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Abstract
This paper investigates the unsupervised adaptation of an acous-
tic model to a domain with mismatched acoustic conditions. We
use techniques borrowed from the unsupervised training litera-
ture to adapt an acoustic model trained on the Wall Street Jour-
nal corpus to the Aurora-2 domain, which is composed of read
digit strings over a simulated noisy telephone channel. We show
that it is possible to use untranscribed in-domain data to get sig-
nificant performance improvements, even when it is severely
mismatched to the acoustic model t

1. Introduction
Progress in automatic speech recognition (ASR) research in the
last few decades has resulted in the increasing use of small to
medium vocabulary closed domain ASR systems in commer-
cial applications. Ideally, a large amount of acoustic data from
each target domain would be collected and transcribed, so that
a system trained to match the target application can be built.
However, as ASR systems become more widespread, this ideal
scenario becomes prohibitively expensive. Thus, it is becom-
ing necessary to build systems that can be deployed in various
domains and conditions with minimal effort spent on tailoring
the system for each of these domains or conditions. Systems
need to be robust with respect to a variety of factors, such as
language model mismatch, out-of-vocabulary words, pronunci-
ation variation, channel variation, noise, and speaking style. All
parts of the system need to be robust to these changes, or be able
to adapt to these new conditions with minimal human effort.

Here, we restrict our attention to the problem of adapting
the acoustic models to a new domain where the channel and
noise characteristics are different from those seen during train-
ing. A deployed system can easily collect large amounts of
adaptation data from the target domain. However, this is un-
transcribed acoustic data, and transcribing it would require a
relatively large effort. Therefore, using untranscribed acoustic
data for domain adaptation is a realistic problem of immediate
interest. The scenario we envision is that a mismatched system
would be deployed, and would automatically adapt to the target
conditions, becoming better and better matched.

We simulate this scenario as follows. We train a “domain-
independent” unadapted acoustic model using the DARPA Wall
Street Journal pilot (WSJ0) corpus [1]. Two “deployment con-
ditions” are provided by the Aurora-2 database [2]. The first
condition is a simulated telephone channel with no added noise,
while the second condition is a simulated telephone channel
with various forms of recorded noise (such as babble, subway,
restaurant, etc) artificially added to the signal at various SNRs.

The database provides training and test data from both condi-
tions. To simulate our scenario, we use the training set as adap-
tation data and ignore the training transcriptions.

Most approaches to robust acoustic modeling either attempt
to explicitly model and account for sources of variation such as
channel and noise [3], or use adaptation techniques such MLLR
[4, 5], MAP [6], or SMAP [7] that do not explicitly model the
sources of variation. While the latter class of approaches are
less powerful than the former, and usually require more data,
they do not require explicit modeling of, or even the knowl-
edge of, the causes of model mismatch. Because we may not
have foreknowledge of these factors, and are in a data-rich sit-
uation where we are attempting to minimize the effort required
for system adaptation, we opt for the latter class of approaches.
Since we have a large amount of adaptation data which is un-
transcribed we follow the approach taken by [8] and [9] for the
unsupervised training of acoustic models.

The paper is organized as follows. In Section 2, we for-
mally present our adaptation scheme as an EM algorithm and
discuss the approximations made in its implementation. In Sec-
tion 3, we describe the WSJ0 models that we use to simulate
the “domain-independent” baseline acoustic models. We then
describe the target domain and acoustic conditions provided by
the Aurora-2 database in Section 4. Here, we will also describe
some cheating experiments that give upper bounds for the per-
formance of our adaptation scheme. We then present our results
in Section 5 and conclude with some discussion in Section 6.

2. Unsupervised Acoustic Model Training

The problem of estimating acoustic models from untranscribed
acoustic data can be viewed as a missing data problem where
the EM algorithm [10] can be applied. That is, we have a
model ���
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where we have assumed for simplicity that only the emission
densities are being reestimated.

