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ABSTRACT

The discounted likelihood procedure, which is a robust ex-
tension of the usual EM procedure, is presented, and t-
wo approximations which lead to two different variants of
the usual MLLR adaptation scheme are introduced. These
schemes are shown to robustly estimate speaker adaptation
transforms with very little data. The evaluation is carried
out on the Switchboard corpus. :

1. INTRODUCTION

In rapid speaker adaptation, the acoustic models of a speak-
er independent LVCSR system are modified to better match
a given test speaker using a very small amount of adapta-
tion data from that speaker. Standard adaptation methods
such as maximum likelihood linear regression (MLLR) [1],
constrained re-estimation of Gaussian means [2], and MAP
adaptation [3] are based on the well known EM algorith-
m [4], which often provides unreliable estimates when the
amount of adaptation data is small.

This problem has been addressed in the past by either
severely restricting the space of model transforms [5, 2],
or by using priors on the transforms [6, 7}. The first ap-
proach has the potential weakness of limiting the power of
the adaptation, while the second requires assumptions on
the form of the prior which may or may not hold in practice,
and also requires estimating hyper-parameters.

"We propose a more robust variant of the EM algorithm
based on the discounted likelihood criterion [8]. Previously,
we have presented initial experiments based on an approx-
imate implementation of a discounted likelihood algorithm
[9]. Here, we take a more principled approach, and discuss
an alternate approximation that leads to a different imple-
mentation of the algorithm, and discuss the benefits and
shortcomings of the two approaches.

The discounted likelihood procedure and its applica-
tion to the estimation of MLLR-type speaker adaptation
transforms is presented in Section 2, and two approxima-
tions leading to efficient implementations of the resulting
discounted likelihood linear regression (DLLR) procedure
are discussed in Section 3. In Section 4 we present results
using these implementations for speaker adaptation on the
Switchboard corpus. We discuss some of the relative merits
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of the algorithms presented in Section 5, and summarize
our conclusions in Section 6.

2. DISCOUNTED LIKELIHOOD LINEAR
REGRESSION

The discounted likelihood algorithm is derived as an alter-
nating minimization procedure between a parameter set ©
determined by the models and their parameterization, and
a family of desired distributions Dy defined by

Dy ={Px|Pr(9) =2}, 0<A<1

where X is the complete variable, Y = g(X) is the incom-
plete variable, Py is the Y-marginal of Px, and ¢ is an
observation of Y. Note that Dj is the set of all probability
measures that put mass A on the observation §. Csiszar
and Tusnddy [10] show that the case A = 1 (i.e. when the
desired distributions are concentrated on the observation §)
leads to the EM algorithm.

The procedure attempts to minimize the divergence be-
tween the desired distributions Px € D) and the parame-
ters € ©. This divergence D(Px,8) is defined as follows.
Given a parameter § we define a measure Qx, ¢ which as-
signs mass gy (§; 6) to the point ¢, and is equivalent to
Qx; ¢ everywhere else (where gy ¢ is the density or proba-
bility mass function of the marginal Qy; ¢). We then define
D(Px,9) by

D(Px,60) = D(Px||@x; ¢)

where D(||-) is the information divergence®.

The alternating minimization procedure consists of the
iterative application of the followin§ two steps to produce
a sequence of parameter iterates §P):

1. Forward Projection (E Step): Find a desired dis-

tribution PP such that

P)(rp“) € arg min D(Px,ﬁ(")).
Px €Dy

I Technically, D(Px||Q x; 6) should include a normalization
term since Q X; ¢ is not necessarily a probability measure. How-
ever, for our purposes, we do not include this term. The reasons
for this follow from Csiszar and Tusnédy (10)].



It can easily be shown that the unique minimizer is
given by the density (or probability mass function)

(P+1)( )= {

where gx; ¢ and gx|y; ¢ are the joint and condition-
al densities of the model. This unique minimizer is
known as the I-projection of ) on Dy.

