is challenging if the
implementation is not distinguished by its own set of unique methods. Instead,
this error can be fixed by writing m is HashMap to explicitly introduce a HashMap
trait requirement. Even if inference is unable to completely define the object in
this case, the programmer is provided with feedback, an abstract instantiation
error, that is useful in completing the definition.

Limiting Inference. As mentioned previously, objects must be completely
defined in the traits that create them given that object cannot be modified by
the programmer to account for additional constructor parameters or abstract
methods introduced by required traits they do not know about; consider:

trait Sample:
def DoitB(): var s e
d= =
;aézuack?)ew var a := s.DoitB()
return d a.DoWildThing()
frozen: cannot be Wild
trait Wild:

DoWildThing(): ...

In this example, a Duck object is created and returned by the Sample’s trait DoitB
method. A client calling DoitB then tries to also have that object extend the
Wild trait, which results in an error. Detecting such constructions presents an
additional challenge to modularity that is discussed in Section 4.

Parametricity Revisited. Traits in YinYang are automatically parametric
with the judgments of Section 2. All methods in this Section have been non-
parametric as they have been modeled as direct assignments into the target
object. Methods in YinYang can be parametric with an instantiation step that
involves creating a new field to call the method from, assigning this field to the
called method to account for overriding correctly. Parametric reassignment then
does the rest of the work as it does for traits. Unfortunately, doing this creates
more fields whose assignments can be costly to integrate in the next Section.

4 Feasibility

Section 3 demonstrated the usefulness of our type system, but is it really fea-
sible? There are reasons to be pessimistic: the assignment/field judgments of

15

Section 2 is basically undecidable, seems to examine the whole program; and is
intrinsically polyvariant, which is often not scalable. However, our analysis need
only compute trait extension requirements for terms actually referenced by
the programmer, meaning the analysis does not need to be exhaustive on
all potential terms, which can be infinitely many via fields and recursion. Also,
assignment connectivity for a trait is often routed through a few fields. This
section shows how these properties can be leveraged to design a feasible system.
Note that with a complete assignment graph, a very basic algorithm can be used
to propagate trait extension requirements as specified in Section 3; this section
then focuses on how such an assignment graph can be computed efficiently.
Given that only terms referenced by the programmer are of concern, we start
by “skipping” field accesses unreferenced in the program; consider:
®A=B| ®B=C| @AF=D| @E=CF
The term B “inherits” field F from being assigned to A but B.F is not referred
to in the program. In this case, subassignment and reassignment skip B.F to
derive A.F :— C.F and C.F := D for a term C.F that is referenced by the program-
mer. By skipping, the decidability problem is avoided given that the analysis
becomes more demand based. Field skipping can be expressed as a modification
to subassignment defined in Section 2:

J(eq.F) ® I't e, F=epTpo, ep:— et pr,3(ecF)
I'be,Fme,te I'teq.F :— ec.F T poopr

'k oeqF ey tpo, epi— et pi,BlecF)
I'tey,.F=e.Tpoopr

The = operator propagates skipped field accesses, while J(e.F) is true if the
term e.F is referenced in either an explicit or derived assignment; subassignment
can then be defined in terms of potentially skipped fields. A new definition of
reassignment is also needed to handle skipped fields:

I'- eq.F = €4 X e, I'F eq.F = eg4 X e,
eq.F = ep T po, eq.F = ep T po, ep = ec T p1,
o ep =— e T p1, I(ec.F) eqg X er L poopr — e X e, (ep)
I'Fec..Fi=egxe Llpoopr I'Fe.F:=ep, X e

When a term is referenced, its assignment connectivity with other “material-
ized” terms, i.e. those that have not been skipped, must be revealed to allow
for correct reasoning about object flow in the analysis. Judgment @ reveals re-
assignments from the perspective of an assignment, while judgment ® applies
reassignment from the perspective of an existing rewritten assignee to ensure
incoming assignment edges are revealed.

