Greedy is Good: On Service Tree Placement for In-Network Stream Processing

Z0¢e Abrams

Department of Computer Science
Stanford University, Stanford, CA

zoea@stanford.edu

Abstract

This paper is concerned with reducing communication
costs when executing distributed user tasks in a sensor net-
work. We take a service-oriented abstraction of sensor net-
works, where a user task is composed of a set of data pro-
cessing modules (called services) with dependencies. Com-
munications in sensor networks consume significant energy
and introduce uncertainty in data fidelity due to high bit
error rate. These constraints are abstracted as costs on
the communication graph. The goal is to place the ser-
vices within the sensor network so that the communication
cost in performing the task is minimized. In addition, since
the lifetime of a node, the quality of network links, and the
composition of the service graph may change over time, the
quality of the placement must be maintained in the face of
these dynamics. In this paper, we take a fresh look at what
is generally considered a simple but poor performance ap-
proach for service placement, namely the greedy algorithm.
We prove that a modified greedy algorithm is guaranteed
to have cost at most 8 times the optimum placement. In
fact, the guarantee is even stronger if there is a high de-
gree of data reduction in the service graph. The advantage
of the greedy placement strategy is that when there are lo-
cal changes in the service graph or when a hosting node
fails, the repair only affects the placement of services that
depend on the changes. Simulations suggest that in practice
the greedy algorithm finds a low cost placement. Further-
more, the cost of repairing a greedy placement decreases
rapidly as a function of the proximity of the services to be
aggregated.

1 Introduction

The possibly massive amounts of raw data and the large-
scale, distributed, resource constrained nature of sensor net-
works motivate in-network processing that distills sensor
data within the network before sending it to information
consumers. We refer to data processing modules as ser-
vices, inspired by a service-oriented abstraction of the sen-
sor network [10]. A natural question is where to place

Jie Liu
Microsoft Research
Redmond, WA 98052
liuj @microsoft.com

services to achieve good performance and to conserve re-
sources. Communication in sensor networks usually costs
significant energy, which leads us to focus on reducing the
cost of communication when placing services. We use the
notion of cost as a general abstraction. It captures a combi-
nation of energy, bandwidth, and reliability concerns.

Service placement is made more challenging in the pres-
ence of nodes and links that are unreliable. The network
topology may change due to depleted batteries, node fail-
ure, or overcapacitated nodes. The cost of communication
may also change if nodes are mobile or coupled closely
with an evolving environment. In addition, the instantia-
tion of services or the dependencies between services may
change in situations such as conditional monitoring. For
many applications, it is desirable to repair the placements
in the network using local and distributed algorithms. An
ideal service placement strategy should be both optimal, in
its placement quality, and adaptable, to changes in network
and application topology.

As shown in Figure 1, we consider a connected network
of sensor nodes that are distributed in the physical world.
Each node can collect and process data as well as com-
municate with its neighbor nodes. A node also serves as a
router to relay network traffic. A user can interact with the
entire network through any node by, for example, sending
queries and receiving answers. The communications have
energy, bandwidth and reliability constraints, which intro-
duce a cost for using communication along an edge per unit
of data sent. We omit the cost of computation within a node.

A user task is made up of services. These services form
a service composition graph consisting of services and di-
rected acyclic communication links that represent depen-
dency constraints. The top of Figure 1 is an example of
a service composition graph. Some services within a task
must run on specific nodes. For instance, tasks that collect
sensor data from a certain area must run on a node capable
of performing the required sensing function. These services
are said to be anchored. Other services are floating and can
be placed on any node in the network. The goal is to find a
service placement for floating nodes such that the total cost

~ Ty i‘ =
:ﬁ’ ,/s@ composition
o ’”
1 2 1t o !

5 09' ovo” O o I 0
o Oa 00 O O ~hetwork

Figure 1. An illustration of service placement

of running the task is minimized. In Figure 1, the service
placement is illustrated by dotted arrows from the service
composition graph to the network.

This problem formulation encompasses many sensor net-
work applications, where the data collected by the sensors
is viewed as streams, and user applications are operators
applied on these streams. Since sensor data is distributed,
yet usually spatially clustered, processing data near where
it is collected can significantly reduce the amount of data
transmitted. In a sensor database (e.g. Cougar [6] or
TinyDB [11]), streams of data are collected at each sen-
sor. Database operators such as MIN, MAX, and SUM can
be applied on these data streams in the network to answer
user queries. Since these operators can take an arbitrary
number of operands and return only one number, they can
significantly reduce network traffic when placed strategi-
cally along the paths that data are routed to the end user.
In macro-programming paradigms such as regiment [13]
and semantic streams [20], sensor streams are hierarchically
constructed to inference high-level events and to trigger re-
actions. These user defined functions or inference units are
placed in the network for resource efficiency and timely re-
sponses. In this paper we only consider service composi-
tion graphs that form a tree, where the sensors are leaves
and the end information consumer is the root. Data only
flows in one direction, from the sensors to the information
consumer. Even with these assumptions, the formulation
still covers a wide range of sensor network applications and
can be applicable to other systems beyond sensor networks,
such as overlay networks, workflow management for web
service, and server farms.

1.1 Related Work

The problem of placing modules within a network has
recently gained increasing interest in sensor networks due
to the trend of interacting with an entire sensor network as
one entity through, for example, database queries [5, 16],
macroprogramming [13, 2], or service composition [20, 9].
This type of interaction requires information be agreggated,
synthesized, or collected within the network.