Xaxy(zly; 0%)  fory=17

(1= 2 gx(z; 09) fory#g, O

Backward Projection (M Step): Find a parame-
ter 8P*Y) such that

pr+Y ¢ arg min D(P(p+1) 6)
)

a

Thus, the procedure attempts to find parameters 6 such
that the models @x; ¢ come close (under the divergence) to
putting weight A on the observation §. Discounted likeli-
hood differs from EM in that it allows this weight to be less
than 1. We will return to this point in the discussion in
Section 5.

In this paper, we discuss the use of the discounted like-
lihood procedure to estimate MLLR-type transforms [1] for
adaptation of acoustic model means. In this case, the model
Qx; ¢ is composed of a language model QV]N which is inde-
pendent of 8, and acoustic HMMs QOlT’SlTlle; 9, where the
complete variable X is comprised of the acoustic sequence
OT, the HMM state sequence S7, and the corresponding
word sequence V;¥. The HMM densities 9oT,sT|vN; ¢ are
specified through transition probabilities, mixture weights,
and Gaussian means and covariances, all of which remain
fixed, as well as the mean transforms {W;} which are to
be estimated. Thus, in this case the parameters @ are sets
of MLLR-type transforms {W;} which are applied to the
means of Gaussians belonging to regression classes {C;}.
The estimation is based on an observation § = (67,91') of
the incomplete variable Y = (O, W{¥). While ¥ is pro-
vided in the case of supervised adaptation, in the case of
unsupervised adaptation an initial recognition pass yield-
s the words ' corresponding to the adaptation acoustic
data 67.

The alternating minimization procedure presented above
results in the following equation for re-estimating new trans-
forms {Wj(pﬂ)} from the previous transforms {Wj(p)} [1]:

]#'s:
T

[Z 1S, = S)] Wipspa  (2)

t=1

T

[Z 1(S; = 5)O,

t=1

>y Ep(p+1)

ﬂEC

Z Z EP(P+1)

3€C;

where 1(S; = s) is an indicator function which takes value
one when the hidden state S; at time ¢ takes the value s
and is zero otherwise, and u, and X, are the extended mean
vector and the covariance matrix of that state’s output den-
sity. Note that for A = 1, the I-projection P,((" ) ig given by
Qx|y=y; 9(» and equation (2) becomes the familiar MLLR
re-estimation equation [1].
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In practice, the re-estimation is done in two steps. First,
the accumulator counts

T
Pt = Eppin [Z (St = S)}

- 3)
d§p+1) = EP)((P'H) [Z I(St = S)Ot]
t=1
are evaluated, and the re-estimation equations
Z o ld(P+1) ! Z =7 1 (P+1)W“ “8 (4)

SEC; $€C;

are solved for each transform WJ-(” *1_ Since this allows es-
timation of MLLR-type transforms under discounted likeli-
hood criterion, we call this procedure discounted likelihood
linear regression (DLLR). Note that these formulae are eas-
ily extended to HMMSs with Gaussian mixture densities [1];
for simplicity, we present only the single mixture component
case.

3. IMPLEMENTING DLLR

From equation (1) it can be seen that the I-projection of a
parameter ") onto Dy can be written as

P(p+l) A)Qx; g(p)

)\P(P-H) + (1

where }3)(("“) = Qx|y=y; ot») is the I-projection that would
be obtained under the EM algorithm (i.e., when A = 1).
Thus, the accumulator counts are given by

c§p+l) — /\Egﬁ—l) +(1 )‘)—(p+1)

dP+D — AJE,"+1) +(1— )\)J(p-#l)
where (Egp+1)’d§p+l)) and (E§p+1),JLp+1)) are expectation-
s under }3)((p+1) and Qx, g(») respectively. Since 13)(("“) =

Qx|y=g; o»» it can be seen that 8%+ and dP*Y are the
usual EM counts obtained from the forward-backward al-
gorithm. However, since P*? and dP*!) are expectations
under Qx; ¢ instead of Q@ x|y=g; ¢, they are not conditioned
on #%. Therefore, their computation involves a sum over
all possible word sequences, which is intractable.

‘We now present two ways of approximating these counts
that yield two different implementations of the DLLR pro-
cedure.