Thus, instead of the usual hidden state sequence ��� we usu-
ally encounter in acoustic modeling, we have two hidden vari-
ables ��

� and ��� . We can still solve this estimation problem



using the EM algorithm, maximizing the auxiliary function:
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For simplicity, we use a Viterbi approximation for the first sum,
maximizing
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over �.
To implement this reestimation scheme, we run our decoder

on the training set, and then run Baum-Welch reestimation us-
ing the generated transcription. At each iteration of training,
we rerun the decoding to generate a new transcription. This
procedure involves a further approximation. The decoder finds
the most likely joint word and state sequence, and then discards
this state sequence. An exact implementation of the reestima-
tion scheme above would require a more sophisticated decoder
that searches for the most likely word sequence, irrespective of
alignment.

3. The Baseline Acoustic Model
Our baseline acoustic model was trained on the SI-84 train-
ing set of the WSJ0 corpus, using only the data from the
Sennheiser close-talking microphone channel. The front end
band-limited and down-sampled the data to 8 kHz, and used 12
mel-frequency cepstral coefficients (MFCC) and the log energy
with their first and second derivatives to give a 39-dimensional
feature vector. Cepstral mean subtraction was done at the per-
utterance level. The acoustic models were three state left-to-
right cross-word triphone HMMs, with states clustered using
decision trees. There were 4062 clustered triphone states, each
with an 8 component Gaussian mixture emission density. A pro-
prietary pronunciation dictionary was used, with approximately
1.2 pronunciations per word, and no pronunciation weights.

When using the 5k word closed vocabulary language model
supplied with the WSJ0 corpus, these acoustic models give a
word accuracy of 92.18%, on the ARPA November 1992 WSJ
evaluation test set. When a similar acoustic model is trained
on full bandwidth data, the corresponding accuracy is 93.74%.
Thus the baseline considered here is comparable with that re-
ported in [11], and lacks enhancements such as quinphones and
word boundary dependent models.

4. The Target Domain
We use the Aurora-2 database [2] as our target domain. This
corpus is a subset of the TI Digits corpus, down sampled to
telephone bandwidth, with various distortions artificially added
to the data. The corpus contains two sets of training data. The
first, referred to as the “clean” set, consists of 8440 digit strings
that have been filtered to simulate a telephone channel. The
second, referred to as the “multi-condition” set, consists of the
same data, split into twenty subsets, with four kinds of noise
(such as train, babble, etc) added at five different SNRs each.

Three test sets are provided. The first (Set A) contains 4004
utterances. These utterances are split into four subsets of 1001
each, and each of the four noise types from the multi-condition
training set is added to a subset. This is then repeated at dif-
ferent SNR levels. Test Set B uses the identical procedure, but

different noise types that are not seen in training. Both Set A
and Set B use the same simulated channel as the training data.
Set C consists of two of the four subsets of test utterances us-
ing a different simulated channel. One subset uses noise seen in
training while the other uses noise not seen in training.

We use this data to create two adaption scenarios. In the
first, we use the clean training set as adaptation data, and a clean
version of all three test sets as test data. In the second, we use
the multi-condition training set as adaptation data, and the noisy
versions of all three test sets as test data.

During test, and when decoding the training data, we re-
strict the recognizer to the eleven digit words (“one” through
“nine” plus “oh” and “zero”) found in the corpus. As mentioned
in Section 1, we do not address the problems of vocabulary,
language model, and pronunciation adaptation here. When the
baseline acoustic models are restricted to cross-word triphones
found using this vocabulary, there are 388 clustered states.

Two sets of experiments are performed. In the first, the
adaptation is done on the clean adaptation data, and test results
on a clean version of the test sets described above are reported.
Although there is no added noise in this case, the acoustics still
have the telephone channel filter applied, and in the case of Set
C, this filter is mismatched with training. In the second set of
experiments, adaptation is done on the multi-condition data, and
test results on the noisy test sets are reported. In this second set
of experiments, the noise in the training data exposes the acous-
tic models to the danger of being corrupted by a large amount
of data with bad hypothesized transcriptions. To guard against
this possibility, we sort the training data by estimated SNR, and
then reestimate the models in four phases. In phase 1, we use
only the cleanest (according to our estimate) 25% of the data,
and add a further 25% of the training set in each phase, in order
of estimated SNR, so that all the data is used in phase 4. Thus,
initial phases only use utterances whose transcriptions we have
more reason to trust. The SNR estimate used here is the ratio of
the energy in the highest energy frame of the utterance to that in
the lowest energy frame. Note that more elaborate confidence
measures could be used for training data selection, and that our
SNR scheme is not an option where domain mismatch may not
be caused by noise.