In the distributed computing context, the goal of op-
erator placement is to minimize latency due to computa-
tion and communication. The operator placement prob-
lem, also called the module assignment or task embed-
ding problem, for distributed tasks with precedence con-
straints, is one of the classical distributed computing prob-
lems [4, 14, 19, 3]. The problem shows up in many con-

texts such as overlay networks [15], grid computing [8],
and streaming databases [12]. It has been show that the
general operator placement problem is NP-hard, but poly-
nomial time algorithms (e.g. based on dynamic program-
ming) exist when the service graph is a tree [4].

In sensor networks, energy constraints and node reliabil-
ity are often crucial. Along these lines, the work of [16, 17]
considers optimum placement of filters with different selec-
tivity rates so that the cost of execution and communication
is minimized. Their model is similar to ours in its notion of
filters with selectivity rates that operate over a pre-existing
aggregation tree. However, their solution exploits the free-
dom of re-ordering operators. Our work is different in that
the data flow tree represents a work flow that must be exe-
cuted in a specific order and must form an exact structure.

This paper is organized as follows. In section 2 we for-
mally define the service placement problem and outline a
dynamic programming based optimum solution and an in-
network relaxation heuristic. In section 3.1, we introduce
the greedy placement algorithm and show its performance
bound for cases where data reduction rate at each service
is high. In section 3.2, we propose a modified greedy al-
gorithm that can be used even when the data reduction rate
does not satisfy the conditions in section 3.1. Section 3.3,
describes how to implement the greedy algorithm in a dis-
tributed manner. We simulate and compare the performance
of these algorithms in section 4.

2 Service Placement Problem

We formally define the service placement problem as fol-
lows. An underlying network is given as an undirected com-
munication graph G = (V, E), where V is the set of nodes
and £ C V x V is the set of edges connecting the nodes.
Let w. on edges e € E be the weight on the edge, i.e., the
cost of communicating one unit of data across the edge. Let
u and v be two nodes, w(, . is the sum of the weights on
the shortest path from v to v in G.

We are also given a service graph in the form of a rooted
tree T = (O, L) where O is a set of services, and L C
O x O is the directed dependency links among the services.
To make the presentation clear, we call elements of the com-
munication graph nodes and edges and elements of the ser-
vice graph are called services and links. Link | = (¢,p) € L
represents that the outputs of service ¢ feed into the input of
service p, where p is called the parent of ¢ and ¢ a child of
p. We denote R the root of the tree (i.e. the only node in
the tree with no outgoing links), and C,, the (direct) chil-
dren services of p. For each (¢,p) € L, d represents the
amount of data communicated on link (¢, p), and d;] the to-

. . 7, _ o)

tal amount of data fed into node p. Thatis dj, = > .. dg.
. d; .

The ratio r, = 27 denotes the data reduction rate at ser-

vice p, defined as the data out of p divided by the data from

all children into p. We further make the following assump-
tions: (i) The communication graph is connected. (ii) All
leaf services S and the root service R are anchored in the
communication graph. This assumption simplifies the prob-
lem but does not exclude situations where an interior node
of the service graph is anchored, since we can consider that
this interior service is the root of a subproblem and then
merge subproblem solutions together. Merging is possible
because placements below an anchored service are indepen-
dent of the placements above it. (iii) The edge weights in
the communication graph satisfy triangle inequality and are
symmetric (that is, Wy,) = W(y,u))- (iv) The computation
cost within a node is ignored. In particular, we assume the
computational power on each node is sufficient to host the
entire user task. That is, we do not constrain the capacity
of the nodes, and can place multiple services on the same
node.

Definition 1 Service Placement Problem: Find an onto
Sfunction f : O — V satisfying anchor assumptions and

such that
YD dgwi s (1)
pel qeCyp

is minimized, where I is the set of interior services in the
service tree including the root, i.e. I = O — S.

We refer to the value of equation (1) as the cost of place-
ment f, f(p) the host of p, and f* the function f that mini-
mizes equation (1).

2.1 Optimum Placement

When the service graph is a tree, there exists a
polynomial-time algorithm for optimum placement using
dynamic programming. Define function C'(p, u) on services
p € O and nodes u € V' to be the minimum possible com-
munication cost of routing all descendants of p to node u.
For every leaf service s € S anchored at node v in the com-
munication graph, define C(s,v) = 0; and C(s,u) = oo if
u # v. Then, considering service p is placed at node u and
given values C'(q, z) for ¢ € C), and for all x € V, then
the optimum placement of ¢ is the placement for which the
sum of the cost of communicating data from C), to p plus
the cost of communicating all desendant data to C), is min-
imized. Note that the optimum placement for each child
of p is independent of the optimum placement for the other
children of p. Precisely, the function C' can be computed
recursively using the following equation:

C(p, U’) = Z mlnxGV(w(z,u)dg + C(Q7 .1?))
(IECP
After computing C(p,u), Vp € O,u € V, define the
map ¢ with the set of pairs p € O,u € V used in the recur-
sive unfolding of C(R,vr), where the root service is an-
chored at node vk . Then, g is the optimum placement. This

algorithm has running time O(|V|?|O|). Although it finds
the optimum in polynomial time, it has three problems: (1)
The algorithm is centralized. It requires the precise knowl-
edge of the shortest path between all pairs of nodes. (2)
The algorithm is global. A change of weights in the com-
munication graph or a change in the topology or data rates
of the service graph could potentially trigger an entire re-
calculation for the function C'. (3) Although polynomial,
the in-network cost of running the algorithm may be pro-
hibitively large in sensor network contexts where energy is
at a premium.

