
Under consideration for publication in J. Functional Programming 1

Parametricity, Type Equality and Higher-order
Polymorphism

DIMITRIOS VYTINIOTIS
Microsoft Research

STEPHANIE WEIRICH
University of Pennsylvania

Abstract

Propositions that express type equality are a frequent ingredient of modern functional
programming—they can encode generic functions, dynamic types, and GADTs. Via the
Curry-Howard correspondence, these propositions are ordinary types inhabited by proof
terms, computed using runtime type representations. In this paper we show that two exam-
ples of type equality propositions actually do reflect type equality; they are only inhabited
when their arguments are equal and their proofs are unique (up to equivalence.) We show
this result in the context of a strongly normalizing language with higher-order polymor-
phism and primitive recursion over runtime type representations by proving Reynolds’s
abstraction theorem. We then use this theorem to derive “free” theorems about equality
types.

1 Type equivalence, isomorphism and equality

Type equivalence propositions assert that two types are isomorphic. For example,
we may define such a proposition (in Haskell) as follows:

type EQUIV a b = (a -> b, b -> a)

Under the Curry-Howard correspondence, which identifies types and propositions,
EQUIV asserts logical equivalence between two propositions: a implies b and b im-
plies a. A proof of this equivalence, a pair of functions f and g, is a type isomor-
phism when the two functions compose to be the identity—in other words, when
f . g = id and g . f = id. In that case, if (f,g) is a proof of the proposition
EQUIV a Int, and x is an element of type a, then we can coerce x to be of type
Int with f.

In the past ten years, a number of authors have proposed the use of type equiva-
lence propositions in typed programming languages (mostly Haskell). Type equiva-
lence propositions have been used to implement heterogeneous data structures, type
representations and generic functions, dynamic types, logical frameworks, metapro-
gramming, GADTs, and forms of lightweight dependent types (?; ?; ?; ?; ?; ?; ?).

Many of these authors point out that it is also possible to define a proposition
that asserts that two types are not just equivalent, but that they are in fact equal.

2 Dimitrios Vytiniotis and Stephanie Weirich

Equality is a stronger relation than equivalence as it must be substitutive as well as
reflexive, symmetric and transitive [See (?) page 157]. Type equality propositions
are also called equality types.

One definition of type equality is Leibniz equality—two types are equal iff one
may be replaced with the other in all contexts. In Haskell, we may define the Leibniz
equality proposition using higher-order polymorphism to quantify over all contexts.

type EQUAL a b = forall c. c a -> c b

Type equivalence and type equality propositions may be used for many of the
same applications, but there are subtle differences between them. Equivalence holds
for types that are not definitionally equal; for example, the types (Int, Bool) and
(Bool, Int) are not equal in the Haskell type system, but they are isomorphic. One
element of type EQUIV (Int, Bool) (Bool, Int) is two copies of a function that
swaps the components of a pair. However, not all inhabitants of isomorphic types
are type isomorphisms—for example, the term (const 0, const 1) inhabits the
type EQUIV Int Int. Finally, some equivalent types are not isomorphic at all. For
example, the proposition EQUIV Int Bool is provable, but not by any isomorphism
between the types.

In contrast, equality only holds for equal types and equal types are trivially
isomorphic. There are no (terminating) inhabitants of type EQUAL Int Bool or
of EQUAL (Int, Bool) (Bool, Int). We know this because of parametricity: for
the latter type an inhabitant would need to know how to swap the components
of the pair in an arbitrary context. Furthermore, the only inhabitants of type
EQUAL Int Int are identity functions. Again, the reason is parametricity—because
the context is abstract the function has no choice but to return its argument.

These observations about the difference between the properties of type equiv-
alence and of type equality are informal, and we would like to do better. In this
paper, we make the previous arguments about type equality rigorous by deriv-
ing free theorems (?; ?) about equality types from Reynolds’s abstraction theorem.
Reynolds’s abstraction theorem (also referred to as the “parametricity theorem” (?)
or the “fundamental theorem” of logical relations) asserts that every well-typed ex-
pression of the polymorphic λ-calculus (System F) (?) satisfies a property directly
derivable from its type.

We derive these free theorems from the parametricity theorem for a language
called Rω (?), which extends Girard’s Fω with constructs that are useful for pro-
gramming with type equivalence propositions (see the next section). Using these
constructs in Rω we can define a type-safe cast operation which compares types and
produces an equality proof when they are the same. This extension comes at little
cost as the necessary modifications to the Fω parametricity theorem are modest
and localized. Like Fω, Rω is a (provably, using the results in this paper) termi-
nating language, which simplifies our development and allows us to focus on the
parametricity properties of higher-order polymorphism. Of course, our results will
not carry over to full languages like Haskell without extension.

After proving a version of the abstraction theorem for Rω, we show how to apply

Parametricity, Type Equality and Higher-order Polymorphism 3

it to the type EQUAL to show that it is inhabited only when the source and target
types are the same, in which case that inhabitant must be the identity.

Our use of free theorems for higher-order polymorphism exhibits an intriguing
behavior. Whereas free theorems for second-order polymorphism quantify over arbi-
trary relations, they are often instantiated with (the graphs of) functions expressible
in the polymorphic λ-calculus (?). By contrast, in our examples we instantiate free
theorems with (the graphs of) non-parametric functions.

1.1 Contributions.

The primary contribution of this paper is the correctness of the equality type,
which implies correctness properties of a type-safe cast operation that can produce
it. In addition, we use our framework to prove correctness for another equality
proposition, which defines type equality as the smallest reflexive relation. We show
that this latter proposition also holds only for equal types, is inhabited by a single
member, and that the two equality types are isomorphic.

Along with these results, we consider our proof of parametricity for Rω to be a
significant contribution. This paper offers a fully explicit and accessible roadmap
to the proof of parametricity for higher-order polymorphism, using the technique
of syntactic logical relations,1 and insisting on rigorous definitions. Rigorous def-
initions are not only challenging to get right but important in practice, since our
examples demonstrate that the “power” of the meta-logical functions involved in
instantiating the free theorems determines the expressiveness of these free theorems.

Because of our attention to formal details, our development is particularly well-
suited for mechanical verification in proof assistants based on Type Theory (the
meta-logic of choice in this paper), such as Coq (http://coq.inria.fr). To this
end, we offer a Coq formalization of the definitions in the Appendix.

2 Constructing equivalence and equality types

In this section we give an informal introduction to Rω. Although we use Haskell
syntax throughout the section (and all of the code is valid Haskell) our examples
are intended to demonstrate Rω programming.

Type equivalence and equality propositions can be constructed through dynamic
type analysis. By comparing two types at runtime, we can produce a proof that
they are isomorphic. Despite the fact that Rω is a parametric language, dynamic
type analysis is possible through representation types (?). The key idea is simple:
Because the behavior of parametrically polymorphic functions cannot be influenced
by the types at which they are instantiated, type analyzing functions dispatch on
term arguments that represent types.

Although native to Rω, representation types may be implemented in Haskell by a

1 The term “syntactic” refers to logically interpreting types as relations between syntactic terms,
as opposed to semantic denotations of terms.

4 Dimitrios Vytiniotis and Stephanie Weirich

Generalized Algebraic Datatype (gadt) called R a, which represents its type index
a (?; ?).

data R a where

Rint :: R Int

Runit :: R ()

Rprod :: R a -> R b -> R (a,b)

Rsum :: R a -> R b -> R (Either a b)

Rarr :: R a -> R b -> R (a -> b)

The datatype R includes five data constructors: The constructor Rint provides
a representation for type Int, hence its type is R Int. Likewise, Runit represents
() and has type R (). The constructors Rprod and Rsum represent products and
sums (called Either types in Haskell). They take as inputs a representation for
a, a representation for b, and return representations for (a,b) and Either a b

respectively. Finally Rarr represents function types. The important property of
datatype R a is that the type index a changes with the data constructor. In contrast,
in an ordinary datatype, all data constructors must return the same type.

Representation types may be used to define type-safe cast that compares two dif-
ferent type representations and, if they match, produces an equivalence or equality
proof. Type-safe cast tests, at runtime, whether a value of a given representable
type can safely be viewed as a value of a second representable type—even when the
two types cannot be shown equal at compile-time.

Weirich (?) defined two different versions of type-safe cast, cast and gcast,
shown in Figure ??. Our implementations differ slightly from Weirich’s—namely
they use Haskell’s Maybe type to account for potential failure, instead of an error

primitive—but the essential structure is the same.
The first version, cast, works by comparing the two representations and then

producing a coercion function that takes its argument apart, coerces the sub-
components individually, and then puts it back together. In the first clause, both
representations are Rint, so the type checker knows that a=b=Int, and so the iden-
tity function may be returned. Similar reasoning holds for Runit. In the case for
products and sums, Haskell’s monadic syntax for Maybe ensures that cast returns
Nothing when one of the recursive calls returns Nothing; otherwise g and h are
bound to coercions of the sub-components. To show how this works, the case for
products has been decorated with type annotations. Note that in the function case,
a reverse cast is needed to handle the contra-variance of the function type construc-
tor. If this cast succeeds, then it produces (half of) a type equivalence proof.

Alternatively, gcast produces a proof of Leibniz equality. The resulting coercion
function never needs to decompose (or even evaluate) its argument. The key ingre-
dient is the use of the higher-order type argument c that allows gcast to return a
coercion from c a to c b.

In the implementation of gcast, the type constructor c allows the recursive calls
to gcast to create a coercion that changes the type of part of its argument. Again,
the case for products has been decorated with type annotations—the first recursive
call changes the type of the first component of the product, the second recursive call

Parametricity, Type Equality and Higher-order Polymorphism 5

data R a where

Rint :: R Int

Runit :: R ()

Rprod :: R a -> R b -> R (a,b)

Rsum :: R a -> R b -> R (Either a b)

Rarr :: R a -> R b -> R (a -> b)

cast :: R a -> R b -> Maybe (a -> b)

cast Rint Rint = Just (\x -> x)

cast Runit Runit = Just (\x -> x)

cast (Rprod (ra0 :: R a0) (rb0 :: R b0))

(Rprod (ra0’ :: R a0’) (rb0’ :: R b0’))

= do (g :: a0 -> a0’) <- cast ra0 ra0’

(h :: b0 -> b0’) <- cast rb0 rb0’

Just (\(a,b) -> (g a, h b))

cast (Rsum ra0 rb0) (Rsum ra0’ rb0’)

= do g <- cast ra0 ra0’

h <- cast rb0 rb0’

Just (\x -> case x of Left a -> Left (g a)

Right b -> Right (h b))

cast (Rarr ra0 rb0) (Rarr ra0’ rb0’)

= do g <- cast ra0’ ra0

h <- cast rb0 rb0’

return (\x -> h . x . g)

cast _ _ = Nothing

type EQUAL a b = forall c. c a -> c b

newtype CL f c a d = CL { unCL :: c (f d a) }

newtype CR f c a d = CR { unCR :: c (f a d) }

gcast :: forall a b. R a -> R b -> Maybe (EQUAL a b)

gcast Rint Rint = Just (\x -> x)

gcast Runit Runit = Just (\x -> x)

gcast (Rprod (ra0::R a0) (rb0::R b0)) (Rprod (ra0’::R a0’) (rb0’::R b0’))

= do g <- gcast ra0 ra0’

h <- gcast rb0 rb0’

let g’ :: c (a0, b0) -> c (a0’, b0)

g’ = unCL . g . CL

h’ :: c (a0’, b0) -> c (a0’, b0’)

h’ = unCR . h . CR

Just (h’ . g’)

gcast (Rsum ra0 rb0) (Rsum ra0’ rb0’)

= do g <- gcast ra0 ra0’

h <- gcast rb0 rb0’

return (unCR . h . CR . unCL . g . CL)

gcast (Rarr ra0 rb0) (Rarr ra0’ rb0’)

= do g <- gcast ra0 ra0’

h <- gcast rb0 rb0’

return (unCR . h . CR . unCL . g . CL)

gcast _ _ = Nothing

Fig. 1: Haskell implementation of cast and gcast

6 Dimitrios Vytiniotis and Stephanie Weirich

changes the type of the second component. In each recursive call, the instantiation
of c hides the parts of the type that remain unchanged. The newtypes CL and
CR allow unification to select the right instantiation of c. Note that the cases for
products, sums and arrow types are identical (except for the type annotations).