We performed two sets of cheating experiments to set per-
formance bounds on the task. In the first, we trained clean and
multi-condition triphone acoustic models on the Aurora data,
ignoring the WSJ0 models. We refer to these models as the
“Aurora models.” In this case, we optimized the model size to
the task. The resulting models had 342 tied states for the clean
models and 267 tied states for the multi-condition models, with
22 Gaussian components per state in both cases. In the second,
we retrained the WSJ0 models on the clean and multi-condition
training sets using the reference transcriptions. These are re-
ferred to as the “cheating models.” Here, we do not change the
model topology or complexity during training, since the intent
is to find the loss we suffer for not transcribing the data. The
multi-condition training was performed without the data selec-
tion criterion described above.

5. Results
Table 1 summarizes the results of the experiments described
above. Comparing the Aurora and cheating results shows that
using the model structure and complexity that was tuned to the
WSJ task instead of the target task costs about 20% relative in
error rate. It can be seen that in the clean data case, there is vir-
tually no improvement to be had through transcribing the acous-



tic data. In the noisy case, training without transcriptions gives
only about two thirds of the gain that would have been possible
had we transcribed the data.

clean multi
WSJ Baseline 96.50% 59.97%
4 it.s 99.29% 76.36%
8 it.s 99.37% 79.33%
12 it.s – 79.98%
16 it.s – 80.56%
Cheat 99.40% 88.84%
Aurora 99.68% 92.28%

Table 1: Word accuracies of the initial WSJ baseline system, the
system after four, eight, twelve, and sixteen iterations of unsu-
pervised retraining, the system retrained with supervising using
the true (cheating) transcriptions, and the Aurora-only system
on the clean and multi-condition test sets. The “clean” column
is the performance of the clean data adapted models on clean
data, while the “multi” column is the average performance of
the multi-condition adapted models over all the noisy test sets.
The first row corresponds to the unadapted model on these two
sets. Reestimation of the clean system was terminated after 8
iterations due to the diminishing gains.

Table 2 expands the second column of Table 1, breaking
the results out by SNR. Here, it can be seen that in the lower
noise conditions (15dB, 20dB, and clean), we get most of the
gain we could potentially have got had we transcribed the data.
However, at lower SNRs, the improvement obtained from unsu-
pervised retraining is somewhat smaller, though still significant.

Baseline 4 iter. 16 iter. Cheat
clean 90.49% 96.85% 96.43% 97.97%

20 dB 89.20% 96.72% 96.74% 98.24%
15 dB 85.31% 95.54% 95.93% 97.71%
10 dB 72.23% 90.34% 92.25% 92.54%

5 dB 40.27% 68.71% 76.85% 87.79%
0 dB 12.87% 30.49% 41.02% 64.96%

-5 dB 2.78% 7.29% 14.07% 28.15%
Overall 59.97% 76.36% 80.56% 88.84%

Table 2: Word accuracies of the initial WSJ baseline system,
the system after four and sixteen iterations of retraining, and
the system retrained with the true (cheating) transcriptions, in
the multi-condition case, broken down by SNR. Note that clean
and -5 dB SNR cases are excluded in the overall results, as this
is the standard practice in reporting results on this task.

Note that the Aurora results presented here are somewhat
better than the standard baseline because we do not restrict our-
selves to the back-end specified in [2], as these restrictions do
not make sense for our purposes. In particular we use cross-
word models instead of whole word models, and use an order
of magnitude more parameters. However, the performance is
comparable to that of the “complex backend” described in [12].