2.2 In-Network Relaxation

When complete knowledge of the underlying network
is unknown, researches have suggested relaxation-based
placement heuristics. Relaxation can be centralized by ab-
stracting the communication costs among the nodes into
values in a metric space [15]; or it can be in-network [5]. In
an in-network relaxation scheme, based on an initial place-
ment, a service hosting node locally decides whether plac-
ing the service on a neighbor node can reduce the overall
cost, assuming that no other services are moving concur-
rently. A local migration usually will have a chain effect
that triggers up-stream or down-stream service migration.
The algorithm iterates through these local adjustments and
tries to settle on a placement tree of minimal total cost.

Relaxation-based algorithms are extremely simple and
adaptive. They can also handle cases where the service
composition graph is not a tree. However, the quality of
the placement highly depends on the initial placement of
the services, since it can fall into local minima when the
communication costs on edges are not uniform or when the
network topology is irregular (e.g. with holes).

3 A Distributed Greedy Algorithm

One of the key challenges of service placement in sensor
networks is the ability to adapt to changes in the communi-
cation and service graphs without expending too much en-
ergy. In this section, we develop a modified greedy place-
ment algorithm and a decentralized adaptation strategy to
repair a greedy placement. The algorithm is simple and effi-
cient and has proven guarantees on performance, regardless
of the number of nodes in the network and the complexity of
the service composition tree. We first describe a straightfor-
ward greedy approach. We then build upon the greedy al-
gorithm with a simple, yet potentially crucial, modification.
This section ends with a description of a local distributed
repair strategy using the modified greedy algorithm.

3.1 The Greedy Algorithm

We now present an O(|V] - |O]) greedy heuristic that
places services hierarchically. For each service p, if f(q) is
defined for all children ¢ € C), then assign p to node

(a) A service composition tree.

(b) A communication graph.

Figure 2. Greedy placement scenario

u = argmin, { > dfw(s(g).}-
(IECP

We say that u is the optimum median for nodes C),. Since
placement of each service only depends on the placement
of its children, the greedy algorithm has the potential to be
easily distributed and local changes in the service tree only
affect the assignment of its ancestors. Furthermore, since
each service can be definitively placed based on its chil-
dren’s placement, the storage and communication costs are
minimized.

However, the greedy algorithm can be arbitrarily more
costly than the optimum solution. Figure 2 shows a binary
tree service composition tree (a) that is to be placed on a
communication graph (b), where the weights of the com-
munication graph are labeled on the edges, and e is an arbi-
trarily small number. The leaf nodes Di and the root R are
anchored to the corresponding network node with the same
label. The optimum placement routes the data “inward”,
i.e. each service is assigned to the node in the communica-
tion graph with the same name. The greedy algorithm, on
the other hand, assigns all the nodes outward, until reaching
A’, and then routes the data all the way back inward to the
root R.

Let 0 < h < H be the depth of a service in the tree
where hg = 0 and H is the height of the tree. Let the
amount of data sent out from each leaf be 1, and let the data

reduction rate at each intermediate node be r. The amount
of data leaving a node at height A is (2r)” ~" and the num-
ber of nodes at level /4 is 2 giving the following cost of the
optimum assignment:
H
C* = Z 2}1,(2T)H—h

h=1

H
2H Z (T)H_h
h=1

while the cost of greedy assignment is
H

C = oH Z (T)Hfh(QHchrl _ 1)
h=1

because the weight of edges in the greedy placement at
height h is (2 ="*! — 1) as opposed to 1 in the optimum.
If » > 1/2, then C/C* — oo as H — oo, which indicates
that the greedy algorithm can provide a solution with cost
that is arbitrarily worse than the optimum. However, it is
also interesting to observe that if r < 1/2, C/C* < oc.
In particular, for r = 1/4, C/C* < 2. That is, for this
example, when the data reduction rate is 1/4, the greedy al-
gorithm is at most twice as bad as the optimum placement.

3.2 A Modified Greedy Algorithm

There are two factors working against each other in the

Greedy Algorithm from section 3.1. First, the sub-optimum
placement incurs a cost penalty due to the additional dis-
tance the data must travel. Second, the data reduction rate
reduces the costliness of communicating the data. In our
Modified Greedy Algorithm, the benefit from the second
factor is used to mitigate any possible damage due to the
first factor.
Analysis We will now give a bound on the cost of the greedy
solution for arbitrary service composition trees and commu-
nication graphs. This bound will show that the greedy so-
lution is not too far from the optimum when there is a high
data reduction rate. The key observation is that the commu-
nication cost of routing placed children q € C,, to the greed-
ily chosen host for p is at most the communication cost of
routing those same greedily placed children to the host for
p in the optimum solution. This observation is true because
the host for p in the optimum is also a host option for the
greedy algorithm. The cost of routing to the host for p in the
optimum is broken into (a) the cost of routing the data from
the greedily placed children back to the leaves, and (b) the
cost of routing from the anchored leaves of the service com-
position tree, through the optimum service placement tree,
to the host for p in the optimum solution. We first give a
bound for the quantity (b) and then use this bound to recur-
sively build up a bound for (a) since each previously chosen
portion of the greedy placement has already been bound.