An important difference between the two versions has to do with correctness.
When the type comparison succeeds, type-safe cast should behave like an identity
function. Informal inspection suggests that both implementations do so. However
in the case of cast, it is possible to mess up. In particular, it is type sound to
replace the clause for Rint with:

cast Rint Rint = Just (\x -> 21)

The type of gcast more strongly constrains its implementation. We could not re-
place the first clause with

gcast Rint Rint = Just (\x -> 21)

because the type of the returned coercion must be c Int -> c Int, not Int -> Int.
Informally, we can argue that the only coercion function that could be returned must
be an identity function as c is abstract. The only way to produce a result of type
c Int (discounting divergence) is to use exactly the one that was supplied.

In the rest of this paper, we make this argument formal by deriving a free theorem
for EQUAL from the parametricity theorem for Rω.

Of course, we do not actually need Rω to show this result. Representation types
are directly encodable in Fω via a Church encoding (?) or by using type isomor-
phisms (?). However, the definitions of cast and gcast are simpler using native
representation types than either encoding as the type system (Haskell or Rω) can
implicitly use the type equalities introduced through type analysis. Furthermore,
in a strongly normalizing language, such as Fω, the native version is slightly more
expressive. It is not clear how to encode the primitive recursive elimination form
supported by native representation types; only iteration can be supported (?). Fi-
nally, extending an Fω parametricity proof to Rω only requires local changes to
support the representation types, so the cost of this extension in minimal.

3 Parametricity for Rω

3.1 The Rω calculus.

The Rω calculus is a Curry-style extension of Fω (?). The syntax of this lan-
guage appears in Figure ?? and the static semantics appears in Figures ?? and
??. Kinds κ include the base kind, ?, which classifies the types of expressions,
and constructor kinds, κ1 → κ2. The type syntax, σ, includes type variables,
type constants, type-level applications, and type functions. Although type-level λ-
abstractions complicate the formal development of the parametricity theorem, they
simplify programming—for example, in Figure ?? we had to introduce the construc-
tors CL and CR only because Haskell does not include type-level λ-abstractions.

Type constructor constants, K, include standard operators, plus representation

Parametricity, Type Equality and Higher-order Polymorphism 7

Kinds κ ::= ? | κ1 → κ2

Types σ, τ ::= a | K | σ1 σ2 | λa:κ.σ
Type constants K ::= R | () | int |→| × | + | ∀κ

Expressions e ::= Rint | R() | R× e1 e2 | R+ e1 e2 | R→ e1 e2

| typerec e of {eint ; e() ; e× ; e+ ; e→}
| fst e | snd e | (e1, e2) | inl e | inr e
| case e of {x.el ; x.er}
| () | i | x | λx.e | e1 e2

Typing contexts Γ ::= · | Γ, a:κ | Γ, x:τ

Fig. 2: Syntax of System Rω

Γ ` τ : κ

(a:κ) ∈ Γ

Γ ` a : κ

kind(K) = κ

Γ ` K : κ

Γ ` τ1 : κ1 → κ Γ ` τ2 : κ1

Γ ` τ1 τ2 : κ

Γ, a:κ1 ` τ : κ2

Γ ` λa:κ1.τ : κ1 → κ2

kind(→) = ? → ? → ?
kind(×) = ? → ? → ?
kind(+) = ? → ? → ?
kind(∀κ) = (κ → ?) → ?

kind(int) = ?
kind(()) = ?
kind(R) = ? → ?

Γ ` τ1 ≡ τ2 : κ

Γ ` τ : κ
refl

Γ ` τ ≡ τ : κ

Γ ` τ2 ≡ τ1 : κ
sym

Γ ` τ1 ≡ τ2 : κ

Γ ` τ1 ≡ τ2 : κ Γ ` τ2 ≡ τ3 : κ
trans

Γ ` τ1 ≡ τ3 : κ

Γ ` τ1 ≡ τ3 : κ1 → κ2 Γ ` τ2 ≡ τ4 : κ1

app
Γ ` τ1 τ2 ≡ τ3 τ4 : κ2

Γ, a:κ1 ` τ1 ≡ τ2

abs
Γ ` λa:κ1.τ1 ≡ λa:κ1.τ2 : κ1→κ2

Γ, a:κ1 ` τ1 : κ2 Γ ` τ2 : κ2

beta
Γ ` (λa:κ1.τ1) τ2 ≡ τ1{τ2/a} : κ2

Γ ` τ : κ1 → κ2 a 6∈ fv(τ)
eta

Γ ` (λa:κ1.τ a) ≡ τ : κ1 → κ2

Fig. 3: Type well-formedness and equivalence

8 Dimitrios Vytiniotis and Stephanie Weirich

Γ ` e : τ

int
Γ ` i : int

unit
Γ ` () : unit

Γ, (x:τ1) ` e : τ2 Γ ` τ1 : ?
abs

Γ ` λx.e : τ1 → τ2

(x:τ) ∈ Γ
var

Γ ` x : τ

Γ ` e1 : σ → τ Γ ` e2 : σ
app

Γ ` e1 e2 : τ

Γ ` e1 : σ Γ ` e2 : τ
prod

Γ ` (e1, e2) : σ × τ

Γ ` e : σ × τ
fst

Γ ` fst e : σ

Γ ` e : σ × τ
snd

Γ ` snd e : τ

Γ ` e : σ
inl

Γ ` inl e : σ + τ

Γ ` e : τ
inr

Γ ` inr e : σ + τ

Γ ` e : σ1 + σ2 Γ, x : σ1 ` el : τ Γ, x : σ2 ` er : τ
case

Γ ` case e of {x . el ; x . er} : τ

Γ ` e : τ1 Γ ` τ1 ≡ τ2 : ?
t-eq

Γ ` e : τ2

Γ ` e : ∀κσ Γ ` τ : κ
inst

Γ ` e : σ τ

Γ, (a:κ) ` e : σ a
gen

Γ ` e : ∀κσ

rint
Γ ` Rint : R int

runit
Γ ` R() : R ()

Γ ` e1 : R σ1 Γ ` e2 : R σ2

rprod
Γ ` R× e1 e2 : R (σ1, σ2)

Γ ` e1 : R σ1 Γ ` e2 : R σ2

rsum
Γ ` R+ e1 e2 : R (σ1 + σ2)

Γ ` e1 : R σ1 Γ ` e2 : R σ2

rarr
Γ ` R→ e1 e2 : R (σ1 → σ2)

Γ ` σ : ? → ? Γ ` e : R τ
Γ ` eint : σ int Γ ` e() : σ ()

Γ ` e× : ∀(a b:?).R a → σ a → R b → σ b → σ (a× b)
Γ ` e+ : ∀(a b:?).R a → σ a → R b → σ b → σ (a + b)
Γ ` e→ : ∀(a b:?).R a → σ a → R b → σ b → σ (a → b)

trec
Γ ` typerec e of {eint ; e() ; e× ; e+ ; e→} : σ τ

Fig. 4: Typing relation for Rω

Parametricity, Type Equality and Higher-order Polymorphism 9

types R. In the following, we write →, ×, and + using infix notation and asso-
ciate applications of → to the right. We treat impredicative polymorphism with
an infinite family of universal type constructors ∀κ indexed by kinds. We write
∀(a1:κ1) . . . (an:κn).σ to abbreviate

∀κ1(λa1:κ1. . . .∀κn
(λan:κn.σ) . . .) .

Rω expressions e include abstractions, products, sums, integers and unit. We
leave type abstractions and type applications implicit to reduce notation overhead
(but note that this choice has an impact on parametricity in the presence of impure
features—see Section ??). Rω includes type representations Rint, R(), R×, R+, and
R→which must be fully applied to their arguments. We do not include representa-
tions for polymorphic types in Rω because they significantly change the semantics
of the language, as we discuss in Section ??. The Rω language is terminating, but
includes a term typerec that can perform primitive recursion on type representa-
tions, and includes branches for each possible representation.

For completeness, we give the Rω implementations of gcast in Figure ??.
The dynamic semantics of Rω is a standard large-step non-strict operational

semantics, presented in Figure ??. Essentially typerec performs a fold over its
type representation argument. We use u, v, w for Rω values, the syntax of which is
also given in Figure ??.

The static semantics of Rω contains judgments for kinding, definitional type
equality, and typing. Each of these judgments uses a unified environment, Γ, con-
taining bindings for type variables (a:κ) and term variables (x:τ). We use · for the
empty environment. The notations Γ, x:τ and Γ, a:κ are defined only when x and a

are not already in the domain of Γ. The kinding judgment Γ ` τ : κ (in Figure ??)
states that τ is a well-formed type of kind κ and ensures that all the free type
variables of the type τ appear in the environment Γ with correct kinds.

We refer to arbitrary closed types of a particular kind with the following predicate:

3.1 Definition [Closed types]: We write τ ∈ ty(κ) iff · ` τ : κ.

The typing judgment has the form Γ ` e : τ and appears in Figure ??. The
interesting typing rules are the introduction and elimination forms for type repre-
sentations. The rest of this typing relation is standard. Notably, our typing relation
includes the standard conversion rule, t-eq. The judgment Γ ` τ1 ≡ τ2 : κ defines
type equality as a congruence relation that includes βη-conversion for types. (In rule
beta, we write τ{σ/a} for the capture avoiding substitution of σ for a inside τ .) In
addition, we implicitly identify α-equivalent types, and treat them as syntactically
equal in the rest of the paper. We give the definition of type equality in Figure ??.
The presence of the rule t-eq is important for Rω because it allows expressions to
be typed with any member of an equivalence class of types. This behavior fits our
intuition, but complicates the formalization of parametricity; a significant part of
this paper is devoted to complications introduced by type equality.