Finally, Figure 1 shows how the multi-condition training set
transcription improves with retraining and re-transcription. This
trend holds on the clean training set as well, but it less dramatic.
It can be seen that the transcription accuracy saturates after 4
or five iterations. We observed that the test set accuracy stops
improving an iteration or two after that.
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Figure 1: The accuracy of the automatically generated training
transcription as a function of iteration number, for the multi-
condition set. Notice that this saturates after about five itera-
tions.

5.1. Data Selection in the Presence of Noise

To investigate the effect of data selection in the multi-condition
case, we performed the adaptation in four phases as described in
Section 4 above. Each phase consisted of four iterations of re-
transcription and reestimation. Table 3 shows the performance
of the system after each phase, while Table 4 shows the break-
down of the training data used in each phase. Notice that the
introduction of data in order of increasing difficulty gives a sig-
nificant improvement in performance over introducing all the
data at once, as was done in Table 2. Given that sixteen itera-
tions of retraining are to be performed, it is better to use only the
cleaner utterances in the earlier iterations. Table 3 also shows
that even the utterances with higher amounts of noise contribute
to improving performance. That is, there is no gain from com-
pletely excluding the noisiest 25% of the data (rather than just
delaying its introduction).

Phase 1 Phase 2 Phase 3 Phase 4
clean 93.30% 93.41% 92.81% 92.38%

20 dB 94.98% 95.59% 95.41% 95.25%
15 dB 93.09% 94.27% 94.66% 94.80%
10 dB 86.36% 89.02% 90.54% 91.39%
5 dB 68.61% 71.09% 76.94% 80.12%
0 dB 35.73% 33.98% 45.57% 52.37%

-5 dB 11.87% 9.26% 14.44% 18.99%
Overall 75.60% 76.94% 80.62% 82.79%

Table 3: Word accuracies of the WSJ system when it is retrained
in four phases, each phase including noisier data in addition to
the data from the previous one. Notice that performance is su-
perior in this ordered adaptation than in the “batch” adaptation
shown in Tables 1 and 2.

6. Discussion
As mentioned in Section 1, this work is heavily inspired by
the approach described in [9], where a seed acoustic model is
trained on a small amount of transcribed data, and is then used
to iteratively transcribe more data which is then used to rees-
timate the acoustic model. The problem we describe is even



Phase 1 Phase 2 Phase 3 Phase 4
clean 1534 1667 1687 1688

20 dB 449 1243 1568 1688
15 dB 120 952 1429 1688
10 dB 7 367 1077 1688
5 dB 0 91 569 1688

Overall 2110 4220 6330 8440

Table 4: Amount of traning data used in each phase, broken
down by SNR.

more conducive to this approach because the target task is fairly
limited so that the accuracy of the automatically generated tran-
scriptions is better. However, re-transcription of the training
data between iterations is more important here, since the mis-
match between training and target conditions means that initial
transcriptions are of fairly low quality. The sequential nature
of the approach in [9] also means that more and more data gets
transcribed with better and better acoustic models, while in our
batch solution, re-transcription is more important.

All adaptation experiments presented here were done using
full model reestimation – no parameter tying methods (such as
MLLR) or smoothing methods (such as MAP) were used. This
is because, unlike in the case of speaker adaptation, we have
sufficient data for unconstrained ML estimation. In tasks where
this is not the case, the approach used here could be extended
by using these more sophisticated adaptation techniques. How-
ever, since we do not require supervision, it should be possible
to collect enough data for full unconstrained retraining in most
cases.

The results of the previous section show that transcribed in-
domain data was not necessary to adapt WSJ acoustic models
to the Aurora-2 task, as long as noise level were not too high.
Even when noise levels are higher, there is no penalty incurred
by unsupervised adaptation, and in fact, significant improve-
ments are still obtained, even when the unadapted performance
is fairly poor. However, in these cases, the cost of transcribing
at least some of the data may be justifiable. However, further
work needs to be done on how to identify the most useful ut-
terances for transcription. We also showed that in the noisy
(high error-rate) case, the order in which data is introduced into
the system makes a difference in performance, and that reestin-
mating with easier data first may be helpful. These results are
likely to generalize to other tasks, as long as the target domain
is fairly small, so that automatic transcriptions will still be fairly
reliable.
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