We define the following notation: D), are the descen-
dants of p (excluding both p and the leaf nodes). ¢(p)
is the cost of routing data from the host nodes of chil-
dren C,, to the host of p in the greedy algorithm. In other

words, for function f defined by the greedy algorithm,
c(p) = quc,, dgw(s(q),f(py)- Similarly, ¢*(p) is the cost
for the optimum placement. m,, (with ¢ being a descen-
dant of p) is the set of service along the path from p to
q, including ¢ but not p. If p = g, then the set is empty.
Tpg = [1 hermp, Th is the data reduction rate along the path
from q to p, again including ¢ but not including p. If p = ¢
the product over the empty set is 1. v*(p) is the cost of
routing a total data amount d}; from leaves to p in the op-
timum solution. The total amount of data is distributed
among the leaves proportional to the real traffic. Precisely,
v*(p) = qu(DpUp) TpqaC*(q)-

By definition, for each node p, the greedy algorithm
picks a placement that minimizes the cost of sending data
d; from p’s child nodes to p. So, the cost ¢(p) should be no
greater than the cost of shipping the data from each ¢ € C,,
along the greedy assignment path all the way back to the
leaf nodes, then along the optimum path according to f*(p).
This implies the following inequality:

c(p) <7 () + Y mpac(a)- ©)

qeD,

Using this inequality, we can derive the following
lemma.

Lemma 1 For each node p, the greedy placement cost and
the optimum placement cost satisfies:

ST rg2mler(q) 3)

qE(DpUp)

c(p) <

The proof is given in [1]. Applying this
lemma recursively, the cost of the entire tree is:
cr) = ZpEI c(p) < ZpEI EqE(DpUp) quzlﬁp“C*(Q)
< Zpel 2_4e(rrpUR) quz‘ﬂ”‘C*(p)- The seconq in-
equality follows because, in trees, the set of all (inter-
nal node, descendant) pairs is exactly the same as the
set of all (ancestor, internal node) pairs. In both sum-
mations, the pair (p,q) occurs once iff p is an an-
cestor of ¢. If all data reduction rates are the same

value R, C(T) < Zpe] qu(ﬁnpun)(QR)‘ﬂ”‘C*(P) <

lmRpl+2 _ ,
> oper %c* (p). So, we have the following theo-
rem.

Theorem 1 For a tree service placement problem, if the
data reduction rate at every service satisfiesr < R < 1/2,
In particular, if R = 1/4, we have C(T") < 2C*(T).
This result is independent of the size of the communication
graph and the height of the service tree.
The Modified Greedy Placement Algorithm When the
data reduction rate is greater than or equal to 1/2, the re-
sult from Theorem 1 does not apply. In this situation, we

can cluster the original service tree and introduce “super-
services” that have stronger data reduction rates. We then
perform the greedy assignment algorithm on the modified
service tree. In particular, given a service tree ' = (O, L)
and a desired data reduction rate 12, we create a modified
tree 7" = (O’, L) by applying the following graph trans-
formation:

1. Initialize O" = {s|s € S}, L' = 0.
2. For each service p € O with CpT co’

- Ifrp, < R: Add p to O’, add links from CE to p into the set
L'. Delete p from O. Here Cg are the children of p in T'.

- Otherwise, if r, > R: For each ¢ € CpT , remove link (¢, p)
from L and add link (c, q), where g is p’s parent in T". Delete
p from O. Redefine dj = df, — dj + ZcecpT d2 andrq =
4.
dg

3. If O contains only S and R, end; else, go to Step 2.

The new tree T” thus created will have all the leaves of
T, and all the data reduction rates less than 2. We can then
perform the greedy placement algorithm for 7.

Theorem 2 The optimum tree for routing T' costs at
most % times the optimum tree for routing T. Precisely,

CH(T") < £CH(T).

Proof: Take the original service tree 7. For all nodes in
O — O, give the node a data reduction rate of 1 and call this
tree T. Clearly, C*(T) < % since the data rate at any
node is increased by at most %. Now, any solution for T
can be used for 77 to get the same total cost.

Theorem 3 For R =1 /4, the Modified Greedy Algorithm
solution for T, C(T), has cost at most 8OPT. Precisely,

C(T) < 8C*(T).

Applying the greedy algorithm to 7', C(T")
—55C*(T"). Combining with Theorem 2, C(T”)
77 C*(T). Furthermore, C(T') < C(T”), because we
can route 7' using cost at most C'(7”) by placing all ex-
cluded services at the host for the included service closest
along the path to the root. We choose R = 1/4 to minimize
57z giving an approximation of 8. Again, this guarantee

is independent of the height of the tree.

<
<

3.3 A Distributed Implementation

The goal of this section is to describe an efficient way
to find a new placement for a service, and all services that
depend on it, in a distributed manner such that the com-
munication cost of the new placement has the same perfor-
mance guarantee as that of the modified greedy algorithm.
We consider the situation where there is a change in a single

Figure 3. A limited range flooding

service that is part of a larger service graph that has already
been placed. The change may come from the node that is
hosting the service or from a change in the structure of the
service tree.

A brute force implementation when service p changes
is for every child of p to flood the entire network. Each
flooding sets up the gradient of cost to the particular child
node. Every node computes the total cost if it were to be the
host of p. Then, a leader election process chooses the host
with minimum total cost. This process is repeated for every
ancestor of p.

We now show how, when the child services are proxi-
mate, the optimum median can be found without flooding
the entire network. The more closely located the set of sib-
lings, the less flooding is used to find the minimum cost
median. For many sensor network applications, sibling ser-
vices are proximate since usually the users are interested in
data that is relatively local.