10 Dimitrios Vytiniotis and Stephanie Weirich

1 gcast :: ∀a : ?.∀b : ?.R a → R b → () + (∀c : ? → ?.c a → c b)
2 gcast = λx.typerec x of {
3 λy.typerec y of {inr λz.z ; inl () ; inl () ; inl () ; inl ()};
4 λy.typerec y of {inl () ; inr λz.z ; inl () ; inl () ; inl ()};
5 λra1.λf1.λra2.λf2.λy.typerec y of {
6 inl ();
7 inl ();
8 λrb1.λg1.λrb2.λg2.

9 case f1 rb1 of {h.inl () ; h1.
10 case f2 rb2 of {h.inl () ; h2.
11 inr (λz.h2 (h1 z))
12 }};
13 λrb1.λg1.λrb2.λg2.inl ();
14 λrb1.λg1.λrb2.λg2.inl ()};
15 λra1.λf1.λra2.λf2.λy.typerec y of {
16 inl ();
17 inl ();
18 λrb1.λg1.λrb2.λg2.inl ();
19 λrb1.λg1.λrb2.λg2.

20 case f1 rb1 of {h.inl () ; h1.
21 case f2 rb2 of {h.inl () ; h2.
22 inr (λz.h2 (h1 z))
23 }};
24 λrb1.λg1.λrb2.λg2.inl ();}
25 λra1.λf1.λra2.λf2.λy.typerec y of {
26 inl ();
27 inl ();
28 λrb1.λg1.λrb2.λg2.inl ();
29 λrb1.λg1.λrb2.λg2.inl ();
30 λrb1.λg1.λrb2.λg2.

31 case f1 rb1 of {h.inl () ; h1.
32 case f2 rb2 of {h.inl () ; h2.
33 inr (λz.h2 (h1 z))
34 }}}};

Fig. 5: Definition of gcast in Rω. Note that lines 11, 22 and 33 are identical.

3.2 The abstraction theorem.

Deriving free theorems requires first defining an appropriate interpretation of types
as binary relations2 (in the meta-logic that is used for reasoning) between terms
and showing that these relations are reflexive. This result is the core of Reynolds’s
abstraction theorem:

If · ` e : τ then (e, e) ∈ C J· ` τ : ?K·

2 We use binary relations so that we can relate our definition to contextual equivalence. Note
however that for the examples in this paper a unary interpretation is sufficient, but we chose to
not sacrifice the extra generality.

Parametricity, Type Equality and Higher-order Polymorphism 11

Values v, w, u ::= Rint | R() | R× e1 e2 | R+ e1 e2 | R→ e1 e2

| (e1, e2) | inl e | inr e | () | i | λx.e

Branches e ::= {eint ; e() ; e× ; e+ ; e→}

e ⇓ v

v ⇓ v

e1 ⇓ λx.e′ e′{e2/x} ⇓ v

e1 e2 ⇓ v

e ⇓ (e1, e2) e1 ⇓ v

fst e ⇓ v

e ⇓ (e1, e2) e2 ⇓ v

snd e ⇓ v

e ⇓ inl e1 el{e1/x} ⇓ v

case e of {x.el ; x.er} ⇓ v

e ⇓ inr e2 er{e2/x} ⇓ v

case e of {x.el ; x.er} ⇓ v

e ⇓ Rint eint ⇓ v

typerec e of e ⇓ v

e ⇓ R() e() ⇓ v

typerec e of e ⇓ v

e ⇓ R× e1 e2

e× e1 (typerec e1 of e) e2 (typerec e2 of e) ⇓ v

typerec e of e ⇓ v

e ⇓ R+ e1 e2

e+ e1 (typerec e1 of e) e2 (typerec e2 of e) ⇓ v

typerec e of e ⇓ v

e ⇓ R→ e1 e2

e→ e1 (typerec e1 of e) e2 (typerec e2 of e) ⇓ v

typerec e of e ⇓ v

Fig. 6: Operational semantics rules

Free theorems result from unfolding the definition of the interpretation of types
(which appears in Figure ??, using Definition ??). However, before we can present
that definition, we must first explain a number of auxiliary concepts.

First, we define a (meta-logical) type, GRelκ, to describe the interpretation of
types of arbitrary kind. Only types of kind ? are interpreted as term relations—types
of higher kind are interpreted as sets of morphisms. (To distinguish between Rω

and meta-logical functions, we use the term morphism for the latter.) For example,
the interpretation of a type of kind ? → ?, a type level function from types to types,
is the set of morphisms that take term relations to appropriate term relations.

12 Dimitrios Vytiniotis and Stephanie Weirich

r ∈ VRel(τ1, τ2)
4
= ∀(e1, e2) ∈ r,

e1 and e2 are values ∧ (· ` e1 : τ1) ∧ (· ` e2 : τ2)

(τ1, τ2, r) ∈ wfGRel? 4
= r ∈ VRel(τ1, τ2)

(τ1, τ2, r) ∈ wfGRelκ1→κ2 4
=

for all ρ ∈ wfGRelκ1 , (τ1 ρ1, τ2 ρ2, r ρ) ∈ wfGRelκ2∧
for all π ∈ wfGRelκ1 , ρ ≡ π =⇒ r ρ ≡κ2 r π

r ≡? s
4
= for all e1 e2, (e1, e2) ∈ r ⇐⇒ (e1, e2) ∈ s

r ≡κ1→κ2 s
4
= for all ρ ∈ wfGRelκ1 , (r ρ) ≡κ2 (s ρ)

ρ ≡ π
4
= (· ` ρ1 ≡ π1 : κ) ∧ (· ` ρ2 ≡ π2 : κ) ∧ ρ̂ ≡κ π̂

Fig. 7: Well-formed generalized relations and equality

3.2 Definition [(Typed-)Generalized Relations]:

r, s ∈ GRel? 4
= P(term× term)

GRelκ1→κ2
4
= TyGRelκ1 ⊃ GRelκ2

ρ, π ∈ TyGRelκ 4
= ty(κ)× ty(κ)× GRelκ

The notation P(term × term) stands for the space of binary relations on terms
of Rω. We use ⊃ for the function space constructor of our meta-logic, to avoid
confusion with the → constructor of Rω.

Generalized relations are mutually defined with Typed-Generalized Relations,
TyGRelκ, which are triples of generalized relations and types of the appropriate kind.
Elements of GRelκ1→κ2 accept one of these triples. These extra ty(κ) arguments
allow the morphisms to dispatch control depending on types as well as relational
arguments. This flexibility will turn out to be important for the free theorems about
Rω programs that we show in this paper.

At first glance, Definition ?? seems strange because it returns the term relation
space at kind ?, while at higher kinds it returns a particular function space of
the meta-logic. These two do not necessarily “type check” with a common type.
However, in an expressive enough meta-logic, such as CIC (?) or ZF set theory,
such a definition is indeed well-formed, as there exists a type containing both spaces
(for example Type in CIC (see Appendix ??), or pure ZF sets in ZF set theory).
In contrast, in HOL it is not clear how to build a common type “hosting” the
interpretations at all kinds.

Unfortunately, not all objects of GRelκ are suitable for the interpretation of types.
In Figure ??, we define well-formed generalized relations, wfGRelκ, a predicate on
objects in TyGRelκ. We define this predicate mutually with extensional equality on
generalized relations (≡κ) and on Typed-Generalized relations (≡). Because our
wfGRelκ conditions depend on equality for type GRelκ, we cannot include those
conditions in the definition of GRelκ itself.

Parametricity, Type Equality and Higher-order Polymorphism 13

JΓ ` τ : κK ∈ SubstΓ ⊃ GRelκ

JΓ ` a : κKδ

4
= δ̂(a)

JΓ ` K : κKδ

4
= JKK

JΓ ` τ1 τ2 : κKδ

4
= JΓ ` τ1 : κ1 → κKδ (δ1τ2, δ2τ2, JΓ ` τ2 : κ1Kδ)

when Γ ` τ1 : κ1 → κ and Γ ` τ2 : κ1

JΓ ` λa:κ1.τ : κ1 → κ2Kδ

4
= λρ ∈ TyGRelκ1 7→ JΓ, a:κ1 ` τ : κ2Kδ,a7→ρ

where a#Γ

Fig. 8: Relational interpretation of Rω

At kind ?, (τ1, τ2, r) ∈ wfGRel? checks that r is not just any relation between
terms, but a relation between values of types τ1 and τ2. (We use =⇒ and ∧ for meta-
logical implication and conjunction, respectively.) At kind κ1 → κ2 we require two
conditions. First, if r is applied to a well-formed TyGRelκ1 , then the result must
also be well-formed. (We project the three components of ρ with the notations ρ1,
ρ2 and ρ̂ respectively.) Second, for any pair of equivalent triples, ρ and π, the results
r ρ and r π must also be equal. This condition asserts that morphisms that satisfy
wfGRelκ respect the type equivalence classes of their type arguments.

Equality on generalized relations is also indexed by kinds; for any two r, s ∈
GRelκ, the proposition r ≡κ s asserts that the two generalized relations are exten-
sionally equal. Extensional equality between generalized relations asserts that at
kind ? the two relation arguments denote the same set.3 At higher kinds, equality
asserts that the relation arguments return equal results when given the same argu-
ment ρ. Alternatively, equality at higher-kind could have been defined relationally
(i.e. r and s are equal if they take equal arguments to equal results) instead of
point-wise. Our version is slightly simpler, but no less expressive. We cannot sim-
plify this definition further by dropping the requirement that ρ be well-formed, as
we discuss in the proof of Coherence, Theorem ??.

Equality for Typed-Generalized relations, ρ ≡ π, is defined in terms of its com-
ponents. This definition is reflexive, symmetric, and transitive, and hence is an
equivalence relation, by induction on the kind κ. Furthermore, the wfGRelκ predi-
cate respects this equality.

3.3 Lemma: For all ρ ≡ π, if ρ ∈ wfGRelκ then π ∈ wfGRelκ.

We turn now to the key to the abstraction theorem, the interpretation of Rω types
as relations between closed terms. This interpretation makes use of a substitution δ

from type variables to Typed-Generalized relations. We write dom(δ) for the domain
of the substitution, that is, the set of type variables on which δ is defined. We use

3 Observe that, in the case of kind ?, we use extensional equality for relations instead of the
simpler intensional equality (r = s) to reduce the requirements on the meta-logic. Stating it in
the simpler form would require the logic to include propositional extensionality. Propositional
extensionality is consistent with but independent of the Calculus of Inductive Constructions
(see http://coq.inria.fr/V8.1/faq.html).