Nice to Meet You. Field skipping comes with more complexity in ensuring
all assignment relationships are reproduced as if no terms were skipped. Con-
sider the example in Fig. 6: reassignment would derive that x.value = y; even

16

trait NLink:
var next, value var x = new

trait TLink: x.DoT() F TLink := x
def DoT(): var i == x

value.Quack() # Duck := TLink.value | while i # null:
if ... next.DoS() F SLink := TLink.next | vary := new

trait SLink: i.value =y
def DoS(): conflict: Duck cannot be Cow
value.Moo() # Cow := SlLink.value i == i.next

next.DoT() # TLink := SLink.next

Fig. 6. YinYang code where terms meeting causes lots of trouble.

though x.value is missing, an indirect weak assignment TLink.value :—* y must still
be derived to account for the flow of the reassignment. Even more tricky, re-
assignment derives that i.next.alue := y, and field subassignment would derive
SLink.value :— i.next.value, leading to Cow :—* y and causing a conflict with Duck on
y. Considering recursion, it is very important to avoid “materializing terms,” i.e.
creating unskipped terms, like i.next.value as doing so would beg the question of
when to stop. In contrast, computing a fix-point of indirect assignments like
SLink.value :—* y is decidable. We incorporate these indirect assignments into our
judgments with a “meet” = operator that detects when terms would meet at
skipped fields to derive the type error in Fig. 6:

' eq.F = e.Tpo, ' e, Xe.opyg = ep X eqop1,
o ep.F i~ e. T p1, PlecF) ef.F = eq T p2, eg.F = epTps,
' e,.FXeqaopy = I't- ef.Fxe.oppopy =
ep.F X ep o1 eg.F X eqop3opy

I'- eq Xe.opg=e€p Xeqop1, eq:=efXe, eq=eq, e =ec

©
I't (ef+(eq—eq)) Xecolef ==eqlopy =ep X eqoP1

't e, Xe.opyg=ep X eqop;

@

'k ey xe.opg="e, Xeqopr, e Xeqgopr ="e,Xe.opg

A meeting begins in @ when two terms of the same field meet at some term
that skips this field. Meeting is transitive in two ways. First in ®), if two skipped
terms of the same field meet at some term, then recursively their fields and
skipped fields also meet as well. Second in @, an assignment that can rewrite
the meet term (e,) under the scope of the meet (e.) is followed to create a new
meet relationship since, due to reassignment, these terms would actually meet.
Finally, = is made reflexive in @ in a way after transitivity is applied. A scope
and rewrite path is included in each side of a = relation to accommodate indirect

17

reassignments derived as:

'k e, Fxe.opy="eyp.Fxeqop, eq.F:=egxe, e Aee

eg X €t L po — ep X €s, ep X ey L p1 — ey X ey

I'FepFi—ep Tpioles.Fi=ep)

If the scope of the assignment e; is a child of e,’s scope e, in the meeting, then
rewriting e, would result in a node internal to the term of meeting, where reas-
signment would not provide any useful information to the analysis. If, however,
e; is not under e., then a derived reassignment is meaningful with respect to the
assignment connectivity of e;.F and must be derived, which is necessarily weak
because the skipped term would be assigned to ey.F weakly.

Given that = is recursive, it might appear that resolving these indirect re-
assignments is undecidable. However, only a finite number of = relationships
can be derived given that they can only relate a finite number of materialized
terms: a recursive meet derivation will then eventually encounter terms that have
already met as a termination condition.

Frozen Objects. As mentioned in Section 3, an object’s set of extended traits is
fixed within the trait that defines it. This presents a technical challenge for type
checking: while compatibility can be checked on demand as terms are referenced
by the programmer, it is possible for an object to pick up additionally traits
indirectly as skipped fields meet; consider:

trait Base:

var value

trait Extl:
var X := new

def :3011): x.DoT() # Extl:=x
value := new # allocate Duck x.DoS() # Ext? = x

value.Quack() # Duck := value frozen: x.value cannot extend Wild

trait Ext2:
def DoS():

value.DoWild Thing() # Wild := value
In the right column of this code, the value field for Extl1 and Ext2 meet at x,
which by the previous judgment derives Ext2.value :— new, where new is the object
created in Extl. At this point, the Wild trait then propagates to new and an
error is detected; the challenge is then to reformat the detected error in terms
that the programmer can reason about; e.g. by referring to x.value when the Ext2
assignment is inferred.