The general idea of the algorithm is to flood some small
area around the siblings until the flooding ranges intersect at
some median (not necessarily the minimum cost median).
Then, the found median is used to limit the search space for
the optimum median. Figure 3 shows a limited range flood-
ing emanating from three child nodes A, B, and C, rep-
resented by the stars. The circles are flooding ranges with
values C'4, Cp, and C¢ respectively. D is a node where
the three flooding ranges intersect. It may not be the min-
imum cost median, but the minimum cost median will be
within the union of the three flooding ranges, since for each
node, like F, that is outside the union, every edge weight in
the cost function ¢(E) will be larger than the corresponding
edge weight in the cost function for node D.

In the following algorithm, we assume that the nodes are
reasonably time synchronized. We denote the children, sib-
lings, and parent of a service p with F}, and call the hosts of
services F), the immediate relatives of p. A slight abuse of
notation, we assume sending f(F},) in a message includes
the ID numbers of the immediate relatives of p along with
information about which host holds which service (simi-
larly for Cp). We assume that if p is hosted at node h,
the broadcast distances to the immediate relatives of p are
known to h. If this assumption cannot be made, then the

ID numbers of the immediate relatives are known and can
be used to determine distances using standard distributed
algorithms such as doubling broadcast distance until the re-
quested node responds. We also assume that when a mes-
sage is sent from some location, it will first be received by
a node along a shortest path. It is assumed that all nodes
know «, a parameter of the algorithm that is used as the
initial value in limited cost flooding.

The algorithm performs in two stages: a limited cost lo-
cal flooding from each child to find an initial median and a
flooding to the union of the first flooding zone to find the op-
timum median. The algorithm is defined by 4 states. Each
state has an event that triggers entry into the state, some
activity that the node performs while in the state, and an
event that triggers exit from the state. Note that the states
are not exclusive, that is, a node can be in more than one
states at the same time. In addition, there are 5 types of
messages that nodes might send during the course of the
algorithm. Where applicable, the sender and recipient of
the message is indicated using unique node ID numbers.
The newHost(p, h, f(F,)) message indicates that service
p, with immediate relatives f(F},), has a new host with ID
number h. Regardless of the state, a node hosting service
p that receives a newH ost(p, h, empty) message sends a
newHost(p, h, f(F,)) message to h and deletes p from the
set of services it hosts. Upon receipt of a newH ost mes-
sage, all nodes update the new service location if the in-
formation is relevant for the services it hosts. To prevent
the description from becoming cumbersome we have omit-
ted details that can either be inferred or implemented using
standard techniques. These details include the precise con-
tent of the messages and the manner of calculating distance
to a node using a message received from that node.

INITIATE STATE

Entry Event: A change in the network occurs requiring a new placement
of service q.

Activity: Choose arbitrary child p € C, with host f(p). Send
newHost(p, h, f(Fp)) message to f(p) and f(q) with h = f(p) and
f(Fp) empty. Essentially, this message tells the node hosting p to move
the service p from itself to itself in order to initiate the greedy algorithm.
Exit Event: Send new H ost message.

LEAD STATE

Entry Event: A newHost(p, h, f(F}p)) message is received and the
new host ID matches my own ID, f(F}) is not empty, and p is not the
root of the service graph.

Activity:

1. Set g to be the parent of p in the service graph.
2. Broadcast initiate(self, g, f(Cq)) message to hosts of Cj.

3. Upon first receipt of a medianValue(v,id) message, set w equal to the
time elapsed between entrance into the leader state until the current
moment. Use w and knowledge of the algorithms to determine the
time-towait needed until all medianV alue messages are received.
Choose the medianV alue message with the smallest v, and set
f(q) (the new host for q) to be the id from this message. Send
message new Host(q, f(q), empty) to nodes in f(F)p).

Exit Event: Send new Host message.

FLOOD STATE

Entry Event: Receive initiate(p, q, f(Cq)) message, where my ID w
isin f(Cyq).

Activity: Set J = «. J is a cost bound on the reach of the message such
that the message will be received by node w iff wyy,) dy, < J.

LOOP: Broadcast a flood,qqius(J,p,q, f(Cq)) message. If a
terminate(q) message is not received within given timeout, let
J = g(J) where g is monotonically increasing in .J, and return to LOOP
(perform another bounded depth flooding).

Exit Event: Receive terminate(q) message.

SEARCH STATE
Entry Event: Receive flood,qqivs(J, P, ¢, f(Cq)) message.
Activity:

1. Retransmit any floodynion(union,p,q, f(Cq),v) message re-
ceived.

2. If receive flood,qqius OF floodynion messages from all hosts of
services Cy

e If the all messages are flood,,q4ins messages, send
terminate(q) message to all nodes f(Cy).

e Compute v = {the cost of hosting ¢ myself}.

e Compute v* = {the smallest from amongst v and any median
value received in any floodynion message so far}.

e Send medianValue(v, sel f) message to the leader p iff
v < o*

e Send floodynion (union,p,q, f(Cq),v*) messages to all
neighbors.

Exit Event: Send floodynion messages to all neighbors.