14 Dimitrios Vytiniotis and Stephanie Weirich

JKK ∈ GRelkind(K)

JintK 4
= {(i, i) | for all i}

J()K 4
= {((), ())}

J→K 4
= λρ, π ∈ TyGRel? 7→

{(v1, v2) | (· ` v1 : ρ1 → π1) ∧ (· ` v2 : ρ2 → π2) ∧
for all (e′1, e

′
2) ∈ C(ρ̂), (v1 e′1, v2 e′2) ∈ C(π̂) }

J×K 4
= λρ, π ∈ TyGRel? 7→

{(v1, v2) | (fst v1, fst v2) ∈ C(ρ̂)} ∩ {(v1, v2) | (snd v1, snd v2) ∈ C(π̂)}
J+K 4

= λρ, π ∈ TyGRel? 7→
{(inl e1, inl e2) | (e1, e2) ∈ C(ρ̂)} ∪ {(inr e1, inr e2) | (e1, e2) ∈ C(π̂)}

J∀κK 4
= λρ ∈ TyGRelκ→? 7→

{(v1, v2) | (· ` v1 : ∀κ ρ1) ∧ (· ` v2 : ∀κ ρ2) ∧
for all π ∈ wfGRelκ, (v1, v2) ∈ (ρ̂ π)}

JRK 4
= R

R 4
= λ(τ, σ, r) ∈ TyGRel? 7→

{(Rint, Rint) | (τ, σ, r) ≡ (int, int, Jint)K}
∪ {(R(), R()) | (τ, σ, r) ≡ ((), (), J()K)}
∪ {(R× e1

a e1
b , R× e2

a e2
b) |

∃ρa, ρb ∈ wfGRel?∧
· ` τ ≡ ρ1

a × ρ1
b : ? ∧ · ` σ ≡ ρ2

a × ρ2
b : ? ∧ r ≡? J×K ρa ρb ∧

(e1
a, e2

a) ∈ C(R ρa) ∧ (e1
b , e

2
b) ∈ C(R ρb) }

∪ {(R+ e1
a e1

b , R+ e2
a e2

b) |
∃ρa, ρb ∈ wfGRel?∧
· ` τ ≡ ρ1

a + ρ1
b : ? ∧ · ` σ ≡ ρ2

a + ρ2
b : ? ∧ r ≡? J+K ρa ρb ∧

(e1
a, e2

a) ∈ C(R ρa) ∧ (e1
b , e

2
b) ∈ C(R ρb) }

∪ {(R→ e1
a e1

b , R→ e2
a e2

b) |
∃ρa, ρb ∈ wfGRel?∧
· ` τ ≡ ρ1

a → ρ1
b : ? ∧ · ` σ ≡ ρ2

a → ρ2
b : ? ∧ r ≡? J→K ρa ρb ∧

(e1
a, e2

a) ∈ C(R ρa) ∧ (e1
b , e

2
b) ∈ C(R ρb) }

Fig. 9: Operations of type constructors on relations

· for the undefined-everywhere substitution, and write δ, a 7→ ρ for the extension of
δ that maps a to ρ and require that a /∈ dom(δ). If δ(a) = (τ1, τ2, r), we define the
notations δ1(a) = τ1, δ2(a) = τ2, and δ̂(a) = r. We also define δ1τ and δ2τ to be
the homomorphic application of substitutions δ1 and δ2 to τ . In our development,
we carefully apply substitutions on types whose free type variables belong in the
domain of the substitutions.

3.4 Definition [Substitution kind checks in environment]: We say that a
substitution δ kind checks in an environment Γ, and write δ ∈ SubstΓ, when
dom(δ) = dom(Γ) and for every (a:κ) ∈ Γ, we have δ(a) ∈ TyGRelκ.

The interpretation of Rω types is shown in Figure ?? and is defined inductively
over kinding derivations for types. The interpretation function J·K· accepts a deriva-

Parametricity, Type Equality and Higher-order Polymorphism 15

tion Γ ` τ : κ, and a substitution δ ∈ SubstΓ and returns a generalized relation at
kind κ, hence, the meta-logical type, SubstΓ ⊃ GRelκ. We write the δ argument as
a subscript to JΓ ` τ : κK.

When τ is a type variable a we project the relation component out of δ(a). In
the case where τ is a constructor K, we call the auxiliary function JKK, shown in
Figure ??. For an application, τ1 τ2, we apply the interpretation of τ1 to appro-
priate type arguments and the interpretation of τ2. Type-level λ-abstractions are
interpreted as abstractions in the meta-logic. We use λ and 7→ for meta-logic ab-
stractions. Confirming that JΓ ` τ : κKδ ∈ GRelκ is straightforward using the fact
that δ ∈ SubstΓ.

The interpretation JKK gives the relation that corresponds to constructor K.
This relation depends on the following definition, which extends a value relation to
a relation between arbitrary well-typed terms.

3.5 Definition [Computational lifting]: The computational lifting of a relation
r ∈ VRel(τ1, τ2), written as C(r), is the set of all (e1, e2) such that · ` e1 : τ1,
· ` e2 : τ2 and e1 ⇓ v1, e2 ⇓ v2, and (v1, v2) ∈ r.

For integer and unit types, JintK and J()K give the identity value relations re-
spectively on int and (). The operation J→K lifts ρ and π to a new relation between
functions that send related arguments in ρ̂ to related results in π̂. The operation
J×K lifts ρ and π to a relation between products such that the first components
of the products belong in ρ̂, and the second in π̂. The operation J+K on ρ and π

consists of all the pairs of left injections between elements of ρ̂ and right injections
between elements of π̂. Because sums and products are call-by-name, their sub-
components must come from the computational liftings of the value relations. For
the ∀κ constructor, since its kind is (κ → ?) → ? we define J∀κK to be a morphism
that, given a TyGRelκ→? argument ρ, returns the intersection over all well-formed
π of the applications of ρ̂ to π. The requirement that π ∈ wfGRelκ is necessary to
show that the interpretation of the ∀κ constructor is itself well-formed (Lemma ??).

For the case of representation types R, the definition relies on an auxiliary mor-
phism R, defined by induction on the size of the β-normal form of its type argu-
ments. The interesting property about this definition is that it imposes requirements
on the relational argument r in every case of the definition. For example, in the
first clause of the definition of R (τ, σ, r), the case for integer representations, r

is required to be equal to JintK. The R definition is carefully crafted to validate
the abstraction theorem—alternative definitions, such as one that leaves the re-
lational argument of R completely unconstrained, do not validate the abstraction
theorem (?).

Importantly, the interpretation of any constructor K, including R, is well-formed.

3.6 Lemma: For all K, (K,K, JKK) ∈ wfGRelkind(K).

Proof
The only interesting case is the one for ∀κ, below. We need to show that

(∀κ,∀κ, J∀κK) ∈ wfGRel(κ→?)→?

16 Dimitrios Vytiniotis and Stephanie Weirich

Let us fix τ1, τ2 ∈ ty(κ → ?), and a generalized relation gτ ∈ GRelκ→?, with
(τ1, τ2, gτ) ∈ wfGRelκ→?. Then we know that:

J∀κK (τ1, τ2, gτ) = {(v1, v2) |
· ` v1 : ∀κ τ1 ∧ · ` v2 : ∀κ τ2 ∧
for all ρ ∈ TyGRelκ, ρ ∈ wfGRelκ =⇒ (v1, v2) ∈ (gτ ρ)}

which belongs in wfGRel? since it is a relation between values of the correct types.
Additionally, we need to show that ∀κ can only distinguish between equivalence
classes of its type arguments. For this fix σ1, σ2 ∈ ty(κ → ?), and gσ ∈ GRelκ→?,
with (σ1, σ2, gσ) ∈ wfGRelκ→?. Assume that · ` τ1 ≡ σ1 : κ → ?, · ` τ2 ≡ σ2 : κ →
?, and gτ ≡κ→? gσ. Then we know that:

J∀κK (σ1, σ2, gσ) = {(v1, v2) |
· ` v1 : ∀κ σ1 ∧ ` v2 : ∀κ σ2∧
for all ρ ∈ TyGRelκ, ρ ∈ wfGRelκ =⇒ (v1, v2) ∈ (gσ ρ)}

We need to show that

J∀κK (τ1, τ2, gτ) ≡? J∀κK (σ1, σ2, gσ)

To finish the case, using rule t-eq to take care of the typing requirements, it is
enough to show that, for any ρ ∈ TyGRelκ, with ρ ∈ wfGRelκ, we have gτ ρ ≡? gσ ρ.
This holds by reflexivity of ≡κ, and the fact that gτ and gσ are well-formed.

We next show that the interpretation of types is well-formed. We must prove this
result simultaneously with the fact that the interpretation of types gives equivalent
results when given equal substitutions. We define equivalence for substitutions,
δ1 ≡ δ2, pointwise. This result only holds for substitutions that map type variables
to well-formed generalized relations.

3.7 Definition [Environment-respecting substitution]: We write δ � Γ iff
δ ∈ SubstΓ and for every a ∈ dom(δ), it is the case that δ(a) ∈ wfGRelκ.

With this definition we can now state the lemma.

3.8 Lemma [Type interpretation is well-formed]: If Γ ` τ : κ then

1. for all δ � Γ, (δ1τ, δ2τ, JΓ ` τ : κKδ) ∈ wfGRelκ.
2. for all δ � Γ, δ′ � Γ such that δ ≡ δ′, it is JΓ ` τ : κKδ ≡κ JΓ ` τ : κKδ′ .

Proof
Straightforward induction over the type well-formedness derivations, appealing to
Lemma ??. The only interesting case is the case for type abstractions, which follows
from Lemma ??.

Furthermore, the interpretation of types is compositional, in the sense that the
interpretation of a type depends on the interpretation of its sub-terms. The proof
of this lemma depends on the fact that type interpretations are well-formed.

3.9 Lemma [Compositionality]: Given an environment-respecting substitution,

Parametricity, Type Equality and Higher-order Polymorphism 17

δ � Γ, a well-formed type with a free variable, Γ, a:κa ` τ : κ, a type to substitute,
Γ ` τa : κa, and its interpretation, ra = JΓ ` τa : κaKδ, it is the case that

JΓ, a:κa ` τ : κKδ,a7→(δ1τa,δ2τa,ra) ≡κ JΓ ` τ{τa/a} : κKδ

Furthermore, our extensional definition of equality for generalized relations means
that it also preserves η-equivalence.

3.10 Lemma [Extensionality]: Given an environment-respecting δ � Γ, a well-
formed type Γ ` τ : κ1 → κ2, and a fresh variable a /∈ fv(τ),Γ, it is the case
that

JΓ ` λa:κ1.τ a : κ1 → κ2Kδ ≡κ1→κ2 JΓ ` τ : κ1 → κ2Kδ

Proof
Unfolding the definitions we get that the left-hand side is the morphism

λρ ∈ TyGRelκ1 7→ JΓ, a:κ1 ` τ : κ2Kδ,a7→ρ

Pick ρ ∈ wfGRelκ1 . To finish the case we have to show that

JΓ, a:κ1 ` τ a : κ2Kδ,a7→ρ ≡κ2 JΓ ` τ : κ1 → κ2Kδ ρ

The left-hand side becomes

JΓ, a:κ1 ` τ : κ1 → κ2Kδ,a7→ρ (ρ1, ρ2, JΓ, a:κ1 ` a : κ1Kδ,a7→ρ)

which is equal to

JΓ, a:κ1 ` τ : κ1 → κ2Kδ,a7→ρ ρ

By a straightforward weakening property, this is definitionally equal to JΓ ` τ : κ1 → κ2Kδ ρ.
Reflexivity of ≡κ2 finishes the case.