Scalability

Even with our modified judgments for skipping fields, recursion can still induce
the materialization of an infinite number of terms; consider:
trait TDef:

var valA, next

def DoitC():
valA := next.valA # TDef.next := TDef, TDef.valA := TDef.next.valA

18

I'kFeq =ep X ey, I'E eq~ep Xerop, ec = eq X e,
les| < leal lec| = |eal, e» < ec < e
I'Feg,~ep Xeoe I'teq~ (ep Xerd[ec =eq]) Mesop

I'F eq~ ey, Xerop,
ec = eq X es, |ec| < ledl,
€aXerlp—erXe, epe <e @ (eqa Xer)Xes—
I'iep = ((ev xer | ec =ea]) @es) Lp ea X (e X €5)

©

Fig. 7. Judgments for promoting shallow-deep assignments via ~» relations.

By the reassignment judgments presented for field skipping, the assignment
TDef.next.valA := TDef.next.next.valA would be derived, followed by TDef.next.next.valA
:= TDef.next.next.next.valA, and so on!

Beyond decidability problems, our analysis is still not very scalable because
trait fields are busy nexuses of assignments with the trait’s methods’ arguments,
return values, and local variables. Accordingly, referencing one field of a method
would likely materialize a trait field and then the fields of many other methods,
which is quite expensive for each term. We deal with this problem by exploiting
depth in the assignment graph, expressed using =, <, and <:

lea| < lep] < [ea| = [es] lea-Fo| = |eq-Fi]
leal < les| <= leal <les| leq-Fol| = [en.Fi] < lea| = |es|
leq-F| < |R| IR = [R] lea-Fo| < lep| = lea| < les|

If |eq| < |es|, we say that e, is deeper than e, and, conversely, ey is shallower
than e,. Our strategy is to avoid deriving reassignments to/from shallower terms,
achieving decidability and bypassing shallower terms of less interest. The as-
signment chain is only followed up and over, but not down into deeper terms;
reassignment is then redefined as:

't eq.F =eg X e, |eq.F| < |eg 'k eq.F i=eg X e, |eg| < leq.F|
€q.F = ep Tp07 €q.F = ep TPO; €p :— €c Tpla
ey i— e. T p1, I(ec.F) J(en), eg X er L poopr — e X e
I'-e..Fi=¢€gxXelpoopr I'bFe..F=¢p Xeg

In other words, reassignment never causes the term graph to become deeper.
Assignments between shallower terms via deeper terms must then be promoted so
they are not missed, which we facilitate with a ~» propagation operator, defined
in Fig. 7. Strong assignments from shallower to deeper terms are transformed
by ® into ~~ relations that are propagated through same-depth assignments in
®. When a ~- relation hits an assignment from a deeper to a shallower term, it
is transformed by @ into a strong assignment that bypasses the deeper terms.
Note that x is also augmented in @ to operate on assignment scopes directly for

19

brevity in expressing ® and @. Also, for judgments ® and @, only assignments
under the rewrite scope of the ~~ relation are considered; other assignments are
handled through = relations as we talk about next.

Each ~- relation is associated with a rewrite path after ¢ that is initially e
by ® and is used by @ to rewrite the resulting assignment, which if € is a no-op
by Fig. 1. This rewrite path is used to integrate the ~- relations of distributed
sub-graphs that meet at some term:

' ey xe.opgopr =" e X egopaops, €f ~ eq X €4 9Py,

ef Xelpoopr =ep Xes L props, e e, p3Fe
Fl_ Eh%ebxesOPQ

I'tep~ep xesoprops

The = relation, as defined earlier in this Section, reveals where skipped terms
meet as the same term is assigned to their parents. We use it in this judgment
again to “transfer” ~» relations between different assignment subgraphs so that
the search for a shallower assignment is not limited to one sub-graph. Transfer of
a ~ relation is contingent on its rewrite scope (e;) being or being under (<) the
rewrite scope of the meet-source subgraph (e.), in contrast to judgments ® and
© of Fig. 7, where this must not be the case. Additionally, the rewrite path of
the ~ relation (pp) must begin the source subgraph’s own rewrite path (pgopi):
given that e, could be involved in multiple meetings, this prevents ~~ relations
from accidentally being transferred transitively to sub-graphs that they have no
relationship with. Finally, their must not already be a ~~ relation of a shorter
rewrite path (like po = €) in the destination sub-graph, which is important to
the efficiency of our analysis as ~ relations that do not add new information to
the destination sub-graph are not propagated.

When a ~ relation is transferred to the other subgraph, it is rewritten in
the terms of that sub-graph. We use the | definition to translate terms from
a rewrite path of the source subgraph (pg o p1) to the equivalent terms in the
destination subgraph whose rewrite path is ps o p3. Finally, the rewrite path of
the ~- relation is simply that of the destination sub-graph (p2 o p3).

As an example of how this judgment works with those in Fig. 7, consider:
®UA =UB.C| @®FB=FD| ®F =G| @®K=GA
@ H.D.C:=H.E @H =G ®U:=G
In this example, the relation U.A ~» U.B.C X U ¢ € is transferred to F.A ~»
F.B.C X Fo|[F := G] given the meeting of U.B and F.B at G. Then by the second
judgment of Fig. 7, F.A ~» F.D.C X Fo [F := G| is derived, which is transferred
to H.AA ~» H.D.C X Ho¢ [H = G] given the meeting of F.D and H.D at G. Finally,
G.A := G.E X G is derived by the third judgment in Fig. 7, which is rewritten by
the path [H := G]. As a result, K is assigned to G.E indirectly through G.A, where
this assignment is detected by our analysis.

The term-height analysis technique presented here allows for further opti-
mization. One of the most expensive operations during type checking is inte-
grating two independently developed traits T; and T, that extend a common

20

super trait To in different ways. These traits can then be pre-met in a new
empty trait Ti2 such that T, :== T12 and Ts := T12 where an assignment from T, or
T, is replaced with an assignment from T;» when the other trait is already know
to be extended. The benefit is that the “meet” computations above are then
computed only once for every case where T; and T» are used together. Addition-
ally, this technique allows for us to deal with modularity in a very nice way: we
can make “more private” terms deeper than “less private” ones so assignments
between them are automatically skipped for reassignment.

Complexity. Our analysis is then at worst logarithmic with respect to the
number of assignments for each term leading to a nlog(n) complexity of the
trait propagation graph; n being the number of assignments in I'. However,
this complexity depends on a balanced/deep tree of fields, and does not include
the overhead needed to skip deeper terms as presented next. Term tree depth
arises naturally by construction, i.e. by placing method local variables deeper
than method arguments, which are deeper than trait fields. Better yet, deep,
possibly recursive, call chains and object compositions, which analyses typically
have problems with, incidentally lead to a corresponding amount of depth in the
term graph. The complexity of trait propagation also does not include the cost
of propagating ~ relations, whose greatest cost in turn are being transferred
through =* relations. At worst, the complexity of a = analysis is n? for any
terms that meet where n binds the number of terms under these; consider:

® A =B.N ® C :=D.N ® E =C.N @ C=X

® B = A.N @ D == E.N ® A= X
Six N field terms meet at term X: A.N = C.N, B.N = E.N, A.N = D.N, B.N = C.N,
A.N = E.N, and B.N = D.N. However, recursively defined terms are often not out
of phase as in this example (2 vs. 3 recursive hops) and complexity is closer to n in
the common case. Finally, the analysis is very similar to one based on demand:
assignments are mostly not copied unless a term in the assignment chain is
referenced by the programmer; the exception being where ~~ relationships cause
the promotion of assignments at terms where they meet.