Consider the distributed algorithm at work in the exam-
ple from Figure 3. Node F' will soon run out of batteries and
the service p it is hosting must be placed at a different node.
Node F' chooses to assign leadership to node B, because B
is hosting ¢ € C),, an arbitrarily chosen child of p. Leader
node B sends a message to the hosts of p’s children, A, B,
and C, telling them to initiating their flooding. When node
D hears from A, B, and C, it sends them all a terminate
message to stop their flooding processes. D computes the
cost of hosting p itself, and sends this value to leader node
B. Node D also forwards its median value and distances
to A, B, and C on to its neighbors so that the gradients
will continue to grow into the union space. Similarly, all
of the nodes inside the union space will forward the gradi-
ents within the union while they are waiting for the gradient
from all children of p. Once all gradients are received, they
too will send the cost of hosting p themselves to the leader
B if the hosting cost is better than D. Once B receives the
median value message from D, it can anticipate the time
to wait for other nodes since weights are symmetrical. B
chooses a host for p that has minimum cost, say node K and
sends this decision to the hosts of the immediate relatives of
q so that they can update their information, including the
old host site for p (node F'). Node F fills in information

about the hosts of F), and retransmits this message to K so
that K has all the information it needs to properly host p.
Now K is the leader of a new median search for a node to
host the parent of p, unless p is the root.

For each service p placed in this process, 2|C),| bounded
depth floodings are needed. If this amount of flooding is
still too expensive and the optimality of the solution can be
further relaxed, we can use the first median found. In fact,
we can improve the algorithm by using time varying flood-
ing where a message is delayed at each node proportional
to the amount of data transmitted along the incoming link.
In this way, the node where the flooding messages meet is
closer to services sending more data.

4 Simulations

We evaluate both the placement and adaptation costs of
the greedy algorithm through simulation. The placement
cost is the value of the placement given by equation (1)
from section 2, and the adaptation cost is the amount of en-
ergy expended in adapting the placement after a change or
failure in the network. We use four kinds network topol-
ogy: perturbed grid, perturbed grid with a hole, random
topology, and random topology with a hole. In a square
region of 1000x1000, various numbers of sensors are de-
ployed. The communication range of each node is chosen
uniformly from [0.5¢, 1.5¢], where ¢ is a parameter to con-
trol different network densities. The cost on the edges are
uniformly distributed in [10, 15]. The root of the service
tree is always set at the bottom left corner of the network,
i.e., at coordinate (0, 0). Examples of the topologies used
and some placement results can be found in [1].

4.1 Placement Cost

We use two sets of examples to study placement perfor-
mance in the simulations: a sparse tree that is inspired by
a parking garage application, and a regional data collection
tree inspired by TinyDB. In the first example, we compare
the greedy placement results with the optimum placement
and the in-network relaxation based placement from 2.2.
Sparse service tree We place 64 nodes in the field and pick
¢ = 100. We use a service graph as shown in Figure 4(a)
as a representative for a class of distributed event detection
applications. This particular graph is inspired by the park-
ing garage scenarios in [10] and [7]. Assume that a set of
wireless webcams are installed in a parking structure. A set
of sensors (e.g. break beams or RFID readers, labeled as
S1,..55 in the figure) are deployed near the entrance that
detect (service S6) and identify (service S7) incoming ve-
hicles. Camera images from S8 and S9 are stitched together
at S10 and filtered by the car detection events (which may
also contain the driver’s parking preference) at S10. Open
slots are counted (service S11), and their locations are re-
turned to a display (service S12).

(b) Modified service tree.

Figure 4. A service tree example

The output data rate from each sensor and service is la-
beled on the links. The data reduction rates rs¢ = 1/5,
rs7 = 10, rs10 = 5/21, and rg;; = 1/50. Mapping to
the sensor network layout, we assume S1, ..., S5 are near
(700, 700); cameras S8 and S9 are near (900, 100), and the
root service S12 is at the origin (0,0). Note that not all data
reduction rates are less than 1/4. We convert the service
graph into the one shown in Figure 4(b) using the modified
greedy algorithm.

We compare the results from the optimal, a simple

greedy, a modified greedy and a in-network relaxation
methods, and lable the assignment cost Copi, Cyreedys
Cmodifieds and Chrelqz, respectively. To collect perfor-
mance statistics, we run each algorithm on 32 randomly
generated networks in each topology category and compute
the ratio of the total cost over the optimal cost. Figure 5
shows the statistics of the results. Each network topology is
shown in a separate subfigure. The min, median, and max
ratio are plotted. In all these examples, the modified greedy
placement performs better than greedy placement, which is
better than in-network relaxation.
Data aggregation The next set of experiments test the
greedy placement algorithm in data aggregation applica-
tions. The network is set up similar to the previous eval-
uation and a base station is placed at the bottom left cor-
ner. The tasks are aggregation queries, such as MAX, com-
puted over a subset of sensor inputs. We compare the per-
formance of greedy placement with TinyDB [11] like ag-
gregation trees, which we call TAG trees. A TAG tree is
built without prior knowledge of what sensor data will be
collected. In the simulation, we used the tree formed by the
shortest paths from all nodes to the root.

An aggregator, like MAX, is placed at every node on the

Grid Grid with a hole

4
35

3
25 mmin

2 mmedian
1.5 omax

1
05

0

modified greedy relaxation modified greedy relaxation

o =~ m © &

(a) Perturbed grid topology. (b) Perturbed grid with a

hole.

Random with a hole
Random

45+
4 35
35 1 3
3 @min 25 amin
2 g mmedian 2 mmedian
15 Omax 15 omax
1 1
0.5 0.5
[[

modified greedy relaxation modified greedy relaxation

(c) Random topology. (d) Random topology with a

hole.