Finally, we show that the interpretation of types respects the equivalence classes
of types.

3.11 Theorem [Coherence]: If Γ ` τ1 : κ, δ � Γ, and Γ ` τ1 ≡ τ2 : κ, then
JΓ ` τ1 : κKδ ≡κ JΓ ` τ2 : κKδ.

Proof
The proof can proceed by induction on derivations of Γ ` τ1 ≡ τ2 : κ. The case for
rule beta follows by appealing to Lemma ??, the case for rule eta follows from
Lemma ??, and the cases for rules app and abs we give below. The rest of the
cases are straightforward.

• Case app. In this case we have that Γ ` τ1 τ2 ≡ τ3 τ4 : κ2 given that
Γ ` τ1 ≡ τ3 : κ1 → κ2 and Γ ` τ2 ≡ τ4 : κ1. It is easy to show as well that
Γ ` τ1,3 : κ1 → κ2 and Γ ` τ2,4 : κ1. We need to show that

JΓ ` τ1 τ3 : κ2Kδ ≡κ2 JΓ ` τ2 τ4 : κ2Kδ

Let
r1 = JΓ ` τ1 : κ1 → κ2Kδ

r2 = JΓ ` τ2 : κ1Kδ

r3 = JΓ ` τ3 : κ1 → κ2Kδ

r4 = JΓ ` τ4 : κ1Kδ

18 Dimitrios Vytiniotis and Stephanie Weirich

We know by induction hypothesis that r1 ≡κ1→κ2 r3 and r2 ≡κ1 r4. By
Lemma ??, we have that:

(δ1τ1, δ
2τ1, r1) ∈ wfGRelκ1→κ2

(δ1τ2, δ
2τ2, r2) ∈ wfGRelκ1

(δ1τ3, δ
2τ3, r3) ∈ wfGRelκ1→κ2

(δ1τ4, δ
2τ4, r4) ∈ wfGRelκ1

Finally it is not hard to show that · ` δ1τ2 ≡ δ1τ4 : κ1 and · ` δ2τ2 ≡ δ2τ4 :
κ1. Hence, by the properties of well-formed relations, and our definition of
equivalence, we can show that

r1 (δ1τ2, δ
2τ2, r2) ≡κ2 r3 (δ1τ4, δ

2τ4, r4)

which finishes the case.
• Case abs. Here we have that

Γ ` λa:κ1.τ1 ≡ λa:κ1.τ2 : κ1 → κ2

given that Γ, a:κ1 ` τ1 ≡ τ2 : κ2. To show the required result let us pick ρ ∈
TyGRelκ1 with ρ ∈ wfGRelκ1 . Then for δa = δ, a 7→ ρ, we have δa � Γ, (a:κ1),
and hence by induction hypothesis we get:

JΓ, a:κ1 ` τ1 : κ2Kδa
≡κ2 JΓ, a:κ1 ` τ2 : κ2Kδa

and the case is finished. As a side note, the important condition that ρ ∈
wfGRelκ1 (Figure ??) allows us to show that δa � Γ, (a:κ1) and therefore
enables the use of the induction hypothesis. If ≡κ1→κ2 tested against any
possible ρ ∈ TyGRelκ1 that would no longer be true, and hence the case could
not be proved.

We may now state the abstraction theorem.

3.12 Theorem [Abstraction theorem for Rω]: Assume · ` e : τ . Then
(e, e) ∈ C J· ` τ : ?K·.

To account for open terms, the theorem must be generalized in the standard manner:
If Γ is well-formed, and γ � Γ and Γ ` e : τ then (γ1e, γ2e) ∈ C JΓ ` τ : ?Kγ .

Above, we extend the definition of substitutions to include also mappings of term
variables to pairs of closed expressions.

γ, δ := · | δ, (a 7→ (τ1, τ2, r)) | δ, (x 7→ (e1, e2))

The definition of SubstΓ remains the same, but we add one more clause to γ � Γ:
for all x such that γ(x) = (e1, e2), it is the case that (e1, e2) ∈ C JΓ ` τ : ?Kγ where
(x:τ) ∈ Γ. We write γ1(x), γ2(x) for the left and write projections of γ(x), and ex-
tend this notation to arbitrary terms. For example, if γ(x) = (e1, e2) then the term
γ1((λz.λy.z) x x) is (λz.λy.z) e1 e1 and γ2((λz.λy.z) x x) is (λz.λy.z) e2 e2. A
well-formed environment is one where for all (x:τ) ∈ Γ it is Γ ` τ : ?; so the above
definition makes sense for well-formed environments.

We give a detailed sketch below of the proof of the abstraction theorem.

Parametricity, Type Equality and Higher-order Polymorphism 19

Proof
The proof proceeds by induction on the typing derivation, Γ ` e : τ with an
inner induction for the case of typerec expressions. It crucially relies on Coherence
(Theorem ??) for the case of rule t-eq.

• Case int. Straightforward.
• Case var. The result follows immediately from the fact that the environment

is well-formed and the definition of γ � Γ.
• Case abs. In this case we have that Γ ` λx.e : τ1 → τ2 given that Γ, (x:τ1) `

e : τ2, and where we assume w.l.o.g that x /∈ Γ, fv(γ). It suffices to show that
(λx.γ1e, λx.γ2e) ∈ JΓ ` τ1 → τ2 : ?Kγ . To show this, let us pick (e1, e2) ∈
JΓ ` τ1 : ?Kγ , it is then enough to show that

((λx.γ1e) e1, (λx.γ2e) e2) ∈ C JΓ ` τ2 : ?Kγ (1)

But we can take γ0 = γ, (x 7→ (e1, e2)), which certainly satisfies γ0 � Γ, (x:τ1)
and by induction hypothesis: (γ1

0e, γ2
0e) ∈ C JΓ, (x:τ1) ` τ2 : ?Kγ0

. By an easy
weakening lemma for term variables in the type interpretation we have that
(γ1

0e, γ2
0e) ∈ C JΓ ` τ2 : ?Kγ and by unfolding the definitions, equation (??)

follows.
• Case app. In this case we have that Γ ` e1 e2 : τ given that Γ ` e1 : σ → τ

and Γ ` e2 : σ. By induction hypothesis,

(γ1e1, γ
2e1) ∈ C JΓ ` σ → τ : ?Kγ (2)

(γ1e2, γ
2e2) ∈ C JΓ ` σ : ?Kγ (3)

From (??) we get that γ1e1 ⇓ w1 and γ2e1 ⇓ w2 such that (w1 (γ1e2), w2 (γ2e2)) ∈
C JΓ ` τ : ?Kγ , where we made use of equation (??) and unfolded definitions.
Hence, by the operational semantics for applications, we also have that:
((γ1e1) (γ1e2), (γ2e1) (γ2e2)) ∈ C JΓ ` τ : ?Kγ , as required.

• Case t-eq. The case follows directly from appealing to the Coherence theo-
rem ??.

• Case inst. In this case we have that Γ ` e : σ τ , given that Γ ` e :
∀κσ and Γ ` τ : κ. By induction hypothesis we get that (γ1e, γ2e) ∈
C(J∀κK (γ1σ, γ2σ, JΓ ` σ : κ → ?Kγ)); hence by the definition of J∀κK and by
making use of the fact that (γ1τ, γ2τ, JΓ ` τ : κKγ) ∈ wfGRelκ (by Lemma ??),
we get that γ1e ⇓ v1 and γ2e ⇓ v2 such that

(v1, v2) ∈ JΓ ` σ : κ → ?Kγ (γ1τ, γ2τ, JΓ ` τ : κKγ)

hence, (v1, v2) ∈ JΓ ` σ τ : ?Kγ as required.
• Case gen. We have that Γ ` e : ∀κσ, given that Γ, (a:κ) ` e : σ a where

a#Γ, and we assume w.l.o.g. that a /∈ ftv(γ) as well. We need to show that
(γ1e, γ2e) ∈ C(J∀κK (γ1σ, γ2σ, JσKγ). Hence we can fix ρ ∈ TyGRelκ such that
ρ ∈ wfGRelκ. We can form the substitution γ0 = γ, (a 7→ ρ), for which it is
easy to show that γ0 � Γ, (a:κ). Then, by induction hypothesis (γ1

0e, γ2
0e) ∈

C JΓ, (a:κ) ` σ a : ?Kγ0
which means (γ1

0e, γ2
0e) ∈ C JΓ, (a:κ) ` σ : κ → ?Kγ0

ρ.
By an easy weakening lemma this implies (γ1

0e, γ2
0e) ∈ C JΓ ` σ : κ → ?Kγ ρ

20 Dimitrios Vytiniotis and Stephanie Weirich

and moreover since terms do not contain types γi
0e = γie and the case is

finished.
• Case rint. We have that Γ ` Rint : R int, hence (Rint, Rint) ∈ R (int, int, JintK)

by unfolding definitions.
• Case runit. Similar to the case for rint.
• Case rprod. We have that Γ ` R× e1 e2 : R (σ1×σ2), given that Γ ` e1 : R σ1

and Γ ` e2 : R σ2. It suffices to show that (R× γ1e1 γ1e2, R× γ2e1 γ2e2) ∈
R (γ1(σ1 × σ2), γ2(σ1 × σ2), JΓ ` σ1 × σ2 : ?Kγ). The result follows by tak-
ing as ρa = (γ1σ1, γ

2σ1, JΓ ` σ1 : ?Kγ), ρb = (γ1σ2, γ
2σ2, JΓ ` σ2 : ?Kγ). By

Lemma ??, regularity and inversion on the kinding relation one can show
that ρa and ρb are well-formed and hence to finish the case we only need to
show that (γ1e1, γ

2e1) ∈ C(R ρa) and (γ1e2, γ
2e2) ∈ C(R ρb), which follow

by induction hypotheses for the typing of e1 and e2.
• Case rsum. Similar to the case for rprod.
• Case rarr. Similar to the case for rprod.
• Case trec. This is really the only interesting case. After we decompose the

premises and get the induction hypotheses, we proceed with an inner induc-
tion on the type of the scrutinee. In this case we have that:

Γ ` typerec e of {eint ; e() ; e× ; e+ ; e→} : σ τ

Let us introduce some abbreviations:

u[e] = typerec e of {eint ; e() ; e× ; e+ ; e→}
σ× = ∀(a:?)(b:?).R a → σ a → R b → σ b → σ (a× b)