Threats to Validity. We have yet to show that this analysis is correct; while we
have tested it manually on many examples (filling up many notebooks), enough
corner cases justify more rigor. Additionally, although we have implemented a
previous less rigorous and less scalable version of this type system in YinYang’s
programming environment, at the time of this submission, the implementation
of the system presented in this paper is still incomplete.

5 Open Design Challenges

From a design perspective, the type inference system presented in this paper is
significantly deficient in a few ways. For one thing, without explicit trait exten-
sions, there is no basis to linearize [5] trait compositions in object definitions;

21

instead we currently order traits by their own extensions with each other, where
other ordering is arbitrary but stable. The type system also does not as is support
dynamic type tests that will invariably arise in real programs. At first glance,
dynamic type tests seem benign as they exist outside of the static type system.
However, additional inferences can occur guarded by a type test that, reasonably
to the programmer, should not be applied unless that test passed. To solve this
problem, we plan to enhance our type system in the future to support “guarded”
assignments that are not considered until their guard condition (reachability
from the tested trait) are known to be satisfied.

Without considering parametric methods, the number of unique fields in
a program is fixed according to the encoded structure of the program. With
parametric methods, however, a field must be created under the calling trait to
“instantiate” the method, where this field is then assigned to the method being
called. Although this complexity is necessary to ensure that instantiations of the
method meet overridden definitions correctly, it is unclear if an extra field-per-
call site would make our analysis infeasible. More consideration is needed.

Finally, as mentioned in Section 3, the analysis-based nature of our type
system complicates reasoning about typing properties and debugging type errors.
Typing results cannot be explained in a syntax-directed fashion, but is rather
obtained through reasoning over an assignment graph, leading to significant
usability challenges in how programmers understand type errors or how objects
are formed. The IDE can help out since it knows the assignment graph; e.g. each
trait listed in a type probe or error message can be clicked on to navigate to
the statement where the extended trait propagates or is seeded into the unit.
However, even this is not always good enough: the programmer might need to
examine the graph visually to determine what assignment or instantiation led to
a type incompatibility. McAdam [15]| describes how graphs can be presented to
programmers. Future work on YinYang can explore how term assignment graphs
can be used to help programmers debug their type errors.

6 Related Work

Realizing type inference through flow analysis is not new: it has been explored
with some depth in [26] for a type system with subtyping and recursive types,
though without parametricity [3]. YinYang, however, was designed specifically
to be typed by analyzing assignments, leading to its non-traditional typing be-
havior. Our analysis is then related to that on inclusion-based points-to analyses
such as Andersen’s analysis [4], and more specifically, those that deal with fields
in object-oriented languages. As mentioned in Section 2, much of this work [12,
13, 31, 36] depends on “looking” inside a parent term to see what objects they are
bound to. Our approach instead decodes field operations by copying field assign-
ments in the direction of the objects assigned to field parent terms, which works
better for type inference by avoiding direct object propagation. To the best of
our knowledge, we are the first to decode field operations into assignments; it is

22

not yet clear if this treatment would be useful in a points-to analysis to avoid
materializing all potential, but unreferenced, fields.

Concerning work specifically on type inference, Leroy [11] investigates how to
support type inference in the presence of assignment by treating type variables
involved in assignments as dangerous and disallowing generalization, meaning
they must be monomorphic. YinYang is not based on generalization and, in
fact, tackles fields and assignment as the core of its type system. Agesen ex-
plores type inference for objects in the presence of parametric polymorphism
with his Cartesian Product Algorithm [2] (CPA) for type inference in Self. CPA
resembles YinYang by also maintaining a graph built from assignments (an inno-
vation of Palsberg [25]); however, in CPA’s case, “clone families” propagate from
assignees to assignments, generalizing their type. CPA also does not support
the data polymorphism necessary to model collection types; YinYang supports
data polymorphism through its parametric treatment of field assignments. Other
work [29, 32,35] has dealt with data polymorphism using various context sen-
sitive global analyses; our direct approach should be more efficient, though we
have not compared against these systems directly.