3.1. DLLR through Moment Interpolation

Given a distribution P(p + , it can be shown that for model

families with densities of the form

ax(z; ) = Zg5 exp(6 - 9(2)),

the M-step is given by choosing a parameter §P*1) such
that

Ea, 1) [9(X)] = EP)(fwl) [9(X)]. (5)



However, HMMs with Gaussian observations are, in the
terminology of Efron [11], curved exponential families of the
form

1
gx(z; ) = 2@ exp(f(6) - g(=)),

as illustrated by the following example.

Example: Suppose the acoustic features are one di-
mensional, that the transforms are simple scalings, and that
02 =1/2n, pus =1 for all states s. Then

N T\, N T T
qx (z;0) = vy (v1) IsT\vN (silv1’) 9o7sT (01515 {W;})

T
=e9°(“{"vs1T)H H H (e"(ﬂt—wj)z)l(s‘=s)

j s€C;t=1

T
= exp {go(v{v, s1) + ﬂZof

t=1

+ZWj (27r Z XT:Ogl(SQ = s))

s€C; t=1

+Xj:wf(nz il(stzs))}

S€EC; t=1

and since the density involves terms that depend on W7, it
is a curved exponential family [12].

Thus equation (5) applies only approximately when f(8)
is close to linear. Assuming that this is so, it follows that
E§p+l) ~ ci”) and d—(,p“) ~ d&"), giving

P AGPH 4 (1 - A
dPHY = AP 4 (1 - 2)dP

which we term the moment interpolation algorithm [9].

3.2. DLLR Through Speaker Independent Counts

As an alternative to the approximation discussed above, we
attempt to find the needed counts directly. By expanding
the definition of ") and rearranging we get

T
a7 = By [Z 1(S: = $)Os; 9‘“]

t=1

T
= EQVIN,ST [Z 1(S: = S)EQo,|s, [Otls; 9(p)] ; 9("):‘

t=1

]

= EQV‘N~5T [ 1(S: = S)Wj(p)ﬂa; 9(p)]

= 1
— £P+ )WJ_(P)#S’

t=

-

where C; is the regression class to which the state s belongs.
Thus, we need only estimate the state occupancy counts
under the model, as opposed to the conditional state occu-
pancy counts given the word sequence 9’ and the acoustic
sequence 07 . Unfortunately, this still involves a sum over
all word sequences. Currently, we approximate this by the
speaker independent (SI) state occupancies obtained during
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acoustic model training: 55" 1) %cf T where the con-

stant K is chosen so that 3", ¢P*™") agrees with the number
of frames of adaptation data. However, since these are con-
ditional counts given the speaker independent acoustic data
and corresponding word sequences, there is much room for
improvement, as discussed in Section 6.

4. RESULTS

DLLR speaker adaptation using the moment interpolation
algorithm as well as using the speaker independent counts
was performed on the Switchboard LVCSR corpus. Results
of lattice rescoring experiments on a development test set
of the corpus are reported.

Adaptation was done in an unsupervised fashion based
on approximately 5 seconds of adaptation data, and the
adapted models were tested on data that did not overlap
with the adaptation data according to the protocol defined
in the Rapid Speaker Adaptation project at the 1998 JHU
LVCSR workshop [13]. This protocol determines how well
transforms learned on the small adaptation data generalize
to unseen data, and also provides a test set large enough to
obtain reliable measurements of performance.

The baseline system was trained on 60 hours of speech
using 39-dimensional PLP cepstral features with per-utter-
ance cepstral mean subtraction. Triphone state clustering
used word-boundary information and yielded an SI system
with about 8000 unique states, each with a mixture of 12
Gaussians. This system provides a baseline word error rate
(WER) of 43.1% on bigram lattices.

‘We note that this system can be further refined using
conversation-side cepstral mean subtraction (CMS), vocal
tract normalization (VTN), global MLLR and a trigram
language model to yield a baseline performance of 36.6%
WER. However, the global MLLR used in the refined sys-
tem is based on the entire conversation side, and VTN and
CMS require more than the five seconds of data we use for
adaptation. Thus, these refinements cannot be used when
only 5 seconds of adaptation data is provided.