Figure 5. Placement algorithm statistics

TAG tree. Since these aggregators take an arbitrary num-
ber of inputs and produce only one output of the same data
type, their data reduction rate equals the inverse of the num-
ber of their children in the TAG tree. In these data aggre-
gation scenarios, the optimum placement of aggregators is
a minimum-cost Steiner tree [18]. In this section, we ap-
ply the greedy placement algorithm to an n-ary balanced
tree. We compare our placement cost with the cost of a
TAG tree. By using an n-ary tree, we effectively create ag-
gregation services with data reduction rate 1/n. Given a
network of N nodes in a square field, we select m = [v/N |
nodes as source sensors. We place these sources “evenly”
along the anti-diagonal line (from upper left to lower right),
so that we give the greedy algorithm enough space (i.e. the
upper-right half of the field) to make sub-optimal choices.
To achieve this effect, we divide the field into an m x m
grid, and select one sensor from every anti-diagonal grid.
We run 32 experiments for each N = 64, 128, 256, and 512
under a perturbed grid topology. In each configuration we
vary the data reduction rate R (i.e. the branching factor in
the aggregation tree) to be 2, 4, 6, and 8.

Figure 6 plots the ratios between the cost of the greedy
algorithm placement on trees with varying branching fac-
tors and the cost of placement using a predefined TAG tree.
In almost all cases, the greedy placement performs better
than the TAG tree. The result is not surprising, since by
breaking up the aggregator, we have created a specific tree
for the specific set of data sources. A notable exception is
in Figure 6(a) with group size 8. Since there are only 8 data
sources in the configuration, by building a 8-ary tree, we are
not doing any in-network aggregation.

128 node network, 11 sources

64 node network, 8 sources.

ratio to TAG tree placemen
ratio to TAG tree placement
cost
2

2 4 6 8
aggregation group size

(a) (b)

256 node network, 16 sources 512 node network, 22 sources

cost

cost

ratio to TAG tree placement
&

ratio to TAG tree placement
&
2

aggregation group size

(c) ()

Figure 6. Greedy vs. TAG trees
4.2 Adaptation Cost

In this section, we evaluate the performance of our dis-
tributed greedy algorithm and, in particular, the effective-
ness of using bounded depth flooding to find the minimum
cost weighted median. There are three key metrics to evalu-
ate: the flooding zone union, the number of medianV alue
messages sent, and the quality of the initial median. The
flooding zone union is defined as the number of nodes
reached in the flooding processes, or, the number of nodes
that enter the SEARCH STATE. The smaller this zone, the
less energy and network traffic is spent forwarding flooding
messages. The number of medianV alue messages sent is
the number of nodes in the flooding zone union that have
cost smaller than the cost of the first median found at the
intersection of the individual flooding zones. A node only
sends its median value to the leader node if it is less than the
median value found initially. Therefore, the fewer the num-
ber of nodes that would cost less than the initial median, the
fewer medianV alue messages will be sent. Reducing the
number of medianV alue messages conserves valuable en-
ergy and communication resources. Finally, the quality of
the initial median is defined as the ratio between the mini-
mum cost median and cost of the initial median found. The
better the quality of the initial median, the more promise
there is in using it as a substitute for the optimum median
when communication resources are severely constrained.

We run the simulation in networks with 512 nodes ran-
domly scattered in a physical space of size 1000 x 1000.
In a square region of size 200 x 200 at the center of the
space, we randomly place a number of child services who
need to find a host for their parent node. These children are
in the center of the space so that the flooding process can
reach a large number of nodes without hitting the edge of
the network. All children services have the same amount of

5 children | |
*x 4children
o 3chidren | |

g §ox
yILERE

h
2 4 6 8 10 12 14 16
Total length of paths from children to parent

Figure 7. Flooding zone statistics

outgoing data. The number of children is a simulation pa-
rameter, chosen from {3,4,5}. We run 32 simulations for
each parameter.

Figure 7 shows the size of the flooding zone union under
different runs. The X-axis is the total length of the commu-
nication paths from child hosts to the chosen parent host.
This is used to measure the closeness of the child hosts. The
smaller this number, the closer the child hosts are, and thus
the smaller the flooding zone union should be. Although not
used in our simulations, the unweighted median cost could
also serve as a lower bound on the amount of communica-
tion that must be expended in finding this median (assuming
the only way to determine distances is through direct com-
munication between nodes). Since the flooding zones stop
growing when all children gradients intersect, the more chil-
dren, the larger the flooding zone union tends to be. The sig-
nificant reduction in the size of the flooding zone union as
the proximity of the children nodes increases, emphasizes
that the performance of the distributed greedy algorithm is
dependent on the proximity of the children nodes.

Figure 8(a) shows a histogram of 96 simulations, buck-
eted according to the number of medianV alue messages in
the simulation. In the majority of the simulations, less than
10 nodes had a cost that was smaller than the cost of the ini-
tial median. Less than 9% of the simulations had more than
46 nodes send medianValue messages. Out of a total of 512
nodes, this shows a significant reduction in communication
and processing costs as a result of the low cost of the initial
median. Figure 8(b) shows the distribution of the cost ratio
between the optimum median and the initial median. In the
majority of the simulations, the ratio is more than %, with
about % of the simulations resulting in an optimum median
that is more than .9 the initial value. Although there is still
more to understand about the full implications of using the
initial median in place of the optimum, these results indicate
that this option has real potential.