Besides CPA, there is a plethora of work supporting type inference with
subtyping [8, 23,24, 27,29, 33, 37]; such techniques are expensive and limited, in
particular in the way they handle fields. Palsberg and Zhao [28] show how to
detect read-only fields as they admit covariant subtyping, yet YinYang instead
ensures that the assignee can take on all traits of any field that it is being assigned
into, still avoiding polymorphic cat calls [17]. The fundamental difference is that
subtyping in YinYang is prescriptive rather than restrictive; i.e.:

They’re subtypes, Jim, but not as we know them.

We do not claim that our approach to subtyping is better, just different; e.g. as
mentioned in Section 3, we lose the ability to directly check programmer intent
as we gain the ability to infer object compositions.

YinYang’s “typeless” code appears similar to code in dynamic languages like
Ruby [14] or Python [30], the latter of which is used as a role model for YinYang
(in addition to Scala [22]). However, while typing in YinYang is flexible, it is lim-
ited by a control flow insensitive analysis; dynamic languages also still require
“type annotations” to specify object compositions. The design of mixin-like traits
in YinYang are based on Scala’s [22], but are enhanced with compatibility re-
lationships to temper multiple inheritance so that traits can fully replace the
role of classes. Scala only supports local type inference [21], but then supports
advanced features beyond what could be expressed in YinYang such as existen-
tial types and GADTs. Still, having inference define objects in YinYang makes
fined-grained traits more viable as they do not need to be composed explicitly.

7 Conclusion

We introduced a new point in the type system design space based on assignment,
fields, and backward (toward assignee) propagation of trait extensions. With this

23

type system, YinYang is able to infer object compositions based on usage without
type annotations, allowing for the use of finer-grained traits in programming
and improving how code completion can aide programmers. The resulting type
system is able to support an OO language without many restrictions, and is also
simple from the programmer’s point of view: all feedback (including three kinds
of checks) is derived directly from trait propagation across assignments.

To realize this type system, we invented a novel field-sensitive analysis that
avoided the need for object propagation. We found that an assignment between
fields of a common term is naturally parametric for assignments of that com-
mon term, and exploited this property to model all typing aspects of YinYang
with assignments and fields. Finally, we demonstrated how this analysis could
be feasible (decidable and scalable) using field skipping and an approach that
exploited the “height” of a rooted tree of fields.

There is still much work to be done. We are actively re-implementing our
type system based on what we learned from this paper’s rigorous treatment.
Additionally, we must still show that our scalable analysis is equivalent to our
sound but undecidable analysis. Finally, YinYang should be improved to support
dynamic typing, efficient parametric methods, and better type debugging.

References

1. Agesen, O.: Constraint-based type inference and parametric polymorphism. In:
Proc. of SAS. pp. 78-100 (1994)
2. Agesen, O.: The cartesian product algorithm: Simple and precise type inference of
parametric polymorphism. In: Proc. of ECOOP. pp. 2-26 (1995)
3. Amadio, R.M., Cardelli, L.: Subtyping recursive types. In: Proc. of POPL. pp.
104-118 (1991)
4. Andersen, L.O.: Program Analysis and Specialization for the C Programming Lan-
guage. Ph.D. thesis, DIKU, University of Copenhagen (1994)
5. Bracha, G., Cook, W.: Mixin-based inheritance. In: Proc. of OOPSLA/ECOOP.
pp- 303-311 (1990)
6. Curry, G., Baer, L., Lipkie, D., Lee, B.: Traits: An approach to multiple-inheritance
subclassing. In: Proc. of SIGOA. pp. 1-9 (Jun 1982)
7. Damas, L.: Type Assignment in Programming Languages. Ph.D. thesis, University
of Edinburgh (1984)
8. Eifrig, J., Smith, S.F., Trifonov, V.: Type inference for recursively constrained
types and its application to oop. ENTCS 1, 132-153 (1995)
9. Hall, C.V., Hammond, K., Peyton Jones, S.L., Wadler, P.L..: Type classes in
Haskell. ACM TOPLAS 18(2), 109-138 (Mar 1996)
10. Hindley, R.: The principal type-scheme of an object in combinatory logic. Trans-
actions of AMS 146, 29-60 (1969)
11. Leroy, X., Weis, P.: Polymorphic type inference and assignment. In: Proc. of POPL.
pp. 291-302 (1991)
12. Lhoték, O., Hendren, L.J.: Scaling java points-to analysis using spark. In: Proc. of
CC. pp. 153-169 (2003)
13. Liang, D., Pennings, M., Harrold, M.J.: Extending and evaluating flow-insenstitive
and context-insensitive points-to analyses for Java. In: Proc. of PASTE. pp. 73-79
(2001)