σ+ = ∀(a:?)(b:?).R a → σ a → R b → σ b → σ (a + b)

σ→ = ∀(a:?)(b:?).R a → σ a → R b → σ b → σ (a → b)

By the premises of the rule we have:

Γ ` σ : ? → ? (4)

Γ ` e : R τ (5)

Γ ` eint : σ int (6)

Γ ` e() : σ () (7)

Γ ` e× : σ× (8)

Γ ` e+ : σ+ (9)

Γ ` e→ : σ→ (10)

We also know the corresponding induction hypotheses for (??),(??),(??), (??)
and (??). We now show that:

∀e1 e2 ρ ∈ TyGRel?, ρ ∈ wfGRel? ∧ (e1, e2) ∈ C(R ρ)
=⇒ (γ1u[e1], γ2u[e2]) ∈ C(JΓ ` σ : ? → ?Kγ ρ)

by introducing our assumptions, and performing inner induction on the
size of the normal form of τ1. Let us call this property for fixed e1, e2, ρ,

Parametricity, Type Equality and Higher-order Polymorphism 21

INNER(e1, e2, ρ). We have that (e1, e2) ∈ C(R ρ) and hence we know that
e1 ⇓ w1 and e2 ⇓ w2, such that:

(w1, w2) ∈ R ρ

We then have the following cases to consider by the definition of R:

— w1 = w2 = Rint and ρ ≡ (int, int, JintK). In this case, γ1u ⇓ w1 such
that γ1eint ⇓ w1 and similarly γ2u ⇓ w2 such that γ2eint ⇓ w2, and hence
it is enough to show that: (γ1eint, γ

2eint) ∈ C(JΓ ` σ : ? → ?Kγ ρ). From
the outer induction hypothesis for (??) we get that: (γ1eint, γ

2eint) ∈
C JΓ ` σ int : ?Kγ and we have that:

JΓ ` σ int : ?Kγ =

JΓ ` σ : ? → ?Kγ (int, int, JintK) ≡? JΓ ` σ : ? → ?Kγ ρ

where we have made use of the properties of well-formed generalized rela-
tions to substitute equivalent types and relations in the second step.

— w1 = w2 = () and JΓ ` τ : ?Kγ ≡? J()K. Similarly to the previous case.
— w1 = R× e1

a e2
a and w2 = R× e1

b e2
b , such that there exist ρa and ρb,

well-formed, such that

ρ ≡? ((ρ1
a × ρ1

b), (ρ
2
a × ρ2

b), J×K ρa ρb) (11)

(e1
a, e2

a) ∈ C(R ρa) (12)

(e1
b , e

2
b) ∈ C(R ρb) (13)

In this case we know that γ1u[e1] ⇓ w1 and γ2u[e2] ⇓ w2 where

(γ1e×) e1
a (γ1u[e1

a]) e1
b (γ1u[e1

b]) ⇓ w1

(γ2e×) e2
a (γ2u[e2

a]) e2
b (γ2u[e2

b]) ⇓ w2

By the outer induction hypothesis for (??) we will be done, as before, if
we instantiate with relations ra and rb for the quantified variables a and
b, respectively. But we need to show that, for γ0 = γ, (a 7→ ρa), (b 7→ ρb),
Γ0 = Γ, (a:?), (b:?), we have:

(γ1u[e1
a], γ2u[e2

a]) ∈ C JΓ0 ` σ a : ?Kγ0
(14)

(γ1u[e1
b], γ

2u[e2
b]) ∈ C JΓ0 ` σ b : ?Kγ0

(15)

But notice that the size of the normal form of τ1
a must be less than the

size of the normal form of τ1, and similarly for τ1
b and τb, and hence we

can apply the (inner) induction hypothesis for (??) and (??). From these,
compositionality, and an easy weakening lemma, we have that (??) and
(??) follow. By the outer induction hypothesis for (??) we then finally
have that:

(w1, w2) ∈ JΓ, (a:?), (b:?) ` σ (a× b) : ?Kγ0

which gives us the desired (w1, w2) ∈ JΓ ` σ : ? → ?Kγ ρ by appealing to
the properties of well-formed generalized relations.

— The case for the + and → constructors are similar to the case for ×.

22 Dimitrios Vytiniotis and Stephanie Weirich

We now have by the induction hypothesis for (??), that (γ1e, γ2e) ∈
C(R (γ1τ, γ2τ, JΓ ` τ : ?Kγ)), and hence we can get

INNER(γ1e, γ2e, (γ1τ, γ2τ, JΓ ` τ : ?Kγ)),

which gives us that:

(γ1u[e], γ2u[e]) ∈ C(JΓ ` σ : ? → ?Kγ (γ1τ, γ2τ, JΓ ` τ : ?Kγ)),

or (γ1u[e], γ2u[e]) ∈ C(JΓ ` σ τ : ?Kγ), as required.

Incidentally, this statement of the abstraction theorem shows that all well-typed
expressions of Rω terminate. All such expressions belong in computation relations,
which include only terms that reduce to values. Moreover, since these values are
well-typed, the abstraction theorem also proves type soundness.

3.3 Behavioral equivalence

As a corollary to the abstraction theorem, we can establish that the interpretation
of types at kind ? is contained in a suitable behavioral equivalence relation for closed
terms. Intuitively, two terms are behaviorally equivalent if all uses of them produce
the same result.4

To capture the idea of uses of terms, we define elimination contexts with the
following syntax:

E ::= • | typerec E of {eint ; e() ; e× ; e+ ; e→} | E v

| fst E | snd E | case E of {x.el ; x.er}

In Rω, we cannot use termination behavior in our observations, so we only observe
uses that produce integers. Therefore, a simple definition of behavioral equivalence
for Rω is the following. (As syntactic sugar, we will write E[•] : τ → int for the
derivation · ` λx.E[x] : τ → int.)

3.13 Definition [Behavioral equivalence]: We write e1 ≈ e2 : τ iff · ` e1 : τ

and · ` e2 : τ and for all derivations ` E[•] : τ → int, it is E[e1] ⇓ i iff E[e2] ⇓ i.

3.14 Theorem: If (e1, e2) ∈ C J· ` τ : ?K· then e1 ≈ e2 : τ .

Proof
By Theorem ??, for any suitable context E[•] it is (λx.E[x], λx.E[x]) ∈ C J· ` τ → int : ?K·,
and the result follows by unfolding definitions.

Thus, showing that two expressions belong in the interpretation of their type
provides a way to establish their behavioral equivalence.

4 We conjecture that if this definition is extended to open terms via closing substitutions, then
it may be shown equivalent to a suitable definition of contextual equivalence for Rω following
the techniques of Pitts (?).

Parametricity, Type Equality and Higher-order Polymorphism 23

4 Free theorems for type equality

4.1 Leibniz equality

We are now ready to use the abstraction theorem to reason about the equality type
EQUAL. The parametricity theorem instantiated at type ∀c : ? → ?.c τa → c τb

reads as follows:

4.1 Corollary [Free theorem for Leibniz equality]:
Suppose · ` e : ∀c : ? → ?.c τa → c τb. Then given any ρc ∈ wfGRel?→? and any
(e1, e2) ∈ C(ρ̂c J· ` τa : ?K·) we have that (e e1, e e2) ∈ C(ρ̂c J· ` τb : ?K·)

The first result that we show using this corollary is that if we have a proof of
EQUAL τa τb for two closed types, then those two types must actually be equal.

4.2 Theorem [Leibniz equality implies definitional equality]:
If · ` e : ∀c : ? → ?.c τa → c τb then · ` τa ≡ τb : ?.

Proof
Assume by contradiction that · 6` τa ≡ τb : ?. Then we instantiate the abstraction
theorem with ρc = (λa: ? .(), λa: ? .(), fc) where

fc (τ, σ, r) = if (· ` τ ≡ τa : ? ∧ · ` σ ≡ τa : ?)
then J· ` () : ?K· else ∅

One can confirm that ρc ∈ wfGRel?→?. Then by the free theorem above we know
that, since ((), ()) ∈ C(fc J· ` τa : ?K·), we have (e (), e ()) ∈ C(fc J· ` τb : ?K·) if
· 6` τa ≡ τb then C(fc J· ` τb : ?K·) = ∅, a contradiction.

We next use this free theorem again to show that the only inhabitant of the
Leibniz equality proposition is an identity function.

4.3 Theorem [Leibniz proof is identity]:
If · ` e : ∀c : ? → ?.c τa → c τb then e ≈ λx.x : ∀c : ? → ?.c τa → c τb.

Proof
First, by Lemma ?? we get that · ` τa ≡ τb : ?. As our logical relation implies
equivalence, we show our result by showing that

(e, λx.x) ∈ J· ` ∀c . c τa → c τa : ?K· .

Unfolding definitions, we need to show that for any ρ ∈ wfGRel∗→∗ and any

(e1, e2) ∈ Jc τaKc7→ρ we must have (e e1, (λx . x) e2) ∈ C Jc τaKc 7→ρ

Suppose e1 ⇓ w and e2 ⇓ v. Because (λx.x) v ⇓ v and these sets are closed under
evaluation, the result holds if we can show that e w ⇓ w.

We prove this last fact using the free theorem about the type of e. By the free
theorem, we know that for all well-formed ρc, we have

(e, e) ∈ Jc τa → c τaKc7→ρc

Therefore, we choose c to be instantiated with ρc = (λ .ρ1(τa), λ .ρ1(τa), fc) where
fc = {(w,w)}. It is easy to see that this generalized relation is well-formed. Then,

24 Dimitrios Vytiniotis and Stephanie Weirich

unfolding definitions, because (w,w) ∈ ρc(τa, τa, JτaK·), we know that (e w, e w) ∈
C(ρc(τa, τa, JτaK·)). However, because (w,w) is the only value in this last set, we
must have e w ⇓ w.

4.4 Remark: To derive Theorem ?? we had to instantiate a generalized relation
to be a morphism that is not the interpretation of any Fω type function. In par-
ticular, this morphism is non-parametric since it dispatches on its type arguments.
Hence, despite the fact that we are showing a theorem about an Fω type, we
need morphisms at higher kinds to accept both types and morphisms as arguments
and dispatch on their type argument—a novel use of type-dispatching interpre-
tations compared to recent work on free theorems for higher-order polymorphic
functions (?). On the other hand, as soon as type equality was established, the
proof of Theorem ?? did not use a non-parametric relation.

4.5 Remark: A weaker theorem than Theorem ??, namely that e ≈ λx.x : ∀a :
?.a → a can be shown without any use of higher-order instantiations. We may
implicitly generalize over a and instantiate c with a function that returns a to show
that e has also type ∀a: ? .a → a. We may then apply first-order parametricity,
which still holds in our language to show the theorem. However we are interested
in the equivalence at a different type and it is unclear under which conditions the
equivalence at a more specialized type (such as ∀a: ? .a → a) implies equivalence
at a more general type (such as ∀c . c τa → c τb).