It should be pointed out that sometimes the objectives
of minimizing the flooding zone union and minimizing the
cost of the initial median are in conflict. For instance, often
setting the individual flooding radii to be the same for all
nodes, independent of the amount of outgoing data at that

Histogram of the qualiy of nitial median

oo] |

(a) The distribution of the
number of nodes whose cost
is smaller than the cost of the
initial median.

(b) The distribution of the
cost ratio between the min-
imum median and the initial
median.

Figure 8. Initial median statistics

node, will result in a smaller union flooding zone but will
increase the value of the initial median found. Further ex-
ploration into the tradeoffs between these two metrics and
their relative importance in various application scenarios is
an interesting direction for future work.

5 Conclusion

We studied the performance bound for a modified greedy
algorithm for service tree placement and proposed a dis-
tributed scheme to adapt to network and service tree
changes. We recommend using the the optimum dynamic
programming solution when all information is centralized,
the network is relatively stable, or initially when a task is
deployed. When the network is dynamic, the greedy algo-
rithm is a fast, simple, distributed, and efficient alternative
with both provable guarantees and easy adaptivity.

The simulations in data aggrgation scenarios suggest
that performance improves when the routing tree is defined
based on knowledge about the modules to be aggregated.
As would be expected, tailoring the routing to the specific
user task leads to significant reductions in energy consump-
tion. This motivates further exploration into the possibility
of a new paradigm in which routing structures are defined in
the network, in real time, and can evolve, adapt, and change
as the task at hand changes.

References

[1] Z. Abrams and J. Liu. Greedy is Good: On service tree
placement for in-network stream processing. Technical Re-
port MSR-TR-2005-171, Microsoft Research, November
2005.

[2] A. Bestavros, A. D. Bradley, A. J. Kfoury, and M. Ocean.
snBench: A development and run-time platform for the
rapid deployment of video sensornet applications. In Proc.
of 2nd Intl. Workshop on Broadband Advanced Sensor Net-
works (Basenets’05), Boston, MA, October 2005.

[3] A. Billionnet. Allocating tree structured programs in a dis-
tributed system with uniform communication costs. /EEE
Trans. Parallel Distrib. Syst., 5(4):445-448, 1994.

(4]

(3]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

S. H. Bokhari. A shortest tree algorithm for optimal assign-
ments across space and time in a distributed processor sys-
tem. IEEE Trans.Software Eng., SE-7(6):583-589, 1981.
B. J. Bonfils and P. Bonnet. Adaptive and decentralized op-
erator placement for in-network query processing. In Proc.
Information Processing in Sensor Networks (IPSN’03), Palo
Alto, CA, pages 47-62, April 2003.

P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor
database systems. Lecture Notes in Computer Science,
1987:3-14, 2001.

J. Campbell, P. B. Gibbons, and S. Nath. IrisNet: An
internet-scale architecture for multimediasensors. In Proc.
of ACM Multimedia (MM’05), Singapore, November 2005.
J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd. Grid-
Flow: Workflow management for grid computing. In Proc.
Intl. Symposium on Cluster Computing and the Grid (CC-
Grid’03), Tokyo, Japan, pages 198-205, May 2003.

P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. Iris-
net: An architecture for a world-wide sensor web. IEEE
Pervasive Computing, 2(4):22-33, 2003.

J. Liu and F. Zhao. Towards semantic services for sensor-
rich information systems. In Proc. of the 2nd Intl. Workshop
on Broadband Advanced Sensor Networks (Basenets’05),
Boston, MA, October 2005.

S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TAG: a Tiny AGgregation Service for Ad-Hoc
Sensor Networks. In OSDI, December 2002.

K. Munagala, S. Babu, R. Motwani, and J. Widom. The
pipelined set cover problem. In Proc. Intl. Conf. Database
Engineering (ICDE’05), Tokyo, Japan, April 2005.

R. Newton and M. Welsh. Region streams: Functional
macroprogramming for sensor networks. In Proceedings of
the First International Workshop on Data Management for
Sensor Networks (DMSN), Toronto, Canada, Augest 2004.
M. G. Norman and P. Thanisch. Models of machines and
computation for mapping in multicomputers. ACM Com-
puting Surveys, 25(3):263-302, 1993.

P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos,
M. Welsh, and M. Seltzer. Network-aware operator place-
ment for stream-processing systems. In Proc. 22nd Intl.
Conference on Data Engineering (ICDE’06), Atlanta, GA,
April 2006.

U. Srivastava, K. Munagala, and J. Widom. Operator place-
ment for in-network stream query processing. In Proc.
24th ACM Symposium on Principles of Database Systems
(PODS’05), Baltimore, MD, June 2005.

P. T. Uriel Feige, Laszlo Lovasz. Approximating min-sum
set cover. In Proc. 5th Intl. Workshop on Approximation Al-
gorithms for Combinatorial Optimization (APPROX 2002),
Rome, Italy, pages 94-107, September 2002.

V. Vazirani. Approximation Algorithms. Springer, 2001.

B. Veltman, B. J. Lageweg, and J. K. Lenstra. Multiproces-
sor scheduling with communication delays. Parallel Com-
puting, 16(2-3):173-182, 1990.

K. Whitehouse, F. Zhao, and J. Liu. Semantic streams: a
framework for the composable semantic interpretation of
sensor data. In Proc. European Workshop on Wireless Sen-
sor Networks (EWSN’06), Zurich, Switzerland, Feb. 2006.