24

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

36.

37.

Matsumoto, Y.: The Ruby programming language. www.ruby-lang.org (1996-2013)
McAdam, B.J.: Graphs for recording type information. Tech. rep., UNIVERSITY
OF EDINBURGH (1999)

McDirmid, S.: Escaping the maze of twisty classes. In: Proc. of SPLASH Onward!
pp. 127-138 (Oct 2012)

Meyer, B.: Beware of polymorphic catcalls. www.eiffel.com/doc/manuals/tech-
nology/typing/cat.html (1995)

Milner, R.: A theory of type polymorphism in programming. JCSS 17, 348-375
(1978)

Moon, D.A.: Object-oriented programming with Flavors. In: Proc. of OOPSLA.
pp. 1-8 (1986)

Nathan, A.: Windows Presentation Foundation Unleashed (WPF) (Unleashed).
Sams (2006)

Odersky, M., Zenger, C., Zenger, M.: Colored local type inference. In: Proc. of
POPL. pp. 41-53 (2001)

Odersky, M., Zenger, M.: Scalable component abstractions. In: Proc. of OOPSLA.
pp. 41-57 (2005)

Ohori, A., Buneman, P.: Static type inference for parametric classes. In: Proc. of
OOPSLA. pp. 445-456 (1989)

Oxhgj, N., Palsberg, J., Schwartzbach, M.I.: Making type inference practical. In:
Proc. of ECOOP. pp. 329-349 (1992)

Palsberg, J.: Efficient inference of object types. In: Proc. of LICS. pp. 186-195
(1994)

Palsberg, J., O’Keefe, P.: A type system equivalent to flow analysis. ACM TOPLAS
17(4), 576-599 (Jul 1995)

Palsberg, J., Wand, M., O’Keefe, P.: Type inference with non-structural subtyping.
Formal Asp. Comput. 9(1), 49-67 (1997)

Palsberg, J., Zhao, T., Jim, T.: Automatic discovery of covariant read-only fields.
ACM TOPLAS 27(1), 126-162 (Jan 2005)

Plevyak, J., Chien, A.A.: Precise concrete type inference for object-oriented lan-
guages. In: Proc. of OOPSLA. pp. 324-340 (1994)

van Rossum, G.: The Python programming language manual. www.python.org
(1990-2013)

Rountev, A., Milanova, A., Ryder, B.G.: Points-to analysis for java using annotated
constraints. In: Proc. of OOPSLA. pp. 43-55 (2001)

Spoon, S.A., Shivers, O.: Dynamic data polyvariance using source-tagged classes.
In: Proc. of DLS. pp. 35-48 (2005)

Suzuki, N.: Inferring types in Smalltalk. In: Proc. of POPL. pp. 187-199 (1981)
Tofte, M.: Type inference for polymorphic references. Inf. Comput. 89(1), 1-34
(Sep 1990)

Wang, T., Smith, S.F.: Precise constraint-based type inference for java. In: Proc.
of ECOOP (2001)

Whaley, J., Lam, M.S.: An efficient inclusion-based points-to analysis for strictly-
typed languages. In: Proc. of SAS. pp. 180-195 (2002)

Zhao, T.: Polymorphic type inference for scripting languages with object exten-
sions. In: Proc. of DLS. pp. 37-50 (2011)