4.6 Remark: Observe that the condition that the function fc has to operate uni-
formly for equivalence classes of type α and β, imposed in the definition of wfGRel,
is not to be taken lightly. If this condition is violated, the coherence theorem breaks.
The abstraction theorem then can no longer be true. If the abstraction theorem re-
mained true when this condition was violated then we could derive a false statement.
Consider an expression e of type

∀(c:? → ?).c ()→ c ((λd: ? .d) ())

Let τc = λc: ? .c. We instantiate c in the free theorem for the Leibniz equality type
with ρc = (τc, τc, f) where

f ((), (),) = {(v, v) | · ` v : τc ()}
f (, ,) = ∅

The important detail is that f can return different results for equivalent but syntac-
tically different type arguments. In particular, the type (λd: ? .d) () is not syntac-
tically equal to (), so f((λd:?.d) (), (λd:?.d) (), r) returns the empty set for any
r. Then, by the free theorem for the equality type, it must be that (e (), e ()) ∈ ∅,
a contradiction to the abstraction theorem! Hence the abstraction theorem breaks
when generalized morphisms at higher kinds do not respect type equivalence classes
of their type arguments.

We can use these two theorems to directly prove two correctness properties about
any function with same type as gcast. The first property that we show is that if
gcast returns a function then the two types that instantiated gcast must be equal.

Parametricity, Type Equality and Higher-order Polymorphism 25

data REqual a b where

Refl :: Equal a a

pcast :: R a -> R b -> Maybe (REqual a b)

pcast Rint Rint = Just Refl

pcast Runit Runit = Just Refl

pcast (Rprod (ra0 :: R a0) (rb0 :: R b0))

(Rprod (ra0’ :: R a0’) (rb0’ :: R b0’)) =

do Refl <- pcast ra0 ra0’

Refl <- pcast rb0 rb0’

return Refl

pcast (Rsum ra0 rb0) (Rsum ra0’ rb0’) =

do Refl <- pcast ra0 ra0’

Refl <- pcast rb0 rb0’

return Refl

pcast (Rarr ra0 rb0) (Rarr ra0’ rb0’) =

do Refl <- pcast ra0 ra0’

Refl <- pcast rb0 rb0’

return Refl

pcast _ _ = Nothing

Fig. 10: pcast

(Note that even if the type representations are equivalent, we cannot conclude that
gcast will succeed—it may well return (). An implementation of gcast may always
fail for any pair of arguments and still be well typed.) We can also show the second
part of the correctness property of gcast, that if gcast succeeds and returns a
conversion function, then that function must be equivalent to an identity function.

4.7 Corollary [Correctness of gcast I]: If · ` era : R τa, · ` erb : R τb, and
gcast era erb ⇓ inr e then it follows that · ` τa ≡ τb : ?.

4.8 Corollary [Correctness of gcast II]: If · ` era : R τa, · ` erb : R τb,
gcast era erb ⇓ inr e, then e ≈ λx.x : ∀c . c τa → c τb.

4.9 Remark: Similar theorems would be true for any term e such that

· ` e : ∀(a:?)(b:?).() + (∀(c:? → ?).c a → c b)

if such a term could be constructed that would return a right injection. However,
all terms of this type may only return inl (). What is important in Rω is that
the extra R a and R b arguments and typerec make the programming of gcast
possible!

4.2 Another definition of type equality

We have seen applications of the free theorem for the type ∀c . c τ1 → c τ2, but
this type is not the only way to define type equality. In this section we discuss
the properties of another proposition that defines type equality as the smallest
reflexive relation. This definition also uses higher-order polymorphism to quantify

26 Dimitrios Vytiniotis and Stephanie Weirich

over all binary relations c that can be shown to be reflexive (through the argument
(∀(d:?).c d d). Equality is the intersection of all such relations.

REQUAL a b = ∀(c:? → ? → ?).(∀(d:?).c d d) → c a b

This definition of equality is interesting because it is a Church encoding of a com-
monly used definition for propositional equality in Haskell (and other dependently
typed languages such as Coq and Agda). The code shown in Figure ?? includes a
definition of the REqual gadt (of which REQUAL is the encoding). This datatype has
a single constructor Refl, which produces a proof that some type is equal to itself.
Pattern matching on an object of type REqual a b instructs the type checker to
unify the types a and b. For example, in the product branch, pattern matching on
the result of pcast ra0 ra0’ unifies the types a0 and a0’. Likewise for the types
b0 and b0’ in the second recursive call. Therefore, the branch may return Refl as
a proof of equality for (a0, b0) and (a0’, b0’) as these types are identical to
the Haskell type checker. Because of the integration between this equality predicate
and the Haskell type checker, a proof of type REqual t1 t2 is often easier to use
than one of type EQUAL t1 t2.

As before, we show that if REQUAL τ1 τ2 is inhabited, then the two types are
indeed definitionally equal and that the proof is an identity function.

4.10 Theorem [Reflexive proposition implies definitional equality]:
If · ` e : REQUAL τ1 τ2 then · ` τa ≡ τb : ?.

Proof sketch
Similar to the proof of Lemma ??.

4.11 Theorem [Reflexive proof is identity]:
If · ` e : REQUAL τ1 τ2 then e ≈ λx.x : REQUAL τ1 τ2.

Proof sketch
Similar to the proof of Theorem ??.

Furthermore, we can also show that these two definitions of equality are logi-
cally equivalent. In particular, we can define Fω terms i and j that witness the
implications in both directions as follows. (For clarity, we write these terms in a
Church-style variant, where all type abstractions and applications are explicit.)

i : ∀a:? . ∀b:? . REQUAL a b → EQUAL a b

i = Λa:? . Λb:? . λx:REQUAL a b.Λc:? → ? .

x [λb.c a → c b] (λy:c a.y)

j : ∀a:? . ∀b:? . EQUAL a b → REQUAL a b

j = Λa:? . Λb:? . λx:EQUAL a b.Λc:? → ? → ? .

λw:(∀d:? . c d d).
x[λc . g c a → g c b] (w[a])

Furthermore, by Theorems ?? and ??, we know that i and j form an isomorphism
between the two equality types.

Parametricity, Type Equality and Higher-order Polymorphism 27

5 Discussion

5.1 Injectivity

Although the higher-order types EQUAL and REQUAL encode type equality, not all
properties of type equalities seem to be expressible as Rω or Fω terms. For instance
the term inj below could witness the injectivity of products:

inj : ∀ab.(∀c.c (a× int) → c (b× int)) → (∀c.c a → c b)

However, it does not seem possible to construct such a term in Fω or Rω. Given
the ability to write an intensional type constructor (?), such as the following, which
maps product types to their first component but leaves other types alone,

D : ? → ?

D (a× b) = a

D a = a

one could write such a injectivity term (in an explicitly-typed calculus) as:

inj = Λab . λx:EQUAL a b . Λc . λy:c a . x[D]

But without such capability, such an injection does not seem possible. On the other
hand, we do not know how to show that the type of inj is uninhabited—we cannot
assume the existence of a term inj and derive that (inj, inj) ∈ ∅ by using the
fundamental theorem as we can for other empty types.

In fact, we conjecture that such an injection is consistent with Rω and Fω, but
we have not extended our parametricity proof to a language with type level type
analysis.5

The lack of injectivity hinders practical use of the EQUAL type. Some authors
propose that the EQUIV type, which can define injectivity, be used instead. Fortu-
nately, because the typing rules for gadts in Haskell are more expressive than that
of the Church encoding, the REqual type in Figure ?? does support injectivity. In
particular, the following code typechecks in GHC.

inj1 :: REqual (a, c) (b, d) -> REqual a b

inj1 Refl = Refl

5.2 Relational interpretation and contextual equivalence.

How does the relational interpretation of types given here relate to contextual equiv-
alence? Theorem ?? shows that it is sound with respect to our notion of behavioral
equivalence. We conjecture that for closed values our behavioral equivalence co-
incides with contextual equivalence. On the other hand, it is an open problem to
determine whether the interpretation of types that we give is complete with respect
to contextual equivalence (i.e. contains contextual equivalence). In fact the same
problem is open even for System F even without any datatypes or representations.

5 However, see Washburn and Weirich (?) for a related language that does show parametricity in
the presence of such a construct.

28 Dimitrios Vytiniotis and Stephanie Weirich

A potential solution to this problem would involve modifying the clauses of the def-
inition that correspond to sums (such as the J+K and R operations) by >>-closing
them as Pitts suggests (?; ?). The >>-closure of a value relation can be defined
by taking the set of pairs of program contexts under which related elements are
indistinguishable, and taking again the set of pairs of values that are indistinguish-
able under related program contexts. In the presence of polymorphism, >>-closure
is additionally required in the interpretation of type variables of kind ?, or as an
extra condition on the definition of wfGRel at kind ? (this should be the only part
of wfGRel that needs to be modified). Although we conjecture that this approach
achieves completeness with respect to contextual equivalence, adding >>-closures
is typically a heavy technical undertaking (but probably not hiding surprises, if one
follows Pitts’s roadmap) and we have not yet carried out the experiment.

5.3 Representations of polymorphic types and non-termination.

Rω does not include representations of all types for a good reason. While represent-
ing function types poses no problem, adding representations of polymorphic types
has subtle consequences for the semantics of the language.

To demonstrate the problem with polymorphic representations, consider what
would happen if we added the representation Rid of type R Rid to Rω (where
Rid abbreviates the type ∀(a:?).R a → a → a, and extended typerec and gcast

accordingly. Then we could encode an infinite loop in Rω, based on an example
by Harper and Mitchell (?) which in turn is inspired by Girard’s J operator. This
example begins by using gcast to enable a self-application term with a concise type.

delta :: ∀a: ? .R a → a → a

delta ra = case (gcast Rid ra) of { inr y.y (λx.x Rid x);
inl z.(λx.x) }

Above, if the cast succeeds, then y has type ∀c:? → ?.c Rid → c a, and we can
instantiate y to (Rid → Rid) → (a → a). We can now add another self-application
to get an infinite loop:

delta Rid delta ≈ (λx.x Rid x) delta ≈ delta Rid delta

This example demonstrates that we cannot extend the relational interpretation to
Rid and the proof of the abstraction theorem in a straightforward manner as our
proof implies termination. That does not mean that we cannot give any relational
interpretation to Rid, only that our proof would have to change significantly. Recent
work (?) gives a way to reconcile Girard’s J operator and parametricity, using step-
indexed logical relations to account for non-termination.

Our current proof breaks in the definition of the morphism R in Figure ??. The
application R (τ, σ, r) depends on whether r can be constructed as an application
of morphisms JintK, J()K, J×K, and J+K. If we are to add a new representation
constructor Rid, we must restrict r in a similar way. To do so, it is tempting to add:

R = . . . as before . . .

∪ {(Rid, Rid) | · ` τ ≡ Rid : ? ∧ · ` σ ≡ Rid : ? ∧ r ≡? J· ` Rid : ?K·}

Parametricity, Type Equality and Higher-order Polymorphism 29

However, this definition is not well-formed. In particular, R recursively calls the
main interpretation function on the type Rid which includes the type R.