Training a global speaker adaptation transform based
on the 5 seconds of adaptation data using MLLR leads to
overtraining in a single iteration, even when a block diago-
nal transform of three thirteen-element blocks is estimated.
However, both DLLR methods are able to robustly estimate
full transforms for two regression classes, and give a gain of

1.4% WER.

Directly interpolating MLLR transforms (again for two
regression classes) with a robust transform obtained from
the SI counts (i.e. interpolating the transforms themselves
instead of the counts that give rise to them) was also inves-
tigated. This experiment is meant to be compared to the
interpolation of MLLR counts with SI counts as described
in Section 3.2. Note that estimation based directly on SI
counts yields transforms that are almost identity, since the
unadapted acoustic model means were trained from the SI
data. This approach was not as effective, and only gave a
0.7% WER improvement. ‘

These results are summarized in Table 1. The value of
A was chosen for these experiments was 0.1.



Iteration
SI 1 2 3 4 5
MLLR-full 43.1 | 46.8
MLLR-block | 43.1 | 43.7
MLLR-interp | 43.1 |. 424 43.0 43.0
DLLR-MI 43.1 | 42.6 42.2 42.0 41.8 41.7
DLLR-SI 43.1 | 42.6 420 42.0 41.9 41.7

Table 1: The performance of the MLLR procedure for es-
timating a full transform (MLLR-full) and a block diago-
nal (MLLR-block) transform as well as that of the moment
interpolation based and SI count based DLLR algorithms
(DLLR-MI and DLLR-SI resp.) are compared. Also shown
are the results of interpolating the results of MLLR with a
robust transform (MLLR-interp).

5. DISCUSSION

The results in Section 4 show that the discounted likelihood
algorithms can alleviate overtraining encountered in rapid
adaptation. This can be understood in terms of the de-
scription of the alternating minimization procedure given in
Section 2. The MLLR procedure (A = 1) attempts to find
transforms such that the models put all their probability
mass on the adaptation data. Since this data is unreliable,
an algorithm which attempts to put only a mass A <1 on
the adaptation data leads to more robust behavior.

Even though it produces more robust estimates than the
EM in its early stages, it can be shown that the discount-
ed likelihood procedure converges to stationary points of
the likelihood, regardless of the value of A. Thus, the fixed
points of the procedure do not depend on A, and are also
fixed points of the EM algorithm (since the EM algorithm
results when A = 1). However, the discounted likelihood
criterion is less greedy, and the results presented show that
overtraining can be avoided by early termination of the al-
gorithm.

It can be seen that the effect of the discounted likelihood
criterion on the usual EM based estimation procedure is to
augment the counts gathered from unreliable data by reli-
able counts generated from the model to give more robust
statistics on which to base the estimation. We believe that
this is the natural way in which to do robust estimation. It
can be seen that the more obvious method of interpolating
the unreliable estimates obtained from the EM algorithm
with more robust speaker independent transforms is not as
effective.

6. CONCLUSIONS

The discounted likelihood criterion leads to estimation pro-
cedures which are robust in the face of small amounts of
data. Two implementations of DLLR have been described
that robustly estimate speaker adaptation transforms for
the Switchboard corpus from 5 seconds of data. Although
the two implementations of DLLR provided similar result-
s, the moment interpolation algorithm makes assumptions
on the form of the model family that may not hold. Also,
the moment interpolation algorithm requires the retention
of the interpolated forward-backward accumulator counts
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from iteration to iteration, which can be costly.

The second approximation, on the other hand, can be
improved by using state occupancy counts that are not con-
ditioned on the speaker independent acoustics or word se-
quences. Instead, the occupancies could be calculated di-
rectly from the language model and state transition proba-
bilities. As mentioned earlier, computing these counts ex-
actly would require a summation over all word sequences.
However, we believe that the counts could be well approx-
imated by using either the language model or the training
data to judiciously sample the space of word sequences.
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