A different question is what class of polymorphic types can we represent with our
current methodology (i.e. without breaking strong normalization)? The answer is
that we can represent polymorphic types as long as those types contain only repre-
sentations of closed types. For example, the problematic behavior above was caused
because the type ∀a.R a → a → a includes R a, the representation of the quantified
type a. Such behavior cannot happen when we only include representations of types
such as R (R int), ∀a.a → a, ∀a.a → R int → a, or even ∀a.a. We can still give
a definition of R that calls recursively the main interpretation function, but the
definition must be shown well-formed using a more elaborate metric on types.

5.4 Implicit versus explicit generalization and instantiation

Parametricity in the presence of impure features, such as non-termination or ex-
ceptions, is known to be affected by whether type application and generalization is
kept explicit or implicit. For example, a term of type ∀a.a is only inhabited by a
diverging term if type generalization is implicit, whereas it may be also be inhab-
ited by a converging term Λa.e where e{τ/a} has to be diverging for every τ , in an
explicit setting. Hence, it is to be expected that the derived free theorems in this
paper will only be “morally” true (?) in a setting with non-termination.

5.5 Arbitrary gadts

Equality types, along with existential types and standard recursive datatypes, are
the foundation of arbitrary gadts (?). In fact, the earliest examples of gadts were
defined in this way (?; ?). Therefore, although the language Rω only contains the
specific example of the representation type, the parametricity results in this paper
could be extended to languages that include arbitrary gadts.

The easiest gadts to incorporate in this way are those that, like representation
types, have inductive structure. Such types do not introduce non-termination, so
the necessary extensions to the definitions in this paper are localized. Alternatively,
we believe that such types may also be defined in Rω using a Church encoding.

Recursive datatypes require more change to the proofs as they introduce non-
termination. Crary and Harper (?) and Ahmed (?) describe necessary extensions
to to support their inclusion.

6 Related work.

Although the interpretation of higher-kinded types as morphisms in the meta-logic
between syntactic term relations seems to be folklore in the programming languages
theory (?), our presentation is technically more precise in dealing with equality and
well-formedness, and employs a dependently typed meta-logic for the interpretation
of the morphisms.

30 Dimitrios Vytiniotis and Stephanie Weirich

Kǔcan (?) interprets the higher-order polymorphic λ-calculus within a second-
order logic in a way similar to ours. However, the type arguments (which are im-
portant for our examples) are missing from the higher-order interpretations, and it
is not clear that the particular second-order logic that Kučan employs is expressive
enough to host the large type of generalized relations. On the other hand, Kučan’s
motivation is different: he shows the correspondence between free theorems ob-
tained directly from algebraic datatype signatures and those derived from Church
encodings.

In recent work (?), Voigtländer shows interesting free theorems about higher-
order polymorphic functions where the higher-order types satisfy extra axioms (for
example, they are monads), but he never has to interpret them as non-parametric
morphisms as we do—and he elides the formal setup of parametricity altogether.

Gallier gives a detailed formalization (?) closer to ours, although his motivation
is a strong normalization proof for Fω, based on Girard’s reducibility candidates
method, and not free-theorem reasoning about Fω programs. Our work was devel-
oped in CIC instead of untyped set theory, but there are similarities. In particular,
our inductive definition of GRelκ, corresponds to his definition of (generalized)
candidate sets. The important requirement that the generalized morphisms respect
equivalence classes of types (wfGRelκ) is also present in his formalization (Definition
16.2, Condition (4)). However, because Gallier is working in set theory, he includes
no explicit account of what equality is, and hence elides the extra complication of
it be defined simultaneously with wfGRelκ.

A logic for reasoning about parametricity, that extends the Abadi-Plotkin
logic (?) to the λ-cube has been proposed in a manuscript by Takeuti (?). Crole
presents in his book (?) a categorical interpretation of higher-order polymorphic
types, which could presumably be instantiated to the concrete syntactic relations
used here.

Concerning the interpretation of representation types, this paper extends the
ideas developed in previous work by the authors (?) to a calculus with higher-order
polymorphism.

A similar (but more general) approach of performing recursion over the type
structure of the arguments for generic programming has been employed in Generic
Haskell. Free theorems about generic functions written in Generic Haskell have
been explored by Hinze (?). Hinze derives equations about generic functions by
generalizing the usual equations for base kinds using an appropriate logical relation
at the type level, assuming a cpo model, assuming the main property for the logical
relation, and assuming a polytypic fixpoint induction scheme. Our approach relies
on no extra assumptions, and our goal is slightly different: While Hinze aims to
generalize behavior of Generic Haskell functions from base kind to higher kinds,
we are more interested in investigating the abstraction properties that higher-order
types carry. Representation types simply make programming interesting generic
functions possible.

Washburn and Weirich give a relational interpretation for a language with non-
trivial type equivalence (?), but without quantification over higher-kinded types.
To deal with the complications of type equivalence that we explain in this paper,

Parametricity, Type Equality and Higher-order Polymorphism 31

Washburn and Weirich use canonical forms of types (β-normal η-long forms of
types (?)) as canonical representatives of equivalence classes. Though perhaps more
complicated, our analysis (especially outlining the necessary wfGRel conditions)
provides better insight on the role of type equivalence in the interpretation of higher-
order polymorphism.

Neis et al. show that it is possible to reconcile parametricity and ordinary case
analysis on types (and not on type representations) using generative types (?).
Going one step further, Neis et al. introduce polarized logical relations in order to
produce more interesting free theorems. For example, the fact that in the presence
of type analysis the type ∀a.a → a is inhabited by terms other than the identity
does not preclude the context that uses a value of that type to be parametric.
Polarized logical relations make the distinction between contexts and expressions
explicit, and would be an orthogonal but interesting extension in our setting as
well.

7 Future work and conclusions

In order for the technique in this paper to evolve to a reasoning technique for
Haskell, several limitations need to be addressed. If we wished to use these results
to reason about Haskell implementations of gcast, we must extend our model to
include more—in particular, general recursion and recursive types (?; ?; ?; ?; ?). We
believe that the techniques developed here are independent of those for advanced
language features.

Conclusions. We have given a rigorous roadmap through the proof of the abstrac-
tion theorem for a language with higher-order polymorphism and representation
types, by interpreting types of higher kind directly into the meta-logic. Further-
more and we have shown important applications of parametricity, in particular to
reason about the properties of equality types.

Acknowledgments. Thanks to Aaron Bohannon, Jeff Vaughan, Steve Zdancewic,
and anonymous reviewers for their feedback and suggestions. Janis Voigtländer
brought Kučan’s dissertation to our attention. This work was partially supported
by NSF grants 0347289, 0702545, and 0716469.

32 Dimitrios Vytiniotis and Stephanie Weirich

A Generalized relations, in Coq

A Coq definition of GRel, wfGRel, and eqGRel (≡κ), follows.6 First, we assume
datatypes that encode Rω syntax, such as kind, term, type, and env. Moreover
we assume constants such as ty_app (for type applications) and empty (for empty
environments).

(* R-omega kinds *)

Inductive kind : Set :=

| KStar : kind

| KFun : kind -> kind -> kind.

(* R-omega types and a constant for type applications *)

Parameter type : Set.

Parameter term : Set.

(* R-omega environments and constant for empty envs *)

Parameter env : Set.

Parameter empty : env.

(* R-omega judgments *)

Parameter kinding : env -> type -> kind -> Prop.

Parameter typing : env -> term -> type -> Prop.

Parameter teq : env -> type -> type -> kind -> Prop.

Parameter value : term -> Prop.

(* Definition and operations on closed types *)

Definition ty (k: kind) : Set := { t : type & kinding empty t k }.

Parameter ty_app : forall k1 k2, ty (KFun k1 k2) -> ty k1 -> ty k2.

Parameter ty_eq : forall k, ty k -> ty k -> Prop.

(* closed terms *)

Parameter tm : (ty KStar) -> term -> Prop.

Parameter typing_eq : forall (t1 t2 : ty KStar) e,

ty_eq t1 t2 -> tm t1 e -> tm t2 e.

Term relations are represented with the datatype rel. The rel datatype contains
functions that return objects of type Prop. Prop is Coq’s universe for propositions,
therefore rel itself lives in Coq’s Type universe. Then the definitions of wfGRel and
eqGRel follow the paper definitions. Since rel lives in Type, the whole definition of
GRel is a well-typed inhabitant of Type.

(* Relations over terms *)

Definition rel : Type := term -> term -> Prop.

Definition eq_rel (r1 : rel) (r2 : rel) :=

6 These definitions are valid in Coq 8.1 with implicit arguments set.

Parametricity, Type Equality and Higher-order Polymorphism 33

forall e1 e2, r1 e1 e2 <-> r2 e1 e2.

(* Value relations as a predicate on relations *)

Definition vrel : (ty KStar * ty KStar * rel) -> Prop :=

fun x =>

match x with

| ((t1, t2), r) =>

forall e1 e2,

r e1 e2 -> value e1 /\ value e2 /\ tm t1 e1 /\ tm t2 e2

end.

(* (Typed-)Generalized relations: Definition 3.2 *)

Fixpoint GRel (k : kind) : Type :=

match k with

| KStar => rel

| KFun k1 k2 => (ty k1 * ty k1 * GRel k1) -> GRel k2

end.

Notation "’TyGRel’ k" := (ty k * ty k * GRel k)%type (at level 67).

Notation "x ^1" := (fst (fst x)) (at level 2).

Notation "x ^2" := (snd (fst x)) (at level 2).

Notation "x ^3 " := (snd x) (at level 2).

(** Well-formed gen. relations and equality (Fig. 7) *)

Fixpoint wfGRel (k:kind) : TyGRel k -> Prop :=

match k as k’ return TyGRel k’ -> Prop with

| KStar => vrel

| KFun k1 k2 => fun (c : TyGRel (KFun k1 k2)) =>

(forall (a : TyGRel k1), wfGRel a ->

(wfGRel (ty_app c^1 a^1, ty_app c^2 a^2, c^3 a)) /\

(forall b, wfGRel b ->

ty_eq a^1 b^1 -> ty_eq a^2 b^2 ->

eqGRel k1 a^3 b^3 -> eqGRel k2 (c^3 a) (c^3 b)))

end

with eqGRel (k:kind) : GRel k -> GRel k -> Prop :=

match k as k’ return GRel k’ -> GRel k’ -> Prop with

| KStar => eq_rel

| KFun k1 k2 =>

fun r1 r2 => (forall a, wfGRel a -> eqGRel k2 (r1 a) (r2 a))

end.

(* Equivalence between typed generalized relations *)

Definition eqTyGRel k (rho : TyGRel k) (pi : TyGRel k) :=

ty_eq rho^1 pi^1 /\ ty_eq rho^2 pi^2 /\ eqGRel k rho^3 pi^